Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(18): 5490-5497, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38657179

RESUMO

The sodium (Na) metal anode encounters issues such as volume expansion and dendrite growth during cycling. Herein, a novel three-dimensional flexible composite Na metal anode was constructed through the conversion-alloying reaction between Na and ultrafine Sb2S3 nanoparticles encapsulated within the electrospun carbon nanofibers (Sb2S3@CNFs). The formed sodiophilic Na3Sb sites and the high Na+-conducting Na2S matrix, coupled with CNFs, establish a spatially confined "sodiophilic-conductive" network, which effectively reduces the Na nucleation barrier, improves the Na+ diffusion kinetics, and suppresses the volume expansion, thereby inhibiting the Na dendrite growth. Consequently, the Na/Sb2S3@CNFs electrode exhibits a high Coulombic efficiency (99.94%), exceptional lifespan (up to 2800 h) at high current densities (up to 5 mA cm-2), and high areal capacities (up to 5 mAh cm-2) in symmetric cells. The coin-type full cells assembled with a Na3V2(PO4)3/C cathode demonstrate significant enhancement in electrochemical performance. The flexible pouch cell achieves an excellent energy density of 301 Wh kg-1.

2.
Small ; : e2400570, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38600895

RESUMO

Lithium (Li) metal batteries are deemed as promising next-generation power solutions but are hindered by the uncontrolled dendrite growth and infinite volume change of Li anodes. The extensively studied 3D scaffolds as solutions generally lead to undesired "top-growth" of Li due to their high electrical conductivity and the lack of ion-transporting pathways. Here, by reducing electrical conductivity and increasing the ionic conductivity of the scaffold, the deposition spot of Li to the bottom of the scaffold can be regulated, thus resulting in a safe bottom-up plating mode of the Li and dendrite-free Li deposition. The resulting symmetrical cells with these scaffolds, despite with a limited pre-plated Li capacity of 5 mAh cm-2, exhibit ultra-stable Li plating/stripping for over 1 year (11 000 h) at a high current density of 3 mA cm-2 and a high areal capacity of 3 mAh cm-2. Moreover, the full cells with these scaffolds further demonstrate high cycling stability under challenging conditions, including high cathode loading of 21.6 mg cm-2, low negative-to-positive ratio of 1.6, and limited electrolyte-to-capacity ratio of 4.2 g Ah-1.

3.
Chembiochem ; 25(7): e202300768, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38353030

RESUMO

Growing cells in a biomimetic environment is critical for tissue engineering as well as for studying the cell biology underlying disease mechanisms. To this aim a range of 3D matrices have been developed, from hydrogels to decellularized matrices. They need to mimic the extracellular matrix to ensure the optimal growth and function of cells. Electrospinning has gained in popularity due to its capacity to individually tune chemistry and mechanical properties and as such influence cell attachment, differentiation or maturation. Polyacrylonitrile (PAN) derived electrospun fibres scaffolds have shown exciting potential due to reports of mechanical tunability and biocompatibility. Building on previous work we fabricate here a range of PAN fibre scaffolds with different concentrations of carbon nanotubes. We characterize them in-depth in respect to their structure, surface chemistry and mechanical properties, using scanning electron microscopy, image processing, ultramicrotomic transmission electron microscopy, x-ray nanotomography, infrared spectroscopy, atomic force microscopy and nanoindentation. Together the data demonstrate this approach to enable finetuning the mechanical properties, while keeping the structure and chemistry unaltered and hence offering ideal properties for comparative studies of the cellular mechanobiology. Finally, we confirm the biocompatibility of the scaffolds using primary rat cardiomyocytes, vascular smooth muscle (A7r5) and myoblast (C2C12) cell lines.


Assuntos
Nanotubos de Carbono , Alicerces Teciduais , Animais , Ratos , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Resinas Acrílicas
4.
Chemistry ; 30(1): e202302481, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37823243

RESUMO

The increasing prevalence of neurodegenerative diseases has spurred researchers to develop advanced 3D models that accurately mimic neural tissues. Hydrogels stand out as ideal candidates as their properties closely resemble those of the extracellular matrix. A critical challenge in this regard is to comprehend the influence of the scaffold's mechanical properties on cell growth and differentiation, thus enabling targeted modifications. In light of this, a synthesis and comprehensive analysis of acrylamide-based hydrogels incorporating a peptide has been conducted. Adequate cell adhesion and development is achieved due to their bioactive nature and specific interactions with cellular receptors. The integration of a precisely controlled physicochemical hydrogel matrix and inclusion of the arginine-glycine-aspartic acid peptide sequence has endowed this system with an optimal structure, thus providing a unique ability to interact effectively with biomolecules. The analysis fully examined essential properties governing cell behavior, including pore size, mechanical characteristics, and swelling ability. Cell-viability experiments were performed to assess the hydrogel's biocompatibility, while the incorporation of grow factors aimed to promote the differentiation of neuroblastoma cells. The results underscore the hydrogel's ability to stimulate cell viability and differentiation in the presence of the peptide within the matrix.


Assuntos
Hidrogéis , Engenharia Tecidual , Engenharia Tecidual/métodos , Hidrogéis/química , Peptídeos/química , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Adesão Celular
5.
J Comput Aided Mol Des ; 37(2): 107-115, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36462089

RESUMO

Mimicking bioactive conformations of peptide segments involved in the formation of protein-protein interfaces with small molecules is thought to represent a promising strategy for the design of protein-protein interaction (PPI) inhibitors. For compound design, the use of three-dimensional (3D) scaffolds rich in sp3-centers makes it possible to precisely mimic bioactive peptide conformations. Herein, we introduce DeepCubist, a molecular generator for designing peptidomimetics based on 3D scaffolds. Firstly, enumerated 3D scaffolds are superposed on a target peptide conformation to identify a preferred template structure for designing peptidomimetics. Secondly, heteroatoms and unsaturated bonds are introduced into the template via a deep generative model to produce candidate compounds. DeepCubist was applied to design peptidomimetics of exemplary peptide turn, helix, and loop structures in pharmaceutical targets engaging in PPIs.


Assuntos
Peptidomiméticos , Peptidomiméticos/farmacologia , Peptídeos/química , Proteínas/química
6.
J Artif Organs ; 26(2): 95-111, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36125581

RESUMO

Tissue engineering (TE) has made a revolution in repairing, replacing, or regenerating tissues or organs, but it has still a long way ahead. The mechanical properties along with suitable physicochemical and biological characteristics are the initial criteria for scaffolds in TE that should be fulfilled. This research will provide another point of view toward TE challenges concerning the morphological and geometrical aspects of the reconstructed tissue and which parameters may affect it. Based on our survey, there is a high possibility that the final reconstructed tissue may be different in size and shape compared to the original design scaffold. Thereby, the 3D-printed scaffold might not guarantee an accurate tissue reconstruction. The main justification for this is the unpredicted behavior of cells, specifically in the outer layer of the scaffold. It can also be a concern when the scaffold is implanted while cell migration cannot be controlled through the in vivo signaling pathways, which might cause cancer challenges. To sum up, it is concluded that more studies are necessary to focus on the size and geometry of the final reconstructed tissue.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Impressão Tridimensional
7.
Int Orthop ; 47(10): 2375-2382, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35854056

RESUMO

PURPOSE: Damage of the knee cartilage is a common condition manifesting itself mainly by pain and/or swelling that may substantially reduce the quality of life while ultimately leading to osteoarthritis in affected patients. Here, we aimed to evaluate the safety and efficacy of cultured autologous bone marrow mesenchymal stem cells (BM-MSCs) attached to the 3D Chondrotissue® scaffold by autologous blood plasma coagulation (BiCure® ortho MSCp) in the treatment of knee cartilage defects. METHODS: The primary endpoint of this phase I/IIa clinical trial was to evaluate the safety of the treatment. The secondary objective was to determine the short-to-medium-term therapeutic outcomes by standardized scoring questionnaires including Lysholm Knee Scoring Scale (Lysholm score), Knee Injury and Osteoarthritis Outcome Score (KOOS), and pain Visual Analogue Scale (VAS) systems and imaging (X-ray and magnetic resonance imaging, MRI). A total of six patients were included and followed for 12 months after the surgery. RESULTS: BiCure® ortho MSCp was well tolerated with no adverse events associated with the investigational medicinal product. Significant improvements were observed in Lysholm scores and KOOS while X-ray showed no deterioration of the arthritis and MRI revealed a persistent filling of the chondral defects by the implant. CONCLUSION: Overall, our data demonstrate the safety of the tested investigational medicinal product. The function of the treated knee improved within one year after surgery in all enrolled patients. TRIAL REGISTRATION NUMBER AND DATE OF REGISTRATION: EudraCT No.: 2018-004,067-31; October 18 2018.

8.
Amino Acids ; 54(3): 441-454, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35103826

RESUMO

Fabrication and development of nanoscale materials with tunable structural and functional properties require a dynamic arrangement of nanoparticles on architectural templates. The function of nanoparticles not only depends on the property of the nanoparticles but also on their spatial orientations. Proteins with self-assembling properties which can be genetically engineered to varying architectural designs for scaffolds can be used to develop different orientations of nanoparticles in three dimensions. Here, we report the use of naturally self-assembling bacterial micro-compartment shell protein (PduA) assemblies in 2D and its single-point mutant variant (PduA[K26A]) in 3D architectures for the reduction and fabrication of gold nanoparticles. Interestingly, the different spatial organization of gold nanoparticles resulted in a smaller size in the 3D architect scaffold. Here, we observed a two-fold increase in catalytic activity and six-fold higher affinity toward TMB (3,3',5,5'-tetramethylbenzidine) substrate as a measure of higher peroxidase activity (nanozymatic) in the case of PduA[K26A] 3D scaffold. This approach demonstrates that the hierarchical organization of scaffold enables the fine-tuning of nanoparticle properties, thus paving the way toward the design of new nanoscale materials.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Catálise , Ouro/química , Nanopartículas Metálicas/química , Nanopartículas/química
9.
Mar Drugs ; 20(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35736147

RESUMO

In bone tissue regeneration, extracellular matrix (ECM) and bioceramics are important factors, because of their osteogenic potential and cell-matrix interactions. Surface modifications with hydrophilic material including proteins show significant potential in tissue engineering applications, because scaffolds are generally fabricated using synthetic polymers and bioceramics. In the present study, carbonated hydroxyapatite (CHA) and marine atelocollagen (MC) were extracted from the bones and skins, respectively, of Paralichthys olivaceus. The extracted CHA was characterized using Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) analysis, while MC was characterized using FTIR spectroscopy and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The scaffolds consisting of polycaprolactone (PCL), and different compositions of CHA (2.5%, 5%, and 10%) were fabricated using a three-axis plotting system and coated with 2% MC. Then, the MC3T3-E1 cells were seeded on the scaffolds to evaluate the osteogenic differentiation in vitro, and in vivo calvarial implantation of the scaffolds was performed to study bone tissue regeneration. The results of mineralization confirmed that the MC/PCL, 2.5% CHA/MC/PCL, 5% CHA/MC/PCL, and 10% CHA/MC/PCL scaffolds increased osteogenic differentiation by 302%, 858%, 970%, and 1044%, respectively, compared with pure PCL scaffolds. Consequently, these results suggest that CHA and MC obtained from byproducts of P. olivaceus are superior alternatives for land animal-derived substances.


Assuntos
Durapatita , Osteogênese , Animais , Regeneração Óssea , Colágeno , Durapatita/química , Durapatita/farmacologia , Poliésteres/química , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química
10.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361824

RESUMO

Cardiovascular diseases are the leading cause of global mortality. Over the past two decades, researchers have tried to provide novel solutions for end-stage heart failure to address cardiac transplantation hurdles such as donor organ shortage, chronic rejection, and life-long immunosuppression. Cardiac decellularized extracellular matrix (dECM) has been widely explored as a promising approach in tissue-regenerative medicine because of its remarkable similarity to the original tissue. Optimized decellularization protocols combining physical, chemical, and enzymatic agents have been developed to obtain the perfect balance between cell removal, ECM composition, and function maintenance. However, proper assessment of decellularized tissue composition is still needed before clinical translation. Recellularizing the acellular scaffold with organ-specific cells and evaluating the extent of cardiomyocyte repopulation is also challenging. This review aims to discuss the existing literature on decellularized cardiac scaffolds, especially on the advantages and methods of preparation, pointing out areas for improvement. Finally, an overview of the state of research regarding the application of cardiac dECM and future challenges in bioengineering a human heart suitable for transplantation is provided.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Humanos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Matriz Extracelular Descelularizada , Matriz Extracelular/química , Miócitos Cardíacos
11.
Int J Mol Sci ; 23(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36430445

RESUMO

Multicellular tumor spheroids and tumoroids are considered ideal in vitro models that reflect the features of the tumor microenvironment. Biomimetic components resembling the extracellular matrix form scaffolds to provide structure to 3-dimensional (3D) culture systems, supporting the growth of both spheroids and tumoroids. Although Matrigel has long been used to support 3D culture systems, batch variations, component complexity, and the use of components derived from tumors are complicating factors. To address these issues, we developed the ACD 3D culture system to provide better control and consistency. We evaluated spheroid and tumoroid formation using the ACD 3D culture system, including the assessment of cell viability and cancer marker expression. Under ACD 3D culture conditions, spheroids derived from cancer cell lines exhibited cancer stem cell characteristics, including a sphere-forming size and the expression of stem cell marker genes. The ACD 3D culture system was also able to support patient-derived primary cells and organoid cell cultures, displaying adequate cell growth, appropriate morphology, and resistance to oxaliplatin treatment. These spheroids could also be used for drug screening purposes. In conclusion, the ACD 3D culture system represents an efficient tool for basic cancer research and therapeutic development.


Assuntos
Neoplasias , Esferoides Celulares , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Células-Tronco/metabolismo , Microambiente Tumoral
12.
Int J Mol Sci ; 23(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36232980

RESUMO

Oxygen glucose deprivation (OGD) can produce hypoxia-induced neurotoxicity and is a mature in vitro model of hypoxic cell damage. Activated AMP-activated protein kinase (AMPK) regulates a downstream pathway that substantially increases bioenergy production, which may be a key player in physiological energy and has also been shown to play a role in regulating neuroprotective processes. Resveratrol is an effective activator of AMPK, indicating that it may have therapeutic potential as a neuroprotective agent. However, the mechanism by which resveratrol achieves these beneficial effects in SH-SY5Y cells exposed to OGD-induced inflammation and oxidative stress in a 3D gelatin scaffold remains unclear. Therefore, in the present study, we investigated the effect of resveratrol in 3D gelatin scaffold cells to understand its neuroprotective effects on NF-κB signaling, NLRP3 inflammasome, and oxidative stress under OGD conditions. Here, we show that resveratrol improves the expression levels of cell viability, inflammatory cytokines (TNF-α, IL-1ß, and IL-18), NF-κB signaling, and NLRP3 inflammasome, that OGD increases. In addition, resveratrol rescued oxidative stress, nuclear factor-erythroid 2 related factor 2 (Nrf2), and Nrf2 downstream antioxidant target genes (e.g., SOD, Gpx GSH, catalase, and HO-1). Treatment with resveratrol can significantly normalize OGD-induced changes in SH-SY5Y cell inflammation, oxidative stress, and oxidative defense gene expression; however, these resveratrol protective effects are affected by AMPK antagonists (Compounds C) blocking. These findings improve our understanding of the mechanism of the AMPK-dependent protective effect of resveratrol under 3D OGD-induced inflammation and oxidative stress-mediated cerebral ischemic stroke conditions.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Proteínas Quinases Ativadas por AMP/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Catalase/metabolismo , Gelatina/farmacologia , Glucose/metabolismo , Humanos , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/metabolismo , Interleucina-18/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neuroblastoma/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Oxigênio/metabolismo , Resveratrol/metabolismo , Resveratrol/farmacologia , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
Biotechnol Bioeng ; 118(4): 1444-1455, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33241857

RESUMO

Scaffold microstructures were developed to mimic a three-dimensional extracellular matrix in studying cell migration and invasion. The multiple-layer scaffold platforms were designed to investigate cell migration and separation from top to bottom layer. Two cell lines including immortalized nasopharyngeal epithelial (NP460) cells and nasopharyngeal carcinoma (NPC43) cells with Epstein-Barr virus were compared in this study. On one-layer platforms with trench depth of 15 µm, both NP460 and NPC43 cells were guided to migrate along the 18-µm-wide trenches, and exhibited random migration directions when the trench width was 10 or 50 µm. Nearly no cell was found to migrate in the 10-µm-wide trenches on one-layer platforms. However, the NP460 and NPC43 cells showed very different probability in the narrow trenches on two-layer platforms, making it possible to separate the nasopharyngeal epithelial cells from the carcinoma cells. Moreover, 1-µm deep grating topography on the top layer inhibited NP460 cells to migrate from top ridges to the 10-µm-wide trenches, but promoted such behavior for NPC43 cells. The results demonstrated in This study suggest that the engineered multiple-layer scaffold platforms could be used to separate carcinoma cells in NPC tumor as a potential treatment of NPC.


Assuntos
Separação Celular , Células Epiteliais/metabolismo , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Alicerces Teciduais/química , Linhagem Celular Tumoral , Células Epiteliais/patologia , Humanos , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/patologia
14.
Bioprocess Biosyst Eng ; 44(11): 2361-2374, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34304344

RESUMO

An advanced dual-flow perfusion bioreactor with a simple and compact design was developed and evaluated as a potential apparatus to reduce the gap between animal testing and drug administration to human subjects in clinical trials. All the experimental tests were carried out using an ad hoc Poly Lactic Acid (PLLA) scaffold synthesized via Thermally Induced Phase Separation (TIPS). The bioreactor shows a tunable radial flow throughout the microporous matrix of the scaffold. The radial perfusion was quantified both with permeability tests and with a mathematical model, applying a combination of Darcy's Theory, Bernoulli's Equation, and Poiseuille's Law. Finally, a diffusion test allowed to investigate the efficacy of the radial flow using Polymeric Fluorescent Nanoparticles (FNPs) mimicking drug/colloidal carriers. These tests confirmed the ability of our bioreactor to create a uniform distribution of particles inside porous matrices. All the findings candidate our system as a potential tool for drug pre-screening testing with a cost and time reduction over animal models.


Assuntos
Reatores Biológicos , Nanopartículas/administração & dosagem , Animais , Materiais Biocompatíveis , Portadores de Fármacos , Humanos , Técnicas In Vitro , Microscopia Eletrônica de Varredura , Polímeros/química , Engenharia Tecidual
15.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34769034

RESUMO

Gelatin has excellent biological properties, but its poor physical properties are a major obstacle to its use as a biomaterial ink. These disadvantages not only worsen the printability of gelatin biomaterial ink, but also reduce the dimensional stability of its 3D scaffolds and limit its application in the tissue engineering field. Herein, biodegradable suture fibers were added into a gelatin biomaterial ink to improve the printability, mechanical strength, and dimensional stability of the 3D printed scaffolds. The suture fiber reinforced gelatin 3D scaffolds were fabricated using the thermo-responsive properties of gelatin under optimized 3D printing conditions (-10 °C cryogenic plate, 40-80 kPa pneumatic pressure, and 9 mm/s printing speed), and were crosslinked using EDC/NHS to maintain their 3D structures. Scanning electron microscopy images revealed that the morphologies of the 3D printed scaffolds maintained their 3D structure after crosslinking. The addition of 0.5% (w/v) of suture fibers increased the printing accuracy of the 3D printed scaffolds to 97%. The suture fibers also increased the mechanical strength of the 3D printed scaffolds by up to 6-fold, and the degradation rate could be controlled by the suture fiber content. In in vitro cell studies, DNA assay results showed that human dermal fibroblasts' proliferation rate of a 3D printed scaffold containing 0.5% suture fiber was 10% higher than that of a 3D printed scaffold without suture fibers after 14 days of culture. Interestingly, the supplement of suture fibers into gelatin biomaterial ink was able to minimize the cell-mediated contraction of the cell cultured 3D scaffolds over the cell culture period. These results show that advanced biomaterial inks can be developed by supplementing biodegradable fibers to improve the poor physical properties of natural polymer-based biomaterial inks.


Assuntos
Gelatina/química , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Células Cultivadas , Humanos , Hidrogéis/química , Tinta , Impressão Tridimensional , Suturas , Engenharia Tecidual/métodos
16.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673496

RESUMO

Superporous poly(2-hydroxyethyl methacrylate-co-2-aminoethyl methacrylate) (P(HEMA-AEMA)) hydrogel scaffolds are designed for in vitro 3D culturing of leukemic B cells. Hydrogel porosity, which influences cell functions and growth, is introduced by adding ammonium oxalate needle-like crystals in the polymerization mixture. To improve cell vitality, cell-adhesive Arg-Gly-Asp-Ser (RGDS) peptide is immobilized on the N-(γ-maleimidobutyryloxy)succinimide-activated P(HEMA-AEMA) hydrogels via reaction of SH with maleimide groups. This modification is especially suitable for the survival of primary chronic lymphocytic leukemia cells (B-CLLs) in 3D cell culture. No other tested stimuli (interleukin-4, CD40 ligand, or shaking) can further improve B-CLL survival or metabolic activity. Both unmodified and RGDS-modified P(HEMA-AEMA) scaffolds serve as a long-term (70 days) 3D culture platforms for HS-5 and M2-10B4 bone marrow stromal cell lines and MEC-1 and HG-3 B-CLL cell lines, although the adherent cells retain their physiological morphologies, preferably on RGDS-modified hydrogels. Moreover, the porosity of hydrogels allows direct cell lysis, followed by efficient DNA isolation from the 3D-cultured cells. P(HEMA-AEMA)-RGDS thus serves as a suitable 3D in vitro leukemia model that enables molecular and metabolic assays and allows imaging of cell morphology, interactions, and migration by confocal microscopy. Such applications can prospectively assist in testing of drugs to treat this frequently recurring or refractory cancer.


Assuntos
Técnicas de Cultura de Células/métodos , Hidrogéis/química , Leucemia Linfocítica Crônica de Células B , Alicerces Teciduais/química , Linhagem Celular Tumoral , Humanos , Células-Tronco Mesenquimais , Oligopeptídeos , Porosidade , Succinimidas/química
17.
Exp Cell Res ; 384(1): 111544, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31479684

RESUMO

Cells grow differently in conventional 2D cell culture than when they grow in the physiological microenvironment. In this study, we developed a 3D cell culture model for generating male germ cells from human iPSCs using a human decellularized amnion membrane (DAM) scaffold. To this end, human iPSCs were generated using retroviral vectors and characterized for pluripotency properties by immunofluorescence assay, flow cytometry, ALP staining, cytogenetic assay, and differentiation capacity. The iPSCs were used for investigating male germ cells differentiation efficiency in both conventional 2D culture and 3D-DAM scaffold. The expression of male germ cell markers was evaluated at day 21 of differentiation using immunofluorescence assay, flow-cytometry, and RT-qPCR. The results indicated a successful reprogramming of human foreskin fibroblast cells into pluripotent iPSCs. The reprogrammed cells were positive for pluripotency markers and differentiated into the three germ layers. During male germ cell differentiation, the cells tend to aggregate and form colony-like structures in both 2D and 3D conditions. However, significant expression of VASA, DAZL, PLZF, STELLA, and NANOS3 markers and more efficient haploid male germ cell production were observed in the 3D condition when compared to the 2D model. Considering the effect of the 3D-DAM scaffold in prompting male germ cell-specific markers and increased efficiency of germ cell differentiation in 3D culture, it appears that DAM scaffold is a useful tool for in vitro studies of human germ cell development and ultimately future clinical application.


Assuntos
Âmnio/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Âmnio/metabolismo , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Células Germinativas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Alicerces Teciduais
18.
Nanomedicine ; 30: 102294, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32861031

RESUMO

The tumor microenvironment plays a critical role in tumor initiation, progression, metastasis, and drug resistance. However, models recapitulating the complex 3D structure, heterogeneous cell environment, and cell-cell interactions found in vivo are lacking. Herein, we report on a gravitational microfluidic platform (GMP) retrofitted with MEMS sensors, which is integrated with 3D nanofiber scaffold-aided tumoroid culture. The results showed that this GMP for tumoroid growth mimics the tumor microenvironment more precisely than static culture models of colon cancer, including higher drug resistance, enhanced cancer stem cell properties, and increased secretion of pro-tumor cytokines. In addition, the GMP includes an integrated surface acoustic wave-based biosensing to monitor cell growth and pH changes to assess drug efficacy. Thus, this simple-to-use perfused GMP tumoroid culture system for in vitro and ex vivo studies may accelerate the drug development process and be a tool in personalized cancer treatment.


Assuntos
Neoplasias Colorretais/patologia , Gravitação , Microfluídica/instrumentação , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração de Íons de Hidrogênio , Medicina de Precisão , Microambiente Tumoral
19.
Int J Mol Sci ; 21(10)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455711

RESUMO

Organoids production is a key tool for in vitro studies of physiopathological conditions, drug-induced toxicity assays, and for a potential use in regenerative medicine. Hence, it prompted studies on hepatic organoids and liver regeneration. Numerous attempts to produce hepatic constructs had often limited success due to a lack of viability or functionality. Moreover, most products could not be translated for clinical studies. The aim of this study was to develop functional and viable hepatic constructs using a 3D porous scaffold with an adjustable structure, devoid of any animal component, that could also be used as an in vivo implantable system. We used a combination of pharmaceutical grade pullulan and dextran with different porogen formulations to form crosslinked scaffolds with macroporosity ranging from 30 µm to several hundreds of microns. Polysaccharide scaffolds were easy to prepare and to handle, and allowed confocal observations thanks to their transparency. A simple seeding method allowed a rapid impregnation of the scaffolds with HepG2 cells and a homogeneous cell distribution within the scaffolds. Cells were viable over seven days and form spheroids of various geometries and sizes. Cells in 3D express hepatic markers albumin, HNF4α and CYP3A4, start to polarize and were sensitive to acetaminophen in a concentration-dependant manner. Therefore, this study depicts a proof of concept for organoid production in 3D scaffolds that could be prepared under GMP conditions for reliable drug-induced toxicity studies and for liver tissue engineering.


Assuntos
Dextranos/química , Glucanos/química , Fígado/citologia , Polímeros Responsivos a Estímulos/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Citocromo P-450 CYP3A/metabolismo , Células Hep G2 , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Organoides/crescimento & desenvolvimento , Organoides/metabolismo , Porosidade
20.
J Cell Physiol ; 234(12): 23123-23134, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31127624

RESUMO

Expansion of seeded human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) on 2D culture plates and 3D nano-hydroxyapatite/chitosan/gelatin scaffolds, from morphology and osteoactivity points of view, were investigated. Cell attachment and spreading, temporal expression profiles of selected osteogenic gene and protein markers, intracellular alkaline phosphatase enzyme activity (ALP activity), and matrix mineralization were assayed over the course of the experiments. Morphological results demonstrated hWJ-MSCs had greater affinity to adhere onto the 3D scaffold surface, as the number and thickness of the filopodia were higher in the 3D compared with 2D culture system. Functionally, the intracellular ALP activity and extracellular mineralization in 3D scaffolds were significantly greater, in parallel with elevation of osteogenic markers at the mRNA and protein levels at all-time point. It is concluded that 3D scaffolds, more so than 2D culture plate, promote morphology and osteogenic behavior of WJ-MSCs in vitro, a promising system for MSCs expansion without compromising their stemness before clinical transplantation.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Osteogênese/fisiologia , Biomimética , Diferenciação Celular , Humanos , Células-Tronco Mesenquimais/metabolismo , Alicerces Teciduais/química , Geleia de Wharton/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA