Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 638, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136058

RESUMO

The Central Arctic Ocean is one of the most oligotrophic oceans on Earth because of its sea-ice cover and short productive season. Nonetheless, across the peaks of extinct volcanic seamounts of the Langseth Ridge (87°N, 61°E), we observe a surprisingly dense benthic biomass. Bacteriosponges are the most abundant fauna within this community, with a mass of 460 g C m-2 and an estimated carbon demand of around 110 g C m-2 yr-1, despite export fluxes from regional primary productivity only sufficient to provide <1% of this required carbon. Observed sponge distribution, bulk and compound-specific isotope data of fatty acids suggest that the sponge microbiome taps into refractory dissolved and particulate organic matter, including remnants of an extinct seep community. The metabolic profile of bacteriosponge fatty acids and expressed genes indicate that autotrophic symbionts contribute significantly to carbon assimilation. We suggest that this hotspot ecosystem is unique to the Central Arctic and associated with extinct seep biota, once fueled by degassing of the volcanic mounts.


Assuntos
Sedimentos Geológicos , Microbiota/fisiologia , Poríferos/microbiologia , Animais , Regiões Árticas , Processos Autotróficos , Biodiversidade , Ciclo do Carbono , Extinção Biológica , Ácidos Graxos/metabolismo , Oceanos e Mares , Simbiose
2.
J Exp Biol ; 212(Pt 23): 3892-900, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19915132

RESUMO

This study reveals the peculiar in vivo cell kinetics and cell turnover of the marine sponge Halisarca caerulea under steady-state conditions. The tropical coral reef sponge shows an extremely high proliferation activity, a short cell cycle duration and massive cell shedding. Cell turnover is predominantly confined to a single cell population, i.e. the choanocytes, and in this process apoptosis only plays a minor role. To our knowledge, such fast cell kinetics under steady-state conditions, with high turnover by shedding in the absence of apoptosis, has not been observed previously in any other multicellular organism. The duration of the cell cycle in vivo resembles that of unicellular organisms in culture. Morphological and histochemical studies demonstrate compartmentalization of choanocytes in the sponge tissue, which corresponds well with its remarkable cellular kinetics. Coral reef cavity sponges, like H. caerulea, inhabit low nutrient tropical waters, forcing these organisms to filter large volumes of water and to capture the few nutrients efficiently. Under these oligotrophic conditions, a high cell turnover may be considered as a very useful strategy, preventing permanent damage to the sponge by environmental stress. Halisarca caerulea maintains its body mass and keeps its food uptake system up to date by constantly renewing its filter system. We conclude that studies on cell kinetics and functional morphology provide new and essential information on the growth characteristics and the regulation of sponge growth in vivo as well as in vitro and the role of choanocytes in tissue homeostasis.


Assuntos
Ciclo Celular/fisiologia , Proliferação de Células , Poríferos/citologia , Animais , Apoptose/fisiologia , Bromodesoxiuridina , Imuno-Histoquímica , Antilhas Holandesas , Poríferos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA