Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 261(Pt 1): 129049, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176510

RESUMO

The economic burden of chronic wounds, the complexity of the process of tissue repair and the possibility of resistant bacterial infections, have triggered a significant research interest in the application of natural alternative therapies for wound healing. Biomolecules are intrinsically multi-active, as they affect multiple mechanisms involved in tissue repair phenomenon, including immunomodulatory, anti-inflammatory, cell proliferation, extra cellular matrix remodeling and angiogenesis. Chitosan features a unique combination of attributes, including intrinsic hemostatic, antimicrobial, and immunomodulatory properties, that make it an exceptional candidate for wound management, in the development of wound dressings and scaffolds. In this study, we produced nanoemulsions (NE) loaded with SFO, characterized them, and evaluated their tissue repairing properties. Dynamic light scattering (DLS) analysis confirmed the formation of a nanoemulsion with a droplet size of 21.12 ± 2.31 nm and a polydispersity index (PdI) of 0.159, indicating good stability for up to 90 days. To investigate the potential wound healing effects, SFO-loaded NE were applied on male C57BL/6 mice for seven consecutive days, producing a significantly higher wound closure efficiency (p < 0.05) for the group treated with SFO-loaded NE compared to the control group treated with the saline solution. This finding indicates that the SFO-loaded NE exhibits therapeutic properties that effectively promote wound healing in this experimental model. Then, SFO-loaded NE were incorporated into chitosan:polyvinyl alcohol (PVA)-based films. The inclusion of NE into the polymer matrix resulted in increased lipophilicity reflected by the contact angle results, while decreasing moisture absorption, water solubility, and crystallinity. Moreover, FTIR analysis confirmed the formation of new bonds between SFO-NE and the film matrix, which also impacted on porosity properties. Thermal analysis indicated a decrease in the glass transition temperature of the films due to the presence of SFO-NE, suggesting a plasticizing role of NE, confirmed by XRD results, that showed a decrease in the crystallinity of the blend films upon the addition of SFO-NE. AFM images showed no evidence of NE droplet aggregation in the Chitosan:PVA film matrix. Moisture absorption and water content decreased upon incorporation of SFO-loaded NE. Although the inclusion of NE increased hydrophobicity and water contact angle, the values remained within an acceptable range for wound healing applications. Overall, our results emphasize the significant tissue repairing properties of SFO-loaded NE and the potential of Chitosan:PVA films containing nanoencapsulated SFO as effective formulations for wound healing with notable tissue repairing properties.


Assuntos
Quitosana , Óleos Voláteis , Humanos , Camundongos , Animais , Masculino , Quitosana/química , Óleos Voláteis/farmacologia , Camundongos Endogâmicos C57BL , Cicatrização , Água/farmacologia , Álcool de Polivinil/química , Antibacterianos/farmacologia
2.
Pharmaceutics ; 14(12)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36559201

RESUMO

Fungal diseases are a significant cause of morbidity and mortality worldwide, primarily affecting immunocompromised patients. Aspergillus, Pneumocystis, and Cryptococcus are opportunistic fungi and may cause severe lung disease. They can develop mechanisms to evade the host immune system and colonize or cause lung disease. Current fungal infection treatments constitute a few classes of antifungal drugs with significant fungi resistance development. Amphotericin B (AmB) has a broad-spectrum antifungal effect with a low incidence of resistance. However, AmB is a highly lipophilic antifungal with low solubility and permeability and is unstable in light, heat, and oxygen. Due to the difficulty of achieving adequate concentrations of AmB in the lung by intravenous administration and seeking to minimize adverse effects, nebulized AmB has been used. The pulmonary pathway has advantages such as its rapid onset of action, low metabolic activity at the site of action, ability to avoid first-pass hepatic metabolism, lower risk of adverse effects, and thin thickness of the alveolar epithelium. This paper presented different strategies for pulmonary AmB delivery, detailing the potential of nanoformulation and hoping to foster research in the field. Our finds indicate that despite an optimistic scenario for the pulmonary formulation of AmB based on the encouraging results discussed here, there is still no product registration on the FDA nor any clinical trial undergoing ClinicalTrial.gov.

3.
Curr Radiopharm ; 5(4): 336-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22724424

RESUMO

Nanotechnology has been the last frontier in the diagnoses and treatment of many diseases, especially in oncology. The use of nanoparticles of radiopharmaceuticals may represent the future of Nuclear Medicine. In this study we developed, characterized and tested polymeric nanoparticles of FMISO (fluoromisonidazole) in a dynamic study of biodistribution. The results of the development as characterization showed that nanoparticles were well obtained with a size range of 300- 500 nm and a spherical shape.


Assuntos
Misonidazol/análogos & derivados , Nanopartículas/química , Radiossensibilizantes/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Microscopia de Força Atômica , Misonidazol/síntese química , Misonidazol/farmacocinética , Radiossensibilizantes/síntese química , Compostos Radiofarmacêuticos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA