RESUMO
BACKGROUND: Leishmaniasis is a significant global public health issue that is caused by parasites from Leishmania genus. With limited treatment options and rising drug resistance, there is a pressing need for new therapeutic approaches. Molecular chaperones, particularly Hsp90, play a crucial role in parasite biology and are emerging as promising targets for drug development. OBJECTIVE: This study evaluates the efficacy of 17-DMAG in treating BALB/c mice from cutaneous leishmaniasis through in vitro and in vivo approaches. MATERIALS AND METHODS: We assessed 17-DMAG's cytotoxic effect on bone marrow-derived macrophages (BMMΦ) and its effects against L. braziliensis promastigotes and intracellular amastigotes. Additionally, we tested the compound's efficacy in BALB/c mice infected with L. braziliensis via intraperitoneal administration to evaluate the reduction in lesion size and the decrease in parasite load in the ears and lymph nodes of infected animals. RESULTS: 17-DMAG showed selective toxicity [selective index = 432) towards Leishmania amastigotes, causing minimal damage to host cells. The treatment significantly reduced lesion sizes in mice and resulted in parasite clearance from ears and lymph nodes. It also diminished inflammatory responses and reduced the release of pro-inflammatory cytokines (IL-6, IFN-γ, TNF) and the regulatory cytokine IL-10, underscoring its dual leishmanicidal and anti-inflammatory properties. CONCLUSIONS: Our findings confirm the potential of 17-DMAG as a viable treatment for cutaneous leishmaniasis and support further research into its mechanisms and potential applications against other infectious diseases.
RESUMO
Asthma is a respiratory disease caused by the interaction of genetic and environmental factors. The adenylyl cyclase type 9 (ADCY9) enzyme produces the cyclic-adenosinemonophosphate (cAMP), important mediator involved in bronchodilation and immunomodulatory response. The aim of this study was to investigate if rs2601796 and rs2532019 variants in the ADCY9 gene are associated with asthma and lung function. The study comprised 1,052 subjects. Logistic regressions were done using PLINK 1.9 adjusted by sex, age, BMI, smoke and principal components. Bronchodilator responsiveness was assessed using the percentage of difference in FEV1 before and after the bronchodilator use. The in silico analysis for gene expression was performed in the GTEx Portal. The variant rs2601796 (AA/AG genotype) was positively associated with asthma severity (OR: 1.60 IC95%: 1.08-2.39) and with obstruction in individuals with severe asthma (OR: 3.10, IC95%: 1.11-8.62). Individuals with severe asthma and the AA/AG genotype of rs2601796 had less responsiveness to bronchodilators and also a lower expression of ADCY9 in lung and whole blood. The variant rs2532019 (TT/GT genotype) also downregulated the ADCY9 gene expression, but no significant association with the studied phenotypes was found. Thus, the variant in ADCY9 was associated with worse asthma outcomes, including a lower response to bronchodilators, likely due to the impact on its gene expression rate. This variant may be useful in the future to assist in personalized management of patients with asthma.
Assuntos
Asma , Broncodilatadores , Humanos , Asma/tratamento farmacológico , Asma/genética , Broncodilatadores/farmacologia , Broncodilatadores/uso terapêutico , FenótipoRESUMO
BACKGROUND: Asthma is a complex disorder with multiple phenotypes which can influence its severity and response to treatment. The TH17 lymphocytes producing IL-17A and IL17-F cytokines, may have a role on asthma inflammation. The aim of our study was to evaluate the association between genetic variants in IL17 pathway genes with asthma and atopy markers. MATERIALS AND METHODS: Genotyping was performed using a commercial panel in 1245 participants of SCAALA cohort. The study included 91 SNVs in IL-17 pathway genes. Logistic regressions for asthma and atopy markers were performed using PLINK 1.9. In silico analyses were performed using rSNPbase, RegulomeDB, and Gtex portal for in silico gene expression. RESULTS AND DISCUSSION: The T allele of rs1974226 in IL17A was positively associated with asthma (OR: 1.37; 95% CI 1.02-1.82). Also, the T allele of rs279548 was positively associated with asthma (OR: 1.30; 95% CI 1.02-1.64), atopy (OR: 1.62; 95% CI 1.05-2.50) and increased expression of the IL17RC in lung and whole blood tissues. The others genetic variants in the IL17 pathways genes were associated with both protection and risk for asthma development as well as with IgE levels. CONCLUSION: The genetic variants in IL-17-related genes are associated with the atopic asthma phenotype and IgE production.