Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Immunity ; 52(1): 109-122.e6, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31882361

RESUMO

Recent work suggests that cholesterol metabolism impacts innate immune responses against infection. However, the key enzymes or the natural products and mechanisms involved are not well elucidated. Here, we have shown that upon DNA and RNA viral infection, macrophages reduced 7-dehydrocholesterol reductase (DHCR7) expression. DHCR7 deficiency or treatment with the natural product 7-dehydrocholesterol (7-DHC) could specifically promote phosphorylation of IRF3 (not TBK1) and enhance type I interferon (IFN-I) production in macrophages. We further elucidated that viral infection or 7-DHC treatment enhanced AKT3 expression and activation. AKT3 directly bound and phosphorylated IRF3 at Ser385, together with TBK1-induced phosphorylation of IRF3 Ser386, to achieve IRF3 dimerization. Deletion of DHCR7 and the DHCR7 inhibitors including AY9944 and the chemotherapy drug tamoxifen promoted clearance of Zika virus and multiple viruses in vitro or in vivo. Taken together, we propose that the DHCR7 inhibitors and 7-DHC are potential therapeutics against emerging or highly pathogenic viruses.


Assuntos
Desidrocolesteróis/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/biossíntese , Macrófagos/imunologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Estomatite Vesicular/imunologia , Células A549 , Animais , Linhagem Celular , Colesterol/metabolismo , Ativação Enzimática/imunologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células RAW 264.7 , Interferência de RNA , RNA Interferente Pequeno/genética , Vírus da Estomatite Vesicular Indiana/imunologia
2.
Traffic ; 22(10): 332-344, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34418249

RESUMO

Smith-Lemli-Opitz syndrome (SLOS) is a congenital and developmental malformation syndrome associated with defective cholesterol biosynthesis. It is characterized by accumulation of 7-dehydrocholesterol (the immediate biosynthetic precursor of cholesterol in the Kandutsch-Russell pathway) and an altered cholesterol to total sterol ratio. Because SLOS is associated with neurological malfunction, exploring the function and trafficking of neuronal receptors and their interaction with membrane lipids under these conditions assume significance. In this work, we generated a cellular model of SLOS in HEK-293 cells stably expressing the human serotonin1A receptor (an important neurotransmitter G-protein coupled receptor) using AY 9944, an inhibitor for the enzyme 3ß-hydroxy-steroid-∆7 -reductase (7-DHCR). Using a quantitative flow cytometry based assay, we show that the plasma membrane population of serotonin1A receptors was considerably reduced under these conditions without any change in total cellular expression of the receptor. Interestingly, the receptors were trafficked to sterol-enriched LysoTracker positive compartments, which accumulated under these conditions. To the best of our knowledge, our results constitute one of the first reports demonstrating intracellular accumulation and misregulated traffic of a neurotransmitter GPCR in SLOS-like conditions. We believe these results assume relevance in our overall understanding of the molecular basis underlying the functional relevance of neurotransmitter receptors in SLOS.


Assuntos
Síndrome de Smith-Lemli-Opitz , Colesterol/metabolismo , Células HEK293 , Humanos , Lisossomos/metabolismo , Receptores de Neurotransmissores , Serotonina , Síndrome de Smith-Lemli-Opitz/metabolismo , Esteróis
3.
J Cell Biochem ; 118(6): 1387-1400, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27862220

RESUMO

For several decades, cholesterol has been thought to cause ASCVD. Limiting dietary cholesterol intake has been recommended to reduce the risk of the disease. However, several recent epidemiological studies do not support a relationship between dietary cholesterol and/or blood cholesterol and ASCVD. Consequently, the role of cholesterol in atherogenesis is now uncertain. Much evidence indicates that TGF-ß, an anti-inflammatory cytokine, protects against ASCVD and that suppression of canonical TGF-ß signaling (Smad2-dependent) is involved in atherogenesis. We had hypothesized that cholesterol causes ASCVD by suppressing canonical TGF-ß signaling in vascular endothelium. To test this hypothesis, we determine the effects of cholesterol, 7-dehydrocholesterol (7-DHC; the biosynthetic precursor of cholesterol), and other sterols on canonical TGF-ß signaling. We use Mv1Lu cells (a model cell system for studying TGF-ß activity) stably expressing the Smad2-dependent luciferase reporter gene. We demonstrate that 7-DHC (but not cholesterol or other sterols) effectively suppresses the TGF-ß-stimulated luciferase activity. We also demonstrate that 7-DHC suppresses TGF-ß-stimulated luciferase activity by promoting lipid raft/caveolae formation and subsequently recruiting cell-surface TGF-ß receptors from non-lipid raft microdomains to lipid rafts/caveolae where TGF-ß receptors become inactive in transducing canonical signaling and undergo rapid degradation upon TGF-ß binding. We determine this by cell-surface 125 I-TGF-ß-cross-linking and sucrose density gradient ultracentrifugation. We further demonstrate that methyl-ß-cyclodextrin (MßCD), a sterol-chelating agent, reverses 7-DHC-induced suppression of TGF-ß-stimulated luciferase activity by extrusion of 7-DHC from resident lipid rafts/caveolae. These results suggest that 7-DHC, but not cholesterol, promotes lipid raft/caveolae formation, leading to suppression of canonical TGF-ß signaling and atherogenesis. J. Cell. Biochem. 118: 1387-1400, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Aterosclerose/metabolismo , Colesterol/farmacologia , Desidrocolesteróis/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Cavéolas/metabolismo , Linhagem Celular , Humanos , Microdomínios da Membrana/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo
4.
Cell Mol Life Sci ; 73(7): 1317-32, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26762301

RESUMO

The Hedgehog (Hh) signaling pathway has numerous roles in the control of cell proliferation, tissue patterning and stem cell maintenance. In spite of intensive study, the mechanisms of Hh signal transduction are not completely understood. Here I review published data and present a novel model of vertebrate Hh signaling suggesting that Smoothened (Smo) functions as a G-protein-coupled receptor in cilia. This is the first model to propose molecular mechanisms for the major steps of Hh signaling, including inhibition of Smo by Patched, Smo activation, and signal transduction from active Smo to Gli transcription factors. It also suggests a novel role for the negative pathway regulators Sufu and PKA in these processes.


Assuntos
Proteínas Hedgehog/metabolismo , Transdução de Sinais , Cílios/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/deficiência , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Hedgehog/antagonistas & inibidores , Humanos , Mutação , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptor Smoothened , Fatores de Transcrição/metabolismo , Proteína GLI1 em Dedos de Zinco
5.
Mol Genet Metab ; 110(1-2): 176-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23628460

RESUMO

Screening for Smith-Lemli-Opitz Syndrome (SLOS) using elevated 7-dehydrocholesterol (7DHC) as a marker is sensitive, but not always specific. Elevations of 7DHC can be seen in patients who do not have a defect in 7-dehydrocholesterol reductase. These results have often been attributed to medication artifacts, but specific causes have not been well reported. We examined the medical records of patients with elevated 7DHC to determine if they had been diagnosed with SLOS; and if they had not, to identify any common medications that may have caused the elevations. We found three individuals who were affected with SLOS, and 22 with elevated 7DHC in the absence of SLOS. Seven of these individuals underwent molecular testing which showed no mutations, while the other 15 were excluded based on clinical findings and other testing. The medication history of these individuals revealed aripiprazole and trazodone as common medications to all the false positive results.


Assuntos
Desidrocolesteróis/sangue , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Síndrome de Smith-Lemli-Opitz/sangue , Síndrome de Smith-Lemli-Opitz/genética , Aripiprazol , Humanos , Mutação , Patologia Molecular , Piperazinas/administração & dosagem , Quinolonas/administração & dosagem , Síndrome de Smith-Lemli-Opitz/patologia , Trazodona/administração & dosagem
6.
Cancer Cell ; 41(8): 1450-1465.e8, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37478851

RESUMO

Carnobacterium maltaromaticum was found to be specifically depleted in female patients with colorectal cancer (CRC). Administration of C. maltaromaticum reduces intestinal tumor formation in two murine CRC models in a female-specific manner. Estrogen increases the attachment and colonization of C. maltaromaticum via increasing the colonic expression of SLC3A2 that binds to DD-CPase of this bacterium. Metabolomic and transcriptomic profiling unveils the increased gut abundance of vitamin D-related metabolites and the mucosal activation of vitamin D receptor (VDR) signaling in C. maltaromaticum-gavaged mice in a gut microbiome- and VDR-dependent manner. In vitro fermentation system confirms the metabolic cross-feeding of C. maltaromaticum with Faecalibacterium prausnitzii to convert C. maltaromaticum-produced 7-dehydrocholesterol into vitamin D for activating the host VDR signaling. Overall, C. maltaromaticum colonizes the gut in an estrogen-dependent manner and acts along with other microbes to augment the intestinal vitamin D production to activate the host VDR for suppressing CRC.


Assuntos
Neoplasias Colorretais , Vitamina D , Camundongos , Feminino , Animais , Vitamina D/metabolismo , Carnobacterium/metabolismo , Estrogênios/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo
7.
Antiviral Res ; 209: 105497, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528172

RESUMO

Recent studies have shown a close link between viral infections and cholesterol metabolism. Here, we reported that 7-dehydrocholesterol reductase (DHCR7), a terminal enzyme for catalyzing cholesterol synthesis in the Kandutsch-Russell pathway, is harnessed by enterovirus A71 (EV-A71) benefitting for its replication. Overexpression of DHCR7 resulted in upregulating of EV-A71 replication, while the S14A mutation, which reduces DHCR7 enzyme activity, has no effect on EV-A71 replication. Knockdown of DHCR7 expression with small interfering RNA (siRNA) or enzyme activity inhibition with pharmacological inhibitor AY9944 could significantly inhibit EV-A71 replication. Adding cholesterol to DHCR7 knockdown cells or AY9944-treated cells could rescue EV-A71 replication. More importantly, prophylactic administration of AY9944 effectively protected mice from lethal EV-A71 infection. In addition, the natural cholesterol precursor 7-dehydrocholesterol (7-DHC), which is converted to cholesterol by DHCR7, has a similar effect against EV-A71 infection. Mechanistically, AY9944 or 7-DHC treatment can specifically promote IRF3 phosphorylation to activate interferon response. Moreover, AY9944 effectively cleared coxsackievirus B3 (CVB3) and coxsackievirus A16 (CVA16) infections in vitro. In conclusion, pharmacological modulation of DHCR7 might provide a chance for treatment of enterovirus infection, including EV-A71.


Assuntos
Infecções por Coxsackievirus , Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Animais , Camundongos , Enterovirus/genética , Enterovirus Humano A/genética , Interferons , Dicloridrato de trans-1,4-Bis(2-clorobenzaminometil)ciclo-hexano , RNA Interferente Pequeno , Antígenos Virais
8.
Front Mol Biosci ; 10: 1120373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36714259

RESUMO

The biosynthesis of cholesterol, an essential component of higher eukaryotic membranes, was worked out by Konrad Bloch (and Feodor Lynen) in the 1960s and they received the Nobel Prize around that time in recognition of their pioneering contributions. An elegant consequence of this was a hypothesis proposed by Konrad Bloch (the Bloch hypothesis) which suggests that each subsequent intermediate in the cholesterol biosynthesis pathway is superior in supporting membrane function in higher eukaryotes relative to its precursor. In this review, we discuss an autosomal recessive metabolic disorder, known as Smith-Lemli-Opitz syndrome (SLOS), associated with a defect in the Kandutsch-Russell pathway of cholesterol biosynthesis that results in accumulation of the immediate precursor of cholesterol in its biosynthetic pathway (7-dehydrocholesterol) and an altered cholesterol to total sterol ratio. Patients suffering from SLOS have several developmental, behavioral and cognitive abnormalities for which no drug is available yet. We characterize SLOS as a manifestation of the Bloch hypothesis and review its molecular etiology and current treatment. We further discuss defective Hedgehog signaling in SLOS and focus on the role of the serotonin1A receptor, a representative neurotransmitter receptor belonging to the GPCR family, in SLOS. Notably, ligand binding activity and cellular signaling of serotonin1A receptors are impaired in SLOS-like condition. Importantly, cellular localization and intracellular trafficking of the serotonin1A receptor (which constitute an important determinant of a GPCR cellular function) are compromised in SLOS. We highlight some of the recent developments and emerging concepts in SLOS pathobiology and suggest that novel therapies based on trafficking defects of target receptors could provide new insight into treatment of SLOS.

9.
Biomolecules ; 12(9)2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36139049

RESUMO

De novo sterol synthesis is a critical homeostatic mechanism in the brain that begins during early embryonic development and continues throughout life. Multiple medications have sterol-biosynthesis-inhibiting side effects, with potentially detrimental effects on brain health. Using LC-MS/MS, we investigated the effects of six commonly used beta-blockers on brain sterol biosynthesis in vitro using cell lines. Two beta-blockers, metoprolol (MTP) and nebivolol, showed extreme elevations of the highly oxidizable cholesterol precursor 7-dehydrocholesterol (7-DHC) in vitro across multiple cell lines. We followed up on the MTP findings using a maternal exposure model in mice. We found that 7-DHC was significantly elevated in all maternal brain regions analyzed as well as in the heart, liver and brain of the maternally exposed offspring. Since DHCR7-inhibiting/7-DHC elevating compounds can be considered teratogens, these findings suggest that MTP utilization during pregnancy might be detrimental for the development of offspring, and alternative beta-blockers should be considered.


Assuntos
Metoprolol , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Animais , Encéfalo/metabolismo , Colesterol/metabolismo , Cromatografia Líquida , Feminino , Metoprolol/metabolismo , Metoprolol/farmacologia , Camundongos , Nebivolol/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Gravidez , Espectrometria de Massas em Tandem , Teratogênicos
10.
J Nutr Sci ; 11: e13, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35291276

RESUMO

Since the discovery of vitamin D, it has been accepted that its physiological supply is either from food or by endogenous synthesis in skin exposed to solar UV light. Yet vitamin D is a component of very few foods and its supply as a natural nutrient is unable to maintain good vitamin D status for human populations. One aspect of vitamin D physiology that has been ignored is that the mechanisms for its transport and processing from these two sources are quite different. Excess intake of vitamin D causes hypercalcaemic toxicity. However, experiments with different animal species have shown that long-term supply of oral vitamin D in apparently non-toxic amounts causes atherosclerosis in large arteries. A mechanism for this toxicity is proposed. Alternative strategies for addressing widespread vitamin D deficiency by food fortification should be considered in light of the angiotoxicity caused by oral vitamin D in animal experiments.


Assuntos
Deficiência de Vitamina D , Vitamina D , Animais , Suplementos Nutricionais/análise , Luz Solar , Vitaminas
11.
ACS Chem Neurosci ; 12(4): 735-745, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33528983

RESUMO

Mouse brain contains over 100 million neuronal, glial, and other support cells. Developing neurons and astrocytes synthesize their own cholesterol, and disruption of this process can occur by both genetic and chemical mechanisms. In this study we have exposed cultured murine neurons and astrocytes to six different prescription medications that cross the placenta and blood-brain barriers and analyzed the effects of these drugs on cholesterol biosynthesis by an LC-MS/MS protocol that assays 14 sterols and 7 oxysterols in a single run. Three antipsychotics (haloperidol, cariprazine, aripiprazole), two antidepressants (trazodone and sertraline), and an antiarhythmic (amiodarone) inhibited one or more sterol synthesis enzymes. The result of the exposures was a dose-dependent increase in levels of various sterol intermediates and a decreased level of cholesterol in the cultured cells. Four prescription medications (haloperidol, aripiprazole, cariprazine, and trazodone) acted primarily on the DHCR7 enzyme. The result of this exposure was an increase in 7-dehydrocholesterol in neurons and astrocytes to levels that were comparable to those found in cultured neurons and astrocytes from transgenic mice that carried a Dhcr7 pathogenic mutation modeling the neurodevelopmental disorder Smith-Lemli-Opitz syndrome.


Assuntos
Colesterol , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida , Feminino , Camundongos , Neurônios , Gravidez , Prescrições
12.
Toxicol Rep ; 8: 646-656, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868951

RESUMO

Humans are frequently exposed to Quaternary Ammonium Compounds (QACs). QACs are ubiquitously used in medical settings, restaurants, and homes as cleaners and disinfectants. Despite their prevalence, nothing is known about the health effects associated with chronic low-level exposure. Chronic QAC toxicity, only recently identified in mice, resulted in developmental, reproductive, and immune dysfunction. Cell based studies indicate increased inflammation, decreased mitochondrial function, and disruption of cholesterol synthesis. If these findings translate to human toxicity, multiple physiological processes could be affected. This study tested whether QAC concentrations could be detected in the blood of 43 human volunteers, and whether QAC concentrations influenced markers of inflammation, mitochondrial function, and cholesterol synthesis. QAC concentrations were detected in 80 % of study participants. Blood QACs were associated with increase in inflammatory cytokines, decreased mitochondrial function, and disruption of cholesterol homeostasis in a dose dependent manner. This is the first study to measure QACs in human blood, and also the first to demonstrate statistically significant relationships between blood QAC and meaningful health related biomarkers. Additionally, the results are timely in light of the increased QAC disinfectant exposure occurring due to the SARS-CoV-2 pandemic. MAIN FINDINGS: This study found that 80 % of study participants contained QACs in their blood; and that markers of inflammation, mitochondrial function, and sterol homeostasis varied with blood QAC concentration.

14.
Biotechnol Biofuels ; 11: 192, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30026807

RESUMO

BACKGROUND: 7-Dehydrocholesterol (7-DHC) has attracted increasing attentions due to its great medical value and the enlarging market demand of its ultraviolet-catalyzed product vitamin D3. Microbial production of 7-DHC from simple carbon has been recognized as an attractive complement to the traditional sources. Even though our previous work realized 7-DHC biosynthesis in Saccharomyces cerevisiae, the current productivity of 7-DHC is still too low to satisfy the demand of following industrialization. As increasing the compatibility between heterologous pathway and host cell is crucial to realize microbial overproduction of natural products with complex structure and relative long pathway, in this study, combined efforts in tuning the heterologous Δ24-dehydrocholesterol reductase (DHCR24) and manipulating host cell were applied to promote 7-DHC accumulation. RESULTS: In order to decouple 7-DHC production with cell growth, inducible GAL promoters was employed to control 7-DHC synthesis. Meanwhile, the precursor pool was increased via overexpressing all the mevalonate (MVA) pathway genes (ERG10, ERG13, tHMG1, ERG12, ERG8, ERG19, IDI1, ERG20). Through screening DHCR24s from eleven tested sources, it was found that DHCR24 from Gallus gallus (Gg_DHCR24) achieved the highest 7-DHC production. Then 7-DHC accumulation was increased by 27.5% through stepwise fine-tuning the transcription level of Gg_DHCR24 in terms of altering its induction strategy, integration position, and the used promoter. By blocking the competitive path (ΔERG6) and supplementing another copy of Gg_DHCR24 in locus ERG6, 7-DHC accumulation was further enhanced by 1.07-fold. Afterward, 7-DHC production was improved by 48.3% (to 250.8 mg/L) by means of deleting NEM1 that was involved in lipids metabolism. Eventually, 7-DHC production reached to 1.07 g/L in 5-L bioreactor, which is the highest reported microbial titer as yet known. CONCLUSIONS: Combined engineering of the pathway and the host cell was adopted in this study to boost 7-DHC output in the yeast. 7-DHC titer was stepwise improved by 26.9-fold compared with the starting strain. This work not only opens large opportunities to realize downstream de novo synthesis of other steroids, but also highlights the importance of the combinatorial engineering of heterologous pathway and host to obtain microbial overproduction of many other natural products.

15.
J Steroid Biochem Mol Biol ; 140: 7-16, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24269243

RESUMO

7-Dehydrocholesterol (7-DHC) is a common precursor of vitamin D3 and cholesterol. Although various oxysterols, oxygenated cholesterol derivatives, have been implicated in cellular signaling pathways, 7-DHC metabolism and potential functions of its metabolites remain poorly understood. We examined 7-DHC metabolism by various P450 enzymes and detected three metabolites produced by sterol 27-hydroxylase (CYP27A1) using high-performance liquid chromatography. Two were further identified as 25-hydroxy-7-DHC and 26/27-hydroxy-7-DHC. These 7-DHC metabolites were detected in serum of a patient with Smith-Lemli-Opitz syndrome. Luciferase reporter assays showed that 25-hydroxy-7-DHC activates liver X receptor (LXR) α, LXRß and vitamin D receptor and that 26/27-hydroxy-7-DHC induces activation of LXRα and LXRß, although the activities of both compounds on LXRs were weak. In a mammalian two-hybrid assay, 25-hydroxy-7-DHC and 26/27-hydroxy-7-DHC induced interaction between LXRα and a coactivator fragment less efficiently than a natural LXR agonist, 22(R)-hydroxycholesterol. These 7-DHC metabolites did not oppose agonist-induced LXR activation and interacted directly to LXRα in a manner distinct from a potent agonist. These findings indicate that the 7-DHC metabolites are partial LXR activators. Interestingly, 25-hydroxy-7-DHC and 26/27-hydroxy-7-DHC suppressed mRNA expression of sterol regulatory element-binding protein 1c, an LXR target gene, in HepG2 cells and HaCaT cells, while they weakly increased mRNA levels of ATP-binding cassette transporter A1, another LXR target, in HaCaT cells. Thus, 7-DHC is catabolized by CYP27A1 to metabolites that act as selective LXR modulators.


Assuntos
Colestanotriol 26-Mono-Oxigenase/metabolismo , Desidrocolesteróis/metabolismo , Receptores Nucleares Órfãos/efeitos dos fármacos , Colesterol/análogos & derivados , Colesterol/sangue , Colesterol/farmacologia , Humanos , Receptores X do Fígado , Receptores Nucleares Órfãos/metabolismo , Receptores de Calcitriol/efeitos dos fármacos
16.
Dermatoendocrinol ; 5(1): 130-41, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24494046

RESUMO

BACKGROUND: Little if any cutaneous production of vitamin D3 occurs at latitudes above and below 35° N and 35° S during the winter months. It was postulated that those residing in tropics synthesize enough vitamin D3 year round. Several studies have documented the effect of latitude, season and time of the day on the cutaneous production of vitamin D3 in an ampoule model. Studies from India have shown high prevalence of vitamin D deficiency despite abundant sunshine. METHODS: We studied the influence of season and time of the day on synthesis of previtamin D3 in an ampoule model in Tirupati, (latitude 13.40° N and longitude 77.2° E) south India, between May 2007 to August 2008. Sealed borosilicate glass ampoules containing 50 µg of 7-DHC in 1 ml of methanol were exposed to sunlight hourly from 8 a.m. until 4 p.m. The percent conversion of 7-DHC to previtamin D3 and its photoproducts and the percent of previtamin D3 and vitamin D3 formed was estimated and related to solar zenith angle. RESULTS: The percent conversion of 7-DHC to previtamin D3 and its photoproducts and formation of previtamin D3 and vitamin D3 was maximal between 11 a.m. to 2 p.m. of the day during the entire year (median 11.5% and 10.2% respectively at 12.30 p.m.). CONCLUSIONS: Therefore at this latitude exposure to sunlight between the hours of 11 a.m. and 2 p.m. will promote vitamin D production in the skin year round.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA