Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nitric Oxide ; 120: 44-52, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35033681

RESUMO

We previously demonstrated different expression patterns of the neuronal nitric oxide synthase (nNOS) splicing variants, nNOS-µ and nNOS-α, in the rat brain; however, their exact functions have not been fully elucidated. In this study, we compared the enzymatic activities of nNOS-µ and nNOS-α and investigated intracellular redox signaling in nNOS-expressing PC12 cells, stimulated with a neurotoxicant, 1-methyl-4-phenylpyridinium ion (MPP+), to enhance the nNOS uncoupling reaction. Using in vitro studies, we show that nNOS-µ produced nitric oxide (NO), as did nNOS-α, in the presence of tetrahydrobiopterin (BH4), an important cofactor for the enzymatic activity. However, nNOS-µ generated more NO and less superoxide than nNOS-α in the absence of BH4. MPP + treatment induced more reactive oxygen species (ROS) production in nNOS-α-expressing PC12 cells than in those expressing nNOS-µ, which correlated with the intracellular production of 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP), a downstream messenger of nNOS redox signaling, and apoptosis in these cells. Furthermore, post-treatment with 8-nitro-cGMP aggravated MPP+-induced cytotoxicity via activation of the H-Ras/extracellular signal-regulated kinase signaling pathway. In conclusion, our results provide strong evidence that nNOS-µ exhibits distinctive enzymatic properties of NO/ROS production, contributing to the regulation of intracellular redox signaling, including the downstream production of 8-nitro-cGMP.


Assuntos
Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico/metabolismo , Superóxidos/metabolismo , 1-Metil-4-fenilpiridínio/farmacologia , Animais , Apoptose/efeitos dos fármacos , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Oxirredução , Células PC12 , Fosforilação/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Ratos
2.
J Clin Biochem Nutr ; 71(3): 191-197, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36447486

RESUMO

Nitric oxide and reactive oxygen species regulate bone remodeling, which occurs via bone formation and resorption by osteoblasts and osteoclasts, respectively. Recently, we found that 8-nitro-cGMP, a second messenger of nitric oxide and reactive oxygen species, promotes osteoclastogenesis. Here, we investigated the formation and function of 8-nitro-cGMP in osteoblasts. Mouse calvarial osteoblasts were found to produce 8-nitro-cGMP, which was augmented by tumor necrosis factor-α (10 ng/ml) and interleukin-1ß (1 ng/ml). These cytokines suppressed osteoblastic differentiation in a NO synthase activity-dependent manner. Exogenous 8-nitro-cGMP (30 µmol/L) suppressed expression of osteoblastic phenotypes, including mineralization, in clear contrast to the enhancement of mineralization by osteoblasts induced by 8-bromo-cGMP, a cell membrane-permeable analog of cGMP. It is known that reactive sulfur species denitrates and degrades 8-nitro-cGMP. Mitochondrial cysteinyl-tRNA synthetase plays a crucial role in the endogenous production of RSS. The expression of osteoblastic phenotypes was suppressed by not only exogenous 8-nitro-cGMP but also by silencing of the Cars2 gene, indicating a role of endogenous 8-nitro-cGMP in suppressing the expression of osteoblastic phenotypes. These results suggest that 8-nitro-cGMP is a negative regulator of osteoblastic differentiation.

3.
Biochem Biophys Res Commun ; 526(1): 225-230, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32201073

RESUMO

Nitric oxide (NO)-mediated production of cyclic guanosine 3',5'-monophosphate (cGMP) is a crucial signaling pathway that controls a wide array of neuronal functions, including exocytotic neurotransmitter release. A novel nitrated derivative of cGMP, 8-nitro-cGMP, not only activates cGMP-dependent protein kinase (PKG), but also has membrane permeability and redox activity to produce superoxide and S-guanylated protein. To date, no studies have addressed the effects of 8-nitro-cGMP on exocytotic kinetics. Here, we aimed to assess the 8-nitro-cGMP-mediated modulation of the depolarization-evoked catecholamine release from bovine chromaffin cells. 8-Nitro-cGMP was produced in bovine chromaffin cells dependent on NO donor. Amperometric analysis revealed that 8-nitro-cGMP modulated the kinetic parameters of secretory spikes from chromaffin cells, particularly decreased the speed of individual spikes, resulting in a reduced amperometric spike height, slope ß, and absolute value of slope γ. The modulatory effects were independent of the PKG signal and superoxide production. This is the first study to demonstrate that 8-nitro-cGMP modulates exocytosis and provide insights into a novel regulatory mechanism of exocytosis.


Assuntos
Glândulas Suprarrenais/citologia , Células Cromafins/citologia , GMP Cíclico/análogos & derivados , Exocitose/efeitos dos fármacos , Animais , Catecolaminas/metabolismo , Bovinos , Cerebelo/citologia , Células Cromafins/efeitos dos fármacos , Células Cromafins/metabolismo , GMP Cíclico/farmacologia , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Sequestradores de Radicais Livres/farmacologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Superóxidos/metabolismo
4.
Biochem Biophys Res Commun ; 495(3): 2165-2170, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29258821

RESUMO

To investigate the role of nitric oxide (NO)/reactive oxygen species (ROS) redox signaling in Parkinson's disease-like neurotoxicity, we used 1-methyl-4-phenylpyridinium (MPP+) treatment (a model of Parkinson's disease). We show that MPP+-induced neurotoxicity was dependent on ROS from neuronal NO synthase (nNOS) in nNOS-expressing PC12 cells (NPC12 cells) and rat cerebellar granule neurons (CGNs). Following MPP+ treatment, we found production of 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP), a second messenger in the NO/ROS redox signaling pathway, in NPC12 cells and rat CGNs, that subsequently induced S-guanylation and activation of H-Ras. Additionally, following MPP+ treatment, extracellular signal-related kinase (ERK) phosphorylation was enhanced. Treatment with a mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) inhibitor attenuated MPP+-induced ERK phosphorylation and neurotoxicity. In conclusion, we demonstrate for the first time that NO/ROS redox signaling via 8-nitro-cGMP is involved in MPP+-induced neurotoxicity and that 8-nitro-cGMP activates H-Ras/ERK signaling. Our results indicate a novel mechanism underlying MPP+-induced neurotoxicity, and therefore contribute novel insights to the mechanisms underlying Parkinson's disease.


Assuntos
1-Metil-4-fenilpiridínio , Cerebelo/metabolismo , GMP Cíclico/análogos & derivados , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Transtornos Parkinsonianos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Células Cultivadas , Cerebelo/efeitos dos fármacos , Cerebelo/patologia , GMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurotoxinas , Células PC12 , Transtornos Parkinsonianos/induzido quimicamente , Ratos
5.
Nitric Oxide ; 72: 46-51, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29183803

RESUMO

Osteoclasts are multinucleated giant cells differentiated from monocyte-macrophage-lineage cells under stimulation of receptor activator of nuclear factor κ-B (RANK) ligand (RANKL) produced by osteoblasts and osteocytes. Although it has been reported that nitric oxide (NO) and reactive oxygen species (ROS) are involved in this process, the mechanism by which these labile molecules promote osteoclast differentiation are not fully understood. In this study, we investigated the formation and function of 8-nitro-cGMP, a downstream molecule of NO and ROS, in the process of osteoclast differentiation in vitro. 8-Nitro-cGMP was detected in mouse bone marrow macrophages and osteoclasts differentiated from macrophages in the presence of RANKL. Inhibition of NO synthase suppressed the formation of 8-nitro-cGMP as well as RANKL-induced osteoclast differentiation from macrophages. On the other hand, RANKL-induced osteoclast differentiation was promoted by addition of 8-nitro-cGMP to the cultures. In addition, 8-nitro-cGMP enhanced the mRNA expression of RANK, the receptor for RANKL. However, 8-bromo-cGMP, a membrane-permeable derivative of cGMP, did not have an effect on either RANKL-induced osteoclast differentiation or expression of the RANK gene. These results suggest that 8-nitro-cGMP is a novel positive regulator of osteoclast differentiation, which might help to explain the roles of NO and ROS in osteoclast differentiation.


Assuntos
Diferenciação Celular , GMP Cíclico/análogos & derivados , Osteoclastos/fisiologia , Ligante RANK/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , GMP Cíclico/metabolismo , GMP Cíclico/farmacologia , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica , Macrófagos/citologia , Masculino , Camundongos Endogâmicos , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Ligante RANK/farmacologia , Receptor Ativador de Fator Nuclear kappa-B/genética
6.
Biochem J ; 474(7): 1149-1162, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28126743

RESUMO

We previously demonstrated different spacial expression profiles of the neuronal nitric oxide (NO) synthase (nNOS) splice variants nNOS-µ and nNOS-α in the brain; however, their exact functions are not fully understood. Here, we used electron paramagnetic resonance to compare the electron-uncoupling reactions of recombinant nNOS-µ and nNOS-α that generate reactive oxygen species (ROS), in this case superoxide. nNOS-µ generated 44% of the amount of superoxide that nNOS-α generated. We also evaluated the ROS production in HEK293 cells stably expressing nNOS-α and nNOS-µ by investigating these electron-uncoupling reactions as induced by calcium ionophore A23187. A23187 treatment induced greater ROS production in HEK293 cells expressing nNOS-α than those expressing nNOS-µ. Also, immunocytochemical analysis revealed that A23187-treated cells expressing nNOS-α produced more 8-nitroguanosine 3',5'-cyclic monophosphate, a second messenger in NO/ROS redox signaling, than did the cells expressing nNOS-µ. Molecular evolutionary analysis revealed that the ratio of nonsynonymous sites to synonymous sites for the nNOS-µ-specific region was higher than that for the complete gene, indicating that this region has fewer functional constraints than does the complete gene. These observations shed light on the physiological relevance of the nNOS-µ variant and may improve understanding of nNOS-dependent NO/ROS redox signaling and its pathophysiological consequences in neuronal systems.


Assuntos
Processamento Alternativo , GMP Cíclico/análogos & derivados , Elétrons , Óxido Nítrico Sintase Tipo I/metabolismo , Superóxidos/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Calcimicina/farmacologia , Clonagem Molecular , GMP Cíclico/biossíntese , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Oxirredução/efeitos dos fármacos , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Transfecção
7.
J Biol Chem ; 291(43): 22714-22720, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27601475

RESUMO

Neurofibrillar tangles caused by intracellular hyperphosphorylated tau inclusion and extracellular amyloid ß peptide deposition are hallmarks of Alzheimer's disease. Tau contains one or two cysteine residues in three or four repeats of the microtubule binding region following alternative splicing of exon 10, and formation of intermolecular cysteine disulfide bonds accelerates tau aggregation. 8-Nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) acts as a novel second messenger of nitric oxide (NO) by covalently binding cGMP to cysteine residues by electrophilic properties, a process termed protein S-guanylation. Here we studied S-guanylation of tau and its effects on tau aggregation. 8-Nitro-cGMP exposure induced S-guanylation of tau both in vitro and in tau-overexpressed HEK293T cells. S-guanylated tau inhibited heparin-induced tau aggregation in a thioflavin T assay. Atomic force microscopy observations indicated that S-guanylated tau could not form tau granules and fibrils. Further biochemical analyses showed that S-guanylated tau was inhibited at the step of tau oligomer formation. In P301L tau-expressing Neuro2A cells, 8-nitro-cGMP treatment significantly reduced the amount of sarcosyl-insoluble tau. NO-linked chemical modification on cysteine residues of tau could block tau aggregation, and therefore, increasing 8-nitro-cGMP levels in the brain could become a potential therapeutic strategy for Alzheimer's disease.


Assuntos
GMP Cíclico/análogos & derivados , Óxido Nítrico/metabolismo , Agregados Proteicos , Processamento de Proteína Pós-Traducional , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , GMP Cíclico/química , GMP Cíclico/metabolismo , Células HEK293 , Humanos , Proteínas tau/química , Proteínas tau/genética
8.
Handb Exp Pharmacol ; 238: 253-268, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28213625

RESUMO

Nitric oxide (NO) raises the intracellular 3',5'-cyclic guanosine monophosphate (cGMP) level through the activation of soluble guanylate cyclase and, in the presence of reactive oxygen species (ROS), reacts with biomolecules to produce nitrated cGMP derivatives. 8-Nitro-cGMP was the first endogenous cGMP derivative discovered in mammalian cells (2007) and was later found in plant cells. Among the six nitrogen atoms in this molecule, the one in the nitro group (NO2) comes from NO. This chapter asserts that this newly found cGMP is undoubtedly one of the major physiological cNMPs. Multiple studies suggest that its intracellular abundance might exceed that of unmodified cGMP. The characteristic chemical feature of 8-nitro-cGMP is its ability to modify proteinous cysteine residues via a stable sulfide bond. In this posttranslational modification, the nitro group is detached from the guanine base. This modification, termed "protein S-guanylation," is known to regulate the physiological functions of several important proteins. Furthermore, 8-nitro-cGMP participates in the regulation of autophagy. For example, in antibacterial autophagy (xenophagy), S-guanylation accumulates around invading bacterial cells and functions as a "tag" for subsequent clearance of the organism via ubiquitin modifications. This finding suggests the existence of a system for recognizing the cGMP structure on proteins. Autophagy induction by 8-nitro-cGMP is mechanistically distinct from the well-described starvation-induced autophagy and is independent of the action of mTOR, the master regulator of canonical autophagy.


Assuntos
Autofagia , GMP Cíclico/análogos & derivados , Sistemas do Segundo Mensageiro , Animais , Proliferação de Células , Senescência Celular , GMP Cíclico/química , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Humanos , Estrutura Molecular , Processamento de Proteína Pós-Traducional
9.
Biochem Biophys Res Commun ; 478(1): 7-11, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27473654

RESUMO

8-Nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) is a nitrated cGMP derivative formed in response to nitric oxide (NO) and reactive oxygen species (ROS). It can cause a post-translational modification (PTM) of protein thiols through cGMP adduction (protein S-guanylation). Accumulating evidence has suggested that, in mammals, S-guanylation of redox-sensor proteins may implicate in regulation of adaptive responses against ROS-associated oxidative stress. Occurrence as well as protein targets of S-guanylation in bacteria remained unknown, however. Here we demonstrated, for the first time, the endogenous occurrence of protein S-guanylation in Escherichia coli (E. coli). Western blotting using anti-S-guanylation antibody clearly showed that multiple proteins were S-guanylated in E. coli. Interestingly, some of those proteins were more intensely S-guanylated when bacteria were cultured under static culture condition than shaking culture condition. It has been known that E. coli is deficient of guanylate cyclase, an enzyme indispensable for 8-nitro-cGMP formation in mammals. We found that adenylate cyclase from E. coli potentially catalyzed 8-nitro-cGMP formation from its precursor 8-nitroguanosine 5'-triphosphate. More importantly, E. coli lacking adenylate cyclase showed significantly reduced formation of S-guanylated proteins. Our S-guanylation proteomics successfully identified S-guanylation protein targets in E. coli, including chaperons, ribosomal proteins, and enzymes which associate with protein synthesis, redox regulation and metabolism. Understanding of functional impacts for protein S-guanylation in bacterial signal transduction is necessary basis for development of potential chemotherapy and new diagnostic strategy for control of pathogenic bacterial infections.


Assuntos
GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Adenilil Ciclases/metabolismo , GMP Cíclico/metabolismo , Óxido Nítrico/metabolismo , Nitrito Redutases/metabolismo , Oxirredução , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
10.
Arch Biochem Biophys ; 595: 140-6, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27095231

RESUMO

Reactive oxygen (oxidant) and free radical species are known to cause nonspecific damage of various biological molecules. The oxidant toxicology is developing an emerging concept of the physiological functions of reactive oxygen species in cell signaling regulation. Redox signaling is precisely modulated by endogenous electrophilic substances that are generated from reactive oxygen species during cellular oxidative stress responses. Among diverse electrophilic molecular species that are endogenously generated, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) is a unique second messenger whose formation, signaling, and metabolism in cells was recently clarified. Most important, our current studies revealed that reactive cysteine persulfides that are formed abundantly in cells are critically involved in the metabolism of 8-nitro-cGMP. Modern redox biology involves frontiers of cell research and stem cell research; medical and clinical investigations of infections, cancer, metabolic syndrome, aging, and neurodegenerative diseases; and other fields. 8-Nitro-cGMP-mediated signaling and metabolism in cells may therefore be potential targets for drug development, which may lead to discovery of new therapeutic agents for many diseases.


Assuntos
Cisteína/metabolismo , Nucleotídeos Cíclicos/metabolismo , Transdução de Sinais , Sulfetos/metabolismo , Animais , Humanos , Oxirredução , Sistemas do Segundo Mensageiro
11.
J Clin Biochem Nutr ; 58(2): 91-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27013774

RESUMO

Redox signaling is a key modulator of oxidative stress induced by nonspecific insults of biological molecules generated by reactive oxygen species. Current redox biology is revisiting the traditional concept of oxidative stress, such that toxic effects of reactive oxygen species are protected by diverse antioxidant systems upregulated by oxidative stress responses that are physiologically mediated by redox-dependent cell signaling pathways. Redox signaling is thus precisely regulated by endogenous electrophilic substances that are generated from reactive oxygen species and nitric oxide and its derivative reactive species during stress responses. Among electrophiles formed endogenously, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) has unique cell signaling functions, and pathways for its biosynthesis, signaling mechanism, and metabolism in cells have been clarified. Reactive sulfur species such as cysteine hydropersulfides that are abundant in cells are likely involved in 8-nitro-cGMP metabolism. These new aspects of redox biology may stimulate innovative and multidisciplinary research in cell and stem cell biology; infectious diseases, cancer, metabolic syndrome, ageing, and neurodegenerative diseases; and other oxidative stress-related disorders. This review focuses on the most recent progress in the biosynthesis, cell signaling, and metabolism of 8-nitro-cGMP, which is a likely target for drug development and lead to discovery of novel therapeutics for many diseases.

12.
Plant Cell Physiol ; 56(8): 1481-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25975264

RESUMO

Plants are exposed to hydrogen sulfide (H2S) both exogenously, as it exists as a pollutant gas in the environment, and endogenously, as it is synthesized in cells. H2S has recently been found to function as a gaseous signaling molecule, but its signaling cascade remains unknown. Here, we examined H2S-mediated guard cell signaling in Arabidopsis. The H2S donor GYY4137 (morpholin-4-ium-4-methoxyphenyl [morpholino] phosphinodithioate) induced stomatal closure, which peaked after 150 min at 1 µM or after 90 min at 10 and 100 µM. After reaching maximal closure, stomatal apertures gradually increased in size in response to further exposure to GYY4137. GYY4137 induced nitric oxide (NO) generation in guard cells, and GYY4137-induced stomatal closure was reduced by an NO scavenger and inhibitors of NO-producing enzymes. Mass spectrometry analyses showed that GYY4137 induces the synthesis of 8-nitro-cGMP and 8-mercapto-cGMP and that this synthesis is mediated by NO. In addition, 8-mercapto-cGMP triggered stomatal closure. Moreover, inhibitor and genetic studies showed that calcium, cADP ribose and slow anion channel 1 act downstream of 8-mercapto-cGMP. This study therefore demonstrates that 8-mercapto-cGMP mediates the H2S signaling cascade in guard cells.


Assuntos
Arabidopsis/efeitos dos fármacos , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacologia , Sulfeto de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Estômatos de Plantas/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Cálcio/metabolismo , Morfolinas/farmacologia , Mutação , Compostos Organotiofosforados/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/fisiologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/genética , Plântula , Transdução de Sinais
13.
Nitric Oxide ; 34: 10-8, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23632125

RESUMO

8-Nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) is a unique derivative of guanosine 3',5'-cyclic monophosphate (cGMP) formed in mammalian and plant cells in response to production of nitric oxide and reactive oxygen species. 8-Nitro-cGMP possesses signaling activity inherited from parental cGMP, including induction of vasorelaxation through activation of cGMP-dependent protein kinase. On the other hand, 8-nitro-cGMP mediates cellular signaling that is not observed for native cGMP, e.g., it behaves as an electrophile and reacts with protein sulfhydryls, which results in cGMP adduction to protein sulfhydryls (protein S-guanylation). Several proteins have been identified as targets for endogenous protein S-guanylation, including Kelch-like ECH-associated protein 1 (Keap1), H-Ras, and mitochondrial heat shock proteins. 8-Nitro-cGMP signaling via protein S-guanylation of those proteins may have evolved to convey adaptive cellular stress responses. 8-Nitro-cGMP may not undergo conventional cGMP metabolism because of its resistance to phosphodiesterases. Hydrogen sulfide has recently been identified as a potent regulator for metabolisms of electrophiles including 8-nitro-cGMP, through sulfhydration of electrophiles, e.g., leading to the formation of 8-SH-cGMP. Better understanding of the molecular basis for the formation, signaling functions, and metabolisms of 8-nitro-cGMP would be useful for the development of new diagnostic approaches and treatment of diseases related to oxidative stress and redox metabolisms.


Assuntos
GMP Cíclico/análogos & derivados , Processamento de Proteína Pós-Traducional , Animais , GMP Cíclico/metabolismo , Humanos , Transdução de Sinais
14.
Antioxid Redox Signal ; 33(18): 1320-1331, 2020 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-32536194

RESUMO

Significance: Redox homeostasis is precisely modulated by intricate systems that regulate production, elimination, and metabolism of electrophilic substances (electrophiles) in the nervous system. Since the first report of the endogenous production of reactive persulfide species in cells, such as cysteine persulfides (CysSSH), these reactive species have been a topic of extreme interest in the field of redox biology; persulfides/polysulfides possess unique chemical properties and are involved in multiple cellular functions. Recent Advances: Electrophilic signaling is mainly regulated by endogenous electrophiles that are generated from reactive oxygen species, nitric oxide, and their derivatives during stress responses, as well as by exogenous electrophiles, including compounds in foods and environmental pollutants, such as methylmercury (MeHg). Among diverse electrophiles that are endogenously generated, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) possesses unique redox properties, of which the biosynthetic pathway, signaling mechanism, and metabolism in cells have been elucidated. Critical Issues: Persulfides, such as CysSSH, that are endogenously produced are critically involved in 8-nitro-cGMP metabolism. Exposure of neurons to the exogenous neurotoxicant, MeHg, causes severe neurodegeneration via disruption of persulfide-dependent 8-nitro-cGMP metabolism. Future Directions: Accumulating evidence indicates that persulfides are involved in various cellular functions under physiological and pathological conditions. These new aspects of redox biology related to persulfides may be frontiers of cell research, medical and clinical investigations of neurodegenerative diseases, as well as other fields. 8-Nitro-cGMP-mediated signaling and its persulfide-dependent metabolism in cells could, therefore, be potential targets for drug development, which may lead to the discovery of new therapeutic agents for many diseases, including neurodegenerative diseases.


Assuntos
Homeostase , Neurônios/metabolismo , Oxirredução , Transdução de Sinais , Sulfetos/metabolismo , Suscetibilidade a Doenças , Redes e Vias Metabólicas , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
In Vitro Cell Dev Biol Anim ; 55(1): 45-51, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30397855

RESUMO

Osteocytes regulate bone remodeling, especially in response to mechanical loading and unloading of bone, with nitric oxide reported to play an important role in that process. In the present study, we found that 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP), a second messenger of nitric oxide in various types of cells, was produced by osteocytes in bone tissue as well as cultured osteocytic Ocy454 cells. The amount of 8-nitro-cGMP in Ocy454 cells increased during incubation with parathyroid hormone or prostaglandin E2, both of which are known to upregulate receptor activator of nuclear factor-κB ligand (RANKL) mRNA expression in osteocytes. On the other hand, exogenous 8-nitro-cGMP did not have effects on either the presence or absence of these bioactive substances. Furthermore, neither an inhibitor of nitric oxide synthase nor 8-bromo-cGMP, a cell-permeable analog of cGMP, showed remarkable effects on mRNA expression of sclerostin or RANKL. These results indicate that neither nitric oxide nor its downstream compounds, including 8-nitro-cGMP, alone are sufficient for induction of functional changes in osteocytes.


Assuntos
GMP Cíclico/análogos & derivados , Dinoprostona/farmacologia , Osteócitos/metabolismo , Hormônio Paratireóideo/farmacologia , Regulação para Cima , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linhagem Celular , GMP Cíclico/biossíntese , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Fêmur/citologia , Glicoproteínas/genética , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos Endogâmicos C57BL , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
16.
Methods Mol Biol ; 1860: 163-173, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30317503

RESUMO

8-Nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP), which is the second messenger in nitric oxide/reactive oxygen species redox signaling, covalently binds to protein thiol groups (called S-guanylation) and exerts various biological functions. Synaptosomal associated protein 25 (SNAP-25), a member of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, plays an important role in the process of membrane fusion. We previously showed that SNAP-25 is S-guanylated at cysteine 90. In addition, we revealed that S-guanylation of SNAP-25 increases SNARE complex formation, but decreases the affinity of SNARE complex for complexin. Since SNAP-25 plays a critical role in regulating exocytosis, it is important to elucidate the physiological or pathophysiological meanings of S-guanylation of this protein. Here we describe a protocol for detecting 8-nitro-cGMP and S-guanylated proteins in cells by immunocytochemistry, and methods to detect SNARE complex in 8-nitro-cGMP-treated cells.


Assuntos
GMP Cíclico/análogos & derivados , Estrutura Quaternária de Proteína , Proteína 25 Associada a Sinaptossoma/química , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , GMP Cíclico/química , Cisteína/química , Humanos , Imuno-Histoquímica , Fusão de Membrana , Eletroforese em Gel de Poliacrilamida Nativa/instrumentação , Eletroforese em Gel de Poliacrilamida Nativa/métodos , Proteína 25 Associada a Sinaptossoma/metabolismo
17.
ACS Chem Neurosci ; 9(2): 217-223, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29110463

RESUMO

8-Nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) is the second messenger in nitric oxide/reactive oxygen species redox signaling. This molecule covalently binds to protein thiol groups, called S-guanylation, and exerts various biological functions. Recently, we have identified synaptosomal-associated protein 25 (SNAP-25) as a target of S-guanylation, and demonstrated that S-guanylation of SNAP25 enhanced SNARE complex formation. In this study, we have examined the effects of S-guanylation of SNAP-25 on the interaction between the SNARE complex and complexin (cplx), which binds to the SNARE complex with a high affinity. Pull-down assays and coimmunoprecipitation experiments have revealed that S-guanylation of Cys90 in SNAP-25 attenuates the interaction between the SNARE complex and cplx. In addition, blue native-PAGE followed by Western blot analysis revealed that the amount of cplx detected at a high molecular weight decreased upon 8-nitro-cGMP treatment in SH-SY5Y cells. These results demonstrated for the first time that S-guanylation of SNAP-25 attenuates the interaction between the SNARE complex and cplx.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , GMP Cíclico/análogos & derivados , Proteínas do Tecido Nervoso/metabolismo , Proteínas SNARE/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Cromatografia Líquida , GMP Cíclico/metabolismo , Humanos , Imuno-Histoquímica , Imunoprecipitação , Espectrometria de Massas , Eletroforese em Gel de Poliacrilamida Nativa , Permeabilidade , Ratos , Sinaptossomos/metabolismo
18.
Free Radic Biol Med ; 109: 132-140, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28109891

RESUMO

Maintaining a redox balance by means of precisely controlled systems that regulate production, and elimination, and metabolism of electrophilic substances (electrophiles) is essential for normal cardiovascular function. Electrophilic signaling is mainly regulated by endogenous electrophiles that are generated from reactive oxygen species, nitric oxide, and the derivative reactive species of nitric oxide during stress responses, as well as by exogenous electrophiles including compounds in foods and environmental pollutants. Among electrophiles formed endogenously, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) has unique cell signaling functions, and pathways for its biosynthesis, signaling mechanism, and metabolism in cells have been clarified. Reactive persulfide species such as cysteine persulfides and polysulfides that are endogenously produced in cells are likely to be involved in 8-nitro-cGMP metabolism. These new aspects of redox biology may stimulate innovative and multidisciplinary research in cardiovascular physiology and pathophysiology. In our review, we focus on the redox-dependent regulation of electrophilic signaling via reduction and metabolism of electrophiles by reactive persulfides in cardiac cells, and we include suggestions for a new therapeutic strategy for cardiovascular disease.


Assuntos
Cardiomiopatias/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de Ligação ao GTP/metabolismo , Miócitos Cardíacos/metabolismo , Agregação Patológica de Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Cardiomiopatias/genética , Cardiomiopatias/patologia , GMP Cíclico/metabolismo , Cisteína/análogos & derivados , Cisteína/metabolismo , Dissulfetos/metabolismo , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica , Humanos , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/patologia , Óxido Nítrico/metabolismo , Oxirredução , Estresse Oxidativo , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Transdução de Sinais , Sulfetos/metabolismo
19.
Free Radic Biol Med ; 110: 63-71, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28559051

RESUMO

In endochondral ossification, growth of bones occurs at their growth plate cartilage. While it is known that nitric oxide (NO) synthases are required for proliferation of chondrocytes in growth plate cartilage and growth of bones, the precise mechanism by which NO facilitates these process has not been clarified yet. C-type natriuretic peptide (CNP) also positively regulate elongation of bones through expansion of the growth plate cartilage. Both NO and CNP are known to use cGMP as the second messenger. Recently, 8-nitro-cGMP was identified as a signaling molecule produced in the presence of NO in various types of cells. Here, we found that 8-nitro-cGMP is produced in proliferating chondrocytes in the growth plates, which was enhanced by CNP, in bones cultured ex vivo. In addition, 8-nitro-cGMP promoted bone growth with expansion of the proliferating zone as well as increase in the number of proliferating cells in the growth plates. 8-Nitro-cGMP also promoted the proliferation of chondrocytes in vitro. On the other hand, 8-bromo-cGMP enhanced the growth of bones with expansion of hypertrophic zone of the growth plates without affecting either the width of proliferating zone or proliferation of chondrocytes. These results indicate that 8-nitro-cGMP formed in growth plate cartilage accelerates chondrocyte proliferation and bone growth as a downstream molecule of NO.


Assuntos
Desenvolvimento Ósseo/efeitos dos fármacos , Cartilagem/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , GMP Cíclico/análogos & derivados , Lâmina de Crescimento/efeitos dos fármacos , Tíbia/efeitos dos fármacos , Animais , Cartilagem/citologia , Cartilagem/crescimento & desenvolvimento , Cartilagem/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/metabolismo , GMP Cíclico/farmacologia , Feto , Lâmina de Crescimento/citologia , Lâmina de Crescimento/crescimento & desenvolvimento , Lâmina de Crescimento/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Peptídeo Natriurético Tipo C/farmacologia , Óxido Nítrico/metabolismo , Cultura Primária de Células , Tíbia/citologia , Tíbia/crescimento & desenvolvimento , Tíbia/metabolismo , Técnicas de Cultura de Tecidos
20.
Biochem Pharmacol ; 91(2): 191-201, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25107700

RESUMO

The nitroderivative 1-nitro-2-phenylethane (NPE) was recently described as a compound possessing heme-dependent soluble guanylyl cyclase (sGC) stimulating properties in vascular smooth muscle cells. In this study, we tested such pharmacological property of NPE in mice pancreatic acinar cells subjected to the bile salt taurocholate, a type of pathological stimulus that simulates pancreatitis. Here, isolated acinar cells were treated with NPE in order to assess the role of sGC on the detrimental effects induced by taurocholate. NPE reduced taurocholate-elicited Ca(2+) overload, production of reactive oxygen species (ROS), apoptosis, necrosis, and exerted a protective effect against mitochondrial membrane potential (ΔΨm) dissipation. These NPE-induced effects were abolished by pretreatment with ODQ and KT 5823, and after the blockade of nitric oxide (NO) synthase with l-NAME, inhibitors of key components of the sGC pathway. Contrarily to cGMP that alone increased ΔΨm collapse and cell damage, the cytoprotective effect of NPE on ΔΨm and cell necrosis was almost reproduced by 8-nitro-cGMP, a second messenger generated by sGC under oxidative stress conditions. In conclusion, putative sGC stimulation with NPE reveals its cytoprotective profile on pancreatic cells subjected to taurocholate. Moreover, ROS and NO conjunctly appear to drive sGC activity in pancreatic acinar cells to implement an adaptive mechanism in response to oxidative and Ca(2+) stress through 8-nitro-cGMPsynthesis.


Assuntos
Células Acinares/efeitos dos fármacos , Derivados de Benzeno/farmacologia , GMP Cíclico/análogos & derivados , Pâncreas/citologia , Ácido Taurocólico/toxicidade , Animais , Apoptose/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Células Cultivadas , GMP Cíclico/metabolismo , Masculino , Camundongos , Necrose , Pâncreas/efeitos dos fármacos , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA