Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Transgenic Res ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088185

RESUMO

Mouse models with complex genetic backgrounds are increasingly used in preclinical research to accurately model human disease and to enable temporal and cell-specific evaluation of genetic manipulations. Backcrossing mice onto these complex genetic backgrounds takes time and leads to significant wastage of animals. In this study, we aimed to evaluate whether site-specific nucleases could be used to generate additional genetic mutations in a complex genetic background, using the REVERSA mouse model of atherosclerosis, a model harbouring four genetically altered alleles. The model is comprised of a functional null mutation in the Ldlr gene in combination with a ApoB100 allele, which, after high-fat diet, leads to the rapid development of atherosclerosis. The regression of the pathology is achieved by inducible knock-out of the Mttp gene. Here we report an investigation to establish if microinjection of site-specific nucleases directly into zygotes prepared from the REVERSA could be used to investigate the role of the ATP binding cassette transporter G1 (ABCG1) in atherosclerosis regression. We show that using this approach we could successfully generate two independent knockout lines on the REVERSA background, both of which exhibited the expected phenotype of a significant reduction in cholesterol efflux to HDL in bone marrow-derived macrophages. However, loss of Abcg1 did not impact atherosclerosis regression in either the aortic root or in aortic arch, demonstrating no important role for this transporter subtype. We have demonstrated that site-specific nucleases can be used to create genetic modifications directly onto complex disease backgrounds and can be used to explore gene function without the need for laborious backcrossing of independent strains, conveying a significant 3Rs advantage.

2.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34404721

RESUMO

The ABCG1 homodimer (G1) and ABCG5-ABCG8 heterodimer (G5G8), two members of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter G family, are required for maintenance of cellular cholesterol levels. G5G8 mediates secretion of neutral sterols into bile and the gut lumen, whereas G1 transports cholesterol from macrophages to high-density lipoproteins (HDLs). The mechanisms used by G5G8 and G1 to recognize and export sterols remain unclear. Here, we report cryoelectron microscopy (cryo-EM) structures of human G5G8 in sterol-bound and human G1 in cholesterol- and ATP-bound states. Both transporters have a sterol-binding site that is accessible from the cytosolic leaflet. A second site is present midway through the transmembrane domains of G5G8. The Walker A motif of G8 adopts a unique conformation that accounts for the marked asymmetry in ATPase activities between the two nucleotide-binding sites of G5G8. These structures, along with functional validation studies, provide a mechanistic framework for understanding cholesterol efflux via ABC transporters.


Assuntos
Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Colesterol/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Sítios de Ligação , Transporte Biológico , Microscopia Crioeletrônica , Humanos , Conformação Proteica
3.
J Oral Rehabil ; 51(5): 805-816, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38146807

RESUMO

BACKGROUND: Abnormal lipid metabolism is involved in the development of osteoarthritis (OA). ATP-binding cassette protein G1 (ABCG1) is crucial in mediating the outflow of cholesterol, phosphatidylcholine and sphingomyelin and reducing intracellular lipid accumulation. OBJECTIVE: This study aimed to evaluate whether ABCG1 participates in the abnormal adipogenesis of chondrocytes in osteoarthritic cartilage of temporomandibular joint. METHODS: Eight-week-old female rats were subjected to unilateral anterior crossbite (UAC) to induce OA in the temporomandibular joint (TMJ). Histochemical staining, immunohistochemical (IHC) staining, and qRT-PCR were performed. Primary condylar chondrocytes of rats were transfected with ABCG1 shRNA or overexpression lentivirus and then stimulated with fluid flow shear stress (FFSS). Cells were collected for oil red O staining, immunofluorescence staining, and qRT-PCR analysis. RESULTS: Abnormal adipogenesis, characterized by increased expression of Adiponectin, CCAAT/enhancer-binding protein α (Cebpα), fatty acid binding protein 4 (Fabp4) and Perilipin1, was enhanced in the degenerative cartilage of TMJ OA in rats with UAC, accompanied by decreased expression of ABCG1. After FFSS stimulation, we observed lipid droplets in the cytoplasm of cultured cells with increased expression of Adiponectin, Cebpα, Fabp4 and Perilipin1 and decreased expression of ABCG1. Knockdown of Abcg1 induced abnormal adipogenesis and differentiation of condylar chondrocytes. Overexpression of ABCG1 alleviated the abnormal adipogenesis and differentiation of condylar chondrocytes induced by FFSS. CONCLUSIONS: Abnormal adipogenesis of chondrocytes and decreased ABCG1 expression were observed in degenerative cartilage of TMJ OA. ABCG1 overexpression effectively inhibits the adipogenesis of chondrocytes and thus alleviates TMJ condylar cartilage degeneration.


Assuntos
Cartilagem Articular , Má Oclusão , Osteoartrite , Animais , Feminino , Ratos , Trifosfato de Adenosina/metabolismo , Adipogenia , Adiponectina/metabolismo , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Má Oclusão/metabolismo , Articulação Temporomandibular/metabolismo
4.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062791

RESUMO

Obesity is frequently accompanied by non-alcoholic fatty liver disease (NAFLD). These two diseases are associated with altered lipid metabolism, in which reverse cholesterol transport (LXRα/ABCA1/ABCG1) and leptin response (leptin receptor (Ob-Rb)/Sam68) are involved. The two pathways were evaluated in peripheral blood mononuclear cells (PBMCs) from 86 patients with morbid obesity (MO) before and six months after Roux-en-Y gastric bypass (RYGB) and 38 non-obese subjects. In the LXRα pathway, LXRα, ABCA1, and ABCG1 mRNA expressions were decreased in MO compared to non-obese subjects (p < 0.001, respectively). Ob-Rb was decreased (p < 0.001), whereas Sam68 was increased (p < 0.001) in MO. RYGB did not change mRNA gene expressions. In the MO group, the LXRα pathway (LXRα/ABCA1/ABCG1) negatively correlated with obesity-related variables (weight, body mass index, and hip), inflammation (C-reactive protein), and liver function (alanine-aminotransferase, alkaline phosphatase, and fatty liver index), and positively with serum albumin. In the Ob-R pathway, Ob-Rb and Sam68 negatively correlated with alanine-aminotransferase and positively with albumin. The alteration of LXRα and Ob-R pathways may play an important role in NAFLD development in MO. It is possible that MO patients may require more than 6 months following RYBGB to normalize gene expression related to reverse cholesterol transport or leptin responsiveness.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , Colesterol , Leucócitos Mononucleares , Receptores X do Fígado , Fígado , Obesidade Mórbida , Receptores para Leptina , Humanos , Obesidade Mórbida/metabolismo , Obesidade Mórbida/cirurgia , Obesidade Mórbida/genética , Masculino , Leucócitos Mononucleares/metabolismo , Feminino , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Adulto , Colesterol/metabolismo , Receptores X do Fígado/metabolismo , Receptores X do Fígado/genética , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Pessoa de Meia-Idade , Fígado/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Transdução de Sinais , Transporte Biológico , Regulação da Expressão Gênica , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética
5.
J Lipid Res ; 64(6): 100385, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37169287

RESUMO

This review considers the hypothesis that a small portion of plasma membrane cholesterol regulates reverse cholesterol transport in coordination with overall cellular homeostasis. It appears that almost all of the plasma membrane cholesterol is held in stoichiometric complexes with bilayer phospholipids. The minor fraction of cholesterol that exceeds the complexation capacity of the phospholipids is called active cholesterol. It has an elevated chemical activity and circulates among the organelles. It also moves down its chemical activity gradient to plasma HDL, facilitated by the activity of ABCA1, ABCG1, and SR-BI. ABCA1 initiates this process by perturbing the organization of the plasma membrane bilayer, thereby priming its phospholipids for translocation to apoA-I to form nascent HDL. The active excess sterol and that activated by ABCA1 itself follow the phospholipids to the nascent HDL. ABCG1 similarly rearranges the bilayer and sends additional active cholesterol to nascent HDL, while SR-BI simply facilitates the equilibration of the active sterol between plasma membranes and plasma proteins. Active cholesterol also flows downhill to cytoplasmic membranes where it serves both as a feedback signal to homeostatic ER proteins and as the substrate for the synthesis of mitochondrial 27-hydroxycholesterol (27HC). 27HC binds the LXR and promotes the expression of the aforementioned transport proteins. 27HC-LXR also activates ABCA1 by competitively displacing its inhibitor, unliganded LXR. § Considerable indirect evidence suggests that active cholesterol serves as both a substrate and a feedback signal for reverse cholesterol transport. Direct tests of this novel hypothesis are proposed.


Assuntos
Colesterol , Lipoproteínas de Alta Densidade Pré-beta , Colesterol/metabolismo , Transporte Biológico , Esteróis , Fosfolipídeos , Transportador 1 de Cassete de Ligação de ATP/metabolismo
6.
Curr Issues Mol Biol ; 45(9): 7043-7057, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37754229

RESUMO

Atherosclerosis is the leading cause of cardiovascular diseases in Mexico and worldwide. The membrane transporters ABCA1 and ABCG1 are involved in the reverse transport of cholesterol and stimulate the HDL synthesis in hepatocytes, therefore the deficiency of these transporters promotes the acceleration of atherosclerosis. MicroRNA-33 (miR-33) plays an important role in lipid metabolism and exerts a negative regulation on the transporters ABCA1 and ABCG1. It is known that by inhibiting the function of miR-33 with antisense RNA, HDL levels increase and atherogenic risk decreases. Therefore, in this work, a genetic construct, pPEPCK-antimiR-33-IRES2-EGFP, containing a specific antimiR-33 sponge with two binding sites for miR-33 governed under the PEPCK promoter was designed, constructed, and characterized, the identity of which was confirmed by enzymatic restriction, PCR, and sequencing. Hep G2 and Hek 293 FT cell lines, as well as a mouse hepatocyte primary cell culture were transfected with this plasmid construction showing expression specificity of the PEPCK promoter in hepatic cells. An analysis of the relative expression of miR-33 target messengers showed that the antimiR-33 sponge indirectly induces the expression of its target messengers (ABCA1 and ABCG1). This strategy could open new specific therapeutic options for hypercholesterolemia and atherosclerosis, by blocking the miR-33 specifically in hepatocytes.

7.
Funct Integr Genomics ; 23(3): 256, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37523012

RESUMO

Non-small cell lung cancer (NSCLC) is the most prevalent histological type of lung cancer and the leading cause of death globally. Patients with NSCLC have a poor prognosis for various factors, and a late diagnosis is one of them. The DNA methylation of CpG island sequences found in the promoter regions of tumor suppressor genes has recently received attention as a potential biomarker of human cancer. In this study, we report DNA methylation changes of the adenosine triphosphate (ATP)-binding cassette transporter G1 (ABCG1), which belongs to the ATP cassette transporter family in NSCLC patients. Our results demonstrate that ABCG1 is hyper-methylation in NSCLC samples, and these changes are negatively correlated to gene and protein expression. Furthermore, the expression of the ABCG1 gene is significantly associated with the survival time of lung adenocarcinoma (LUAD) patients; however, it did not show a correlation to overall survival (OS) of lung squamous cell carcinoma (LUSC) patients. Notably, we found ABCG1 methylation status at locus cg20214535 is strongly associated with the survival time and consistently observed hyper-methylation in LUAD samples. This novel finding suggests ABCG1 is a potential candidate for targeted therapy in lung cancer via this specific probe. In addition, we illustrate the protein-protein interaction (PPI) of ABCG1 with other proteins and the strong communication of ABCG1 with immune cells.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Metilação de DNA , Epigênese Genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo
8.
Cancer Immunol Immunother ; 72(7): 2127-2135, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36828963

RESUMO

INTRODUCTION: Immune checkpoint inhibitors (ICIs) became the standard of care for several solid tumors. A limited fraction of patients (pts) achieves a long-term benefit. Plasmatic and intracellular cholesterol levels have emerged as promising biomarkers. The aim of the present study was to determine whether cholesterol efflux capacity (CEC), mediated by serum transporters (ABCA1 and ABCG1) and passive diffusion (PD), impacts on clinical outcome of advanced non-small cell lung cancer (NSCLC) and metastatic renal cell carcinoma (mRCC) pts treated with ICIs. MATERIAL AND METHODS: We retrospectively enrolled advanced NSCLC and mRCC pts consecutively treated with ICIs between October 2013 and October 2018. CEC and cholesterol loading capacity (CLC) were assessed by well-established specific cell models. As primary endpoint, CEC, PD and CLC were correlated with overall survival (OS) while the effects of these parameters on progression-free survival (PFS) and clinical benefit (CB), defined as complete/partial response or stable disease, represented secondary endpoints. RESULTS: NSCLC accounted for 94.2% of 70 enrolled cases, and serum sample suitable for CEC and PD determination was available in 68. Blood cholesterol and serum ABCA1, ABCG1, PD and CLC were associated with outcomes (OS, PFS and CB) at univariate analysis. At the multivariate analysis, only PD confirmed its positive prognostic value in terms of OS, PFS and CB. CONCLUSION: The favorable impact of cholesterol PD on clinical outcome might reflect its main conformation in mature HDL particles which potentially shape an inflamed context, ultimately promoting ICI efficacy. Further prospective studies are needed to support our findings and uncover targetable pathways.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Renais , Neoplasias Renais , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Estudos Retrospectivos , Carcinoma de Células Renais/tratamento farmacológico , Biomarcadores Tumorais/análise , Neoplasias Renais/tratamento farmacológico , Colesterol
9.
J Autoimmun ; 136: 103029, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36996698

RESUMO

OBJECTIVES: Cholesterol efflux capacity (CEC) measures the ability of high-density lipoprotein (HDL) to remove cholesterol from macrophages and reduce the lipid content of atherosclerotic plaques. CEC inversely associated with cardiovascular risk beyond HDL-cholesterol levels. CEC through the ATP-binding-cassette G1 (ABCG1) membrane transporter is impaired in rheumatoid arthritis (RA). We evaluated associations of ABCG1-CEC with coronary atherosclerosis, plaque progression and cardiovascular risk in RA. METHODS: Coronary atherosclerosis (noncalcified, partially, fully-calcified, low-attenuation plaque) was assessed with computed tomography angiography in 140 patients and reevaluated in 99 after 6.9 ± 0.3 years. Cardiovascular events including acute coronary syndromes, stroke, cardiovascular death, claudication, revascularization and hospitalized heart failure were recorded. ABCG1-CEC was measured in Chinese hamster ovary cells as percentage of effluxed over total intracellular cholesterol. RESULTS: ABCG1-CEC inversely associated with extensive atherosclerosis (≥5 plaques) (adjusted odds ratio 0.50 [95% CI 0.28-0.88]), numbers of partially-calcified (rate ratio [RR] 0.71 [0.53-0.94]) and low-attenuation plaques (RR 0.63 [0.43-0.91] per standard deviation increment). Higher ABCG1-CEC predicted fewer new partially-calcified plaques in patients with lower baseline and time-averaged CRP and fewer new noncalcified and calcified plaques in those receiving higher mean prednisone dose. ABCG1-CEC inversely associated with events in patients with but not without noncalcified plaques, with

Assuntos
Artrite Reumatoide , Doenças Cardiovasculares , Doença da Artéria Coronariana , Animais , Cricetinae , Humanos , Prednisona , Células CHO , Fatores de Risco , Cricetulus , Colesterol , Inflamação , Fatores de Risco de Doenças Cardíacas , Proteínas de Membrana Transportadoras , Trifosfato de Adenosina
10.
Cell Biol Int ; 47(9): 1589-1599, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37309064

RESUMO

Macrophage-derived foam cell formation is critical for the initiation and development of atherosclerosis, which contributes to atherosclerotic cardiovascular disease (ASCVD). Glutathione peroxidase 4 (GPX4), a crucial ferroptosis regulator, protects cells from excessive oxidative stress by neutralizing lipid peroxidation. However, the role of macrophage GPX4 in foam cell formation remains unknown. We reported that oxidized low-density lipoprotein (oxLDL) upregulated GPX4 expression in macrophages. Using the Cre-loxP system, we generated myeloid cell-specific Gpx4 knockout (Gpx4myel-KO ) mice. Bone marrow-derived macrophages (BMDMs) were isolated from WT and Gpx4myel-KO mice and incubated with modified low-density lipoprotein (LDL). We found that Gpx4 deficiency promoted foam cell formation and increased the internalization of modified LDL. Mechanistic studies unveiled that Gpx4 knockout upregulated scavenger receptor type A and LOX-1 expression and downregulated ABCA1 and ABCG1 expression. Collectively, our study lends a novel insight into the role of GPX4 in suppressing macrophage-derived foam cell formation and suggests GPX4 as a promising therapeutic target to interfere with atherosclerosis-related diseases.


Assuntos
Aterosclerose , Células Espumosas , Camundongos , Animais , Células Espumosas/metabolismo , Macrófagos/metabolismo , Lipoproteínas LDL/metabolismo , Receptores Depuradores/metabolismo , Aterosclerose/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo
11.
Biosci Biotechnol Biochem ; 87(6): 584-591, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36881721

RESUMO

Dyslipidemia is a risk factor for the development of atherosclerotic cardiovascular disease. 8-Hydroxyeicosapentaenoic acid (8-HEPE) from North Pacific krill (Euphausia pacifica) is known to reduce plasma low-density lipoprotein (LDL) cholesterol levels and increase plasma high-density lipoprotein cholesterol levels in LDL receptor knock-out mice fed a western diet. Moreover, 8-HEPE also reduces the area of aortic atherosclerosis in apoE knock-out mice fed the same diet. In this study, we examined the stereochemical-specific activity of 8-HEPE for inducing expression of cholesterol efflux receptors (Abca1 and Abcg1) in J774.1 cells. Our findings show 8R-HEPE induces the expression of Abca1 and Abcg1 via activation of liver X receptor, whereas 8S-HEPE elicits no such activity. These results suggest that 8R-HEPE derived from North Pacific krill may have beneficial effects against dyslipidemia.


Assuntos
Colesterol , Macrófagos , Camundongos , Animais , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Colesterol/metabolismo , Macrófagos/metabolismo , Lipoproteínas LDL/metabolismo , Camundongos Knockout , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo
12.
Proteomics ; 22(10): e2100028, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35234362

RESUMO

ATP-binding cassette transporter G1 (ABCG1) is a cellular transmembrane protein that transports oxysterol efflux from cells to high-density lipoprotein (HDL) particles in the plasma. Previous studies have demonstrated that an ABCG1 deficiency exerts an antiatherosclerotic function through the effects of oxysterol accumulation in cells to enhance apoptosis and regulate inflammatory processes. However, whether the deficiency of ABCG1 and the corresponding changes in the efflux of oxysterols could take a series of impacts on the proteomic composition of HDL remains unclear. Here, plasma HDL of ABCG1(-/-) mice and their wild-type controls on a normal chow diet (NCD) or a high-fat diet (HFD) were isolated by ultracentrifugation. The proportion of 7-ketocholesterol and the proteomic composition of samples were comparatively analyzed by LC-MS/MS. In NCD-fed mice, lipid metabolism-related protein (arachidonate 12-lipoxygenase) and antioxidative protein (pantetheinase) exhibited increased accumulation, and inflammatory response protein (alpha-1-antitrypsin) was decreased in accumulation in ABCG1(-/-) mice HDL. In HFD-fed mice, fewer proteins were detected than that of NCD-fed mice. The ABCG1(-/-) mice HDL exhibited increased accumulation of lipid metabolism-related proteins (e.g., carboxylesterase 1C, apolipoprotein (apo)C-4) and decreased accumulation of alpha-1-antitrypsin, as well as significantly reduced proportion of 7-ketocholesterol. Additionally, positive correlations were found between 7-ketocholesterol and some essential proteins on HDL, such as alpha-1-antitrypsin, apoA-4, apoB-100, and serum amyloid A (SAA). These results suggest a detrimental impact of oxysterols on HDL composition, which might affect the antiatherosclerotic properties of HDL.


Assuntos
Dieta Hiperlipídica , Doenças não Transmissíveis , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Cromatografia Líquida , Dieta Hiperlipídica/efeitos adversos , Lipoproteínas/metabolismo , Camundongos , Camundongos Knockout , Proteômica , Espectrometria de Massas em Tandem
13.
J Transl Med ; 20(1): 337, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902881

RESUMO

BACKGROUND: Asprosin, a newly discovered adipokine, is a C-terminal cleavage product of profibrillin. Asprosin has been reported to participate in lipid metabolism and cardiovascular disease, but its role in atherogenesis remains elusive. METHODS: Asprosin was overexpressed in THP-1 macrophage-derived foam cells and apoE-/- mice using the lentiviral vector. The expression of relevant molecules was determined by qRT-PCR and/or western blot. The intracellular lipid accumulation was evaluated by high-performance liquid chromatography and Oil red O staining. HE and Oil red O staining was employed to assess plaque burden in vivo. Reverse cholesterol transport (RCT) efficiency was measured using [3H]-labeled cholesterol. RESULTS: Exposure of THP-1 macrophages to oxidized low-density lipoprotein down-regulated asprosin expression. Lentivirus-mediated overexpression of asprosin promoted cholesterol efflux and inhibited lipid accumulation in THP-1 macrophage-derived foam cells. Mechanistic analysis revealed that asprosin overexpression activated p38 and stimulated the phosphorylation of ETS-like transcription factor (Elk-1) at Ser383, leading to Elk-1 nuclear translocation and the transcriptional activation of ATP binding cassette transporters A1 (ABCA1) and ABCG1. Injection of lentiviral vector expressing asprosin diminished atherosclerotic lesion area, increased plaque stability, improved plasma lipid profiles and facilitated RCT in apoE-/- mice. Asprosin overexpression also increased the phosphorylation of p38 and Elk-1 as well as up-regulated the expression of ABCA1 and ABCG1 in the aortas. CONCLUSION: Asprosin inhibits lipid accumulation in macrophages and decreases atherosclerotic burden in apoE-/- mice by up-regulating ABCA1 and ABCG1 expression via activation of the p38/Elk-1 signaling pathway.


Assuntos
Aterosclerose , Placa Aterosclerótica , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Apolipoproteínas E/metabolismo , Aterosclerose/patologia , Colesterol/metabolismo , Macrófagos/metabolismo , Camundongos , Placa Aterosclerótica/patologia
14.
Adv Exp Med Biol ; 1377: 95-107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35575923

RESUMO

Cholesterol is a major component of mammalian cell membranes and plays important structural and functional roles. However, excessive cholesterol accumulation is toxic to cells and constitutes the molecular basis for many diseases, especially atherosclerotic cardiovascular disease. Thus, cellular cholesterol is tightly regulated to maintain a homeostasis. Reverse cholesterol transport (RCT) is thought to be one primary pathway to eliminate excessive cholesterol from the body. The first and rate-limiting step of RCT is ATP-binding cassette (ABC) transports A1 (ABCA1)- and ABCG1-dependent cholesterol efflux. In the process, ABCA1 mediates initial transport of cellular cholesterol to apolipoprotein A-I (apoA-I) for forming nascent high-density lipoprotein (HDL) particles, and ABCG1 facilitates subsequent continued cholesterol efflux to HDL for further maturation. In this chapter, we summarize the roles of ABCA1 and ABCG1 in maintaining cellular cholesterol homoeostasis and discuss the underlying mechanisms by which they mediate cholesterol export.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Aterosclerose/metabolismo , Colesterol/metabolismo , Mamíferos/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/prevenção & controle , Transporte Biológico , Homeostase , Humanos
15.
Biochem Genet ; 60(2): 822-841, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34505223

RESUMO

Several proteins are involved in cholesterol homeostasis, as scavenger receptor class B type I and ATP-binding cassette (ABC) transporters including ABCA1, ABCG1, ABCG5, and ABCG8. This study aimed to determine the effects of single nucleotide variants (SNVs) rs2275543 (ABCA1), rs1893590 (ABCG1), rs6720173 (ABCG5), rs6544718 (ABCG8), and rs5888 (SCARB1) on plasma lipids, lipoproteins, and adiposity markers in an asymptomatic population and its sex-specific effects. Volunteers (n = 590) were selected and plasma lipids, lipoproteins, and adiposity markers (waist-to-hip and waist-to-height ratios, lipid accumulation product and body adiposity index) were measured. Genomic DNA was isolated from peripheral blood cells according to the method adapted from Gross-Bellard. SNVs were detected in the TaqMan® OpenArray® Real-Time polymerase chain reaction platform and data analyses were performed using the TaqMan® Genotyper Software. The rs2275543*C point to an increase of high-density lipoprotein size in females while in males very-low-density lipoprotein, cholesterol, and triglycerides were statistically lower (P value < 0.05). The rs1893590*C was statistically associated with lower apolipoprotein A-I levels and higher activities of paraoxonase-1 and cholesteryl ester transfer protein (P value < 0.05). The rs6720173 was statistically associated with an increase in cholesterol and low-density lipoprotein cholesterol in males; moreover, rs6544718*T reduced adiposity markers in females (P value < 0.05). Regarding the rs5888, a decreased adiposity marker in the total population and in females occurred (P value < 0.05). Multivariate analysis of variance showed that SNVs could influence components of high-density lipoprotein metabolism, mainly through ABCG1 (P value < 0.05). The ABCA1 and ABCG5 variants showed sex-specific effects on lipids and lipoproteins, while SCARB1 and ABCG8 variants might influence adiposity markers in females. Our data indicate a possible role of ABCG1 on HDL metabolism.


Assuntos
Adiposidade , Lipoproteínas , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adiposidade/genética , Colesterol/metabolismo , Feminino , Humanos , Lipoproteínas/genética , Lipoproteínas/metabolismo , Lipoproteínas HDL/genética , Masculino , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo
16.
Pestic Biochem Physiol ; 182: 105053, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35249643

RESUMO

Deciphering the molecular mechanisms of insect resistance to Bacillus thuringiensis (Bt) based biotechnology products including Bt sprays and Bt crops is critical for the long-term application of Bt technology. Previously, we established that down-regulation of the ABC transporter gene PxABCG1, trans-regulated by the MAPK signaling pathway, contributed to high-level resistance to Bt Cry1Ac toxin in diamondback moth, Plutella xylostella (L.). However, the underlying transcriptional regulatory mechanism was unknown. Herein, we identified putative binding sites (PBSs) of the transcription factor (TF) POUM1 in the PxABCG1 promoter and used a dual-luciferase reporter assay (DLRA) and yeast one-hybrid (Y1H) assay to reveal that POUM1 activates PxABCG1 via interaction with one of these sites. The expression of POUM1 was significantly decreased in the midgut tissue of Cry1Ac-resistant P. xylostella strains compared to a Cry1Ac-susceptible P. xylostella strain. Silencing of POUM1 expression resulted in reduced expression of the PxABCG1 gene and an increase in larval tolerance to Bt Cry1Ac toxin in the Cry1Ac-susceptible P. xylostella strain. Furthermore, silencing of PxMAP4K4 expression increased the expression of both POUM1 and PxABCG1 genes in the Cry1Ac-resistant P. xylostella strain. These results indicate that the POUM1 induces PxABCG1 expression, while the activated MAPK cascade represses PxABCG1 expression thus reducing Cry1Ac susceptibility in P. xylostella. This result deepens our understanding of the transcriptional regulatory mechanism of midgut Cry receptor genes and the molecular basis of the evolution of Bt resistance in insects.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Endotoxinas/metabolismo , Endotoxinas/farmacologia , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacologia , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Larva/genética , Larva/metabolismo , Mariposas/genética , Mariposas/metabolismo , Fatores de Transcrição/genética
17.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35409148

RESUMO

Atherosclerosis, accompanied by inflammation and metabolic disorders, is the primary cause of clinical cardiovascular death. In recent years, unhealthy lifestyles (e.g., sedentary lifestyles) have contributed to a worldwide epidemic of atherosclerosis. Exercise is a known treatment of atherosclerosis, but the precise mechanisms are still unknown. Here, we show that 12 weeks of regular exercise training on a treadmill significantly decreased lipid accumulation and foam cell formation in ApoE-/- mice fed with a Western diet, which plays a critical role in the process of atherosclerosis. This was associated with an increase in ß-hydroxybutyric acid (BHB) levels in the serum. We provide evidence that BHB treatment in vivo or in vitro increases the protein levels of cholesterol transporters, including ABCA1, ABCG1, and SR-BI, and is capable of reducing lipid accumulation. It also ameliorated autophagy in macrophages and atherosclerosis plaques, which play an important role in the step of cholesterol efflux. Altogether, an increase in serum BHB levels after regular exercise is an important mechanism of exercise inhibiting the development of atherosclerosis. This provides a novel treatment for atherosclerotic patients who are unable to undertake regular exercise for whatever reason. They will gain a benefit from receiving additional BHB.


Assuntos
Aterosclerose , Ácido 3-Hidroxibutírico/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Aterosclerose/etiologia , Colesterol/metabolismo , Células Espumosas/metabolismo , Humanos , Macrófagos/metabolismo , Camundongos
18.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36613930

RESUMO

The subfamily-G ATP-binding cassette (ABCG) transporters play important roles in regulating cholesterol homeostasis. Recent progress in the structural data of ABCG1 and ABCG5/G8 disclose putative sterol binding sites that suggest the possible cholesterol translocation pathway. ABCG1 and ABCG5/G8 share high similarity in the overall molecular architecture, and both transporters appear to use several unique structural motifs to facilitate cholesterol transport along this pathway, including the phenylalanine highway and the hydrophobic valve. Interestingly, ABCG5/G8 is known to transport cholesterol and phytosterols, whereas ABCG1 seems to exclusively transport cholesterol. Ligand docking analysis indeed suggests a difference in recruiting sterol molecules to the known sterol-binding sites. Here, we further discuss how the different and shared structural features are relevant to their physiological functions, and finally provide our perspective on future studies in ABCG cholesterol transporters.


Assuntos
Colesterol , Lipoproteínas , Lipoproteínas/metabolismo , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Colesterol/metabolismo , Esteróis/metabolismo
19.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430223

RESUMO

ABCG1 has been proposed to play a role in HDL-dependent cellular sterol regulation; however, details of the interaction between the transporter and its potential sterol substrates have not been revealed. In the present work, we explored the effect of numerous sterol compounds on the two isoforms of ABCG1 and ABCG4 and made efforts to identify the molecular motifs in ABCG1 that are involved in the interaction with cholesterol. The functional readouts used include ABCG1-mediated ATPase activity and ABCG1-induced apoptosis. We found that both ABCG1 isoforms and ABCG4 interact with several sterol compounds; however, they have selective sensitivities to sterols. Mutational analysis of potential cholesterol-interacting motifs in ABCG1 revealed altered ABCG1 functions when F571, L626, or Y586 were mutated. L430A and Y660A substitutions had no functional consequence, whereas Y655A completely abolished the ABCG1-mediated functions. Detailed structural analysis of ABCG1 demonstrated that the mutations modulating ABCG1 functions are positioned either in the so-called reentry helix (G-loop/TM5b,c) (Y586) or in its close proximity (F571 and L626). Cholesterol molecules resolved in the structure of ABCG1 are also located close to Y586. Based on the experimental observations and structural considerations, we propose an essential role for the reentry helix in cholesterol sensing in ABCG1.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Colesterol , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Colesterol/metabolismo , Esteróis , Adenosina Trifosfatases/metabolismo
20.
Saudi Pharm J ; 30(7): 934-945, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35903524

RESUMO

Cardiovascular diseases are a major cause of mortality, and vascular injury, a common pathological basis of cardiovascular disease, is deeply correlated with macrophage apoptosis and inflammatory response. Genistein, a type of phytoestrogen, exerts cardiovascular protective activities, but the underlying mechanism has not been fully elucidated. In this study, RAW264.7 cells were treated with genistein, lipopolysaccharide (LPS), nuclear factor-kappa B (NF-κB) inhibitor, and/or protein kinase B (AKT) agonist to determine the role of genistein in apoptosis and inflammation in LPS-stimulated cells. Simultaneously, high fat diet-fed C57BL/6 mice were administered genistein to evaluate the function of genistein on LPS-induced cardiovascular injury mouse model. Here, we demonstrated that LPS obviously increased apoptosis resistance and inflammatory response of macrophages by promoting miR-21 expression, and miR-21 downregulated tumor necrosis factor-α-induced protein 8-like 2 (TIPE2) expression by targeting the coding region. Genistein reduced miR-21 expression by inhibiting NF-κB, then blocked toll-like receptor 4 (TLR4) pathway and AKT phosphorylation dependent on TIPE2, resulting in inhibition of LPS. Our research suggests that miR-21/TIPE2 pathway is involved in M1 macrophage apoptosis and inflammatory response, and genistein inhibits the progression of LPS-induced cardiovascular injury at the epigenetic level via regulating the promoter region of Vmp1 by NF-κB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA