Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 617
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38805027

RESUMO

Strain S30A2T, isolated from the acid mine drainage sediment of Mengzi Copper Mine, Yunnan, is proposed to represent a novel species of the sulphur-oxidizing genus Acidithiobacillus. Cells were Gram-stain-negative, non-endospore forming, highly motile with one or two monopolar flagella and rod-shaped. The strain was mesophilic, growing at 30-50 °C (optimum, 38 °C), acidophilic, growing at pH 2.0-4.5 (optimum, pH 2.5), and tolerant of 0-4 % (w/v; 684 mol l-1) NaCl. The 16S rRNA gene-based sequence analysis showed that strain S30A2T belongs to the genus Acidithiobacillus and shows the largest similarity of 96.6 % to the type strain Acidithiobacillus caldus KUT. The genomic DNA G+C content of strain S30A2T was 59.25 mol%. The average nucleotide identity ANIb and ANIm values between strain S30A2T and A. caldus KUT were 70.95 and 89.78 %, respectively and the digital DNA-DNA hybridization value was 24.9 %. Strain S30A2T was strictly aerobic and could utilize elementary sulphur and tetrathionate to support chemolithotrophic growth. The major cellular fatty acid of S30A2T was C19 : 1ω7c. The respiratory quinones were ubiquinone-8 and ubiquinone-7. Based upon its phylogenetic, genetic, phenotypic, physiologic and chemotaxonomic characteristics, strain S30A2T is considered to represent a novel species of the genus Acidithiobacillus, for which the name Acidithiobacillus acidisediminis sp. nov. is proposed. The type strain is S30A2T (=CGMCC 1.17059T=KCTC 72580T).


Assuntos
Acidithiobacillus , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Sedimentos Geológicos , Mineração , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Enxofre , RNA Ribossômico 16S/genética , Enxofre/metabolismo , DNA Bacteriano/genética , Ácidos Graxos/análise , Sedimentos Geológicos/microbiologia , Acidithiobacillus/classificação , Acidithiobacillus/genética , Acidithiobacillus/isolamento & purificação , China , Oxirredução , Crescimento Quimioautotrófico , Ubiquinona , Cobre/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38602172

RESUMO

A polyphasic taxonomic study was carried out on strain ES2T, isolated from sediment of a wetland created to remediate acid drainage from a coal mine. The rod-shaped bacterium formed yellow/orange pigmented colonies and produced the pigment flexirubin. The 16S rRNA gene sequence results assigned the strain to Chryseobacterium, with 98.9 and 98.3 % similarity to Chryseobacterium vietnamense and Chryseobacterium cucumeris, respectively. Computation of the average nucleotide identity and digital DNA-DNA hybridization values with the closest phylogenetic neighbours of ES2T revealed genetic differences at the species level, which were further substantiated by differences in several physiological characteristics. The dominant fatty acids of strain ES2T were iso-C15 : 0, iso-C17 : 1 ω9c, iso C17 : 0 3-OH, and iso-C15 : 0 2-OH. The DNA G+C content was 35.5 mol%. The major polar lipid was phosphatidylethanolamine while menaquinone-6 was the only menaquinone found. This bacterium has been previously shown to possess metallophore activity towards rare earth elements, and based on genome sequencing, possesses all required genes for siderophore production/activity, possibly identifying the source of this unique ability. On the basis of the results obtained here, this bacterium is assigned to the genus Chryseobacterium as representing a new species with the name Chryseobacterium metallicongregator sp. nov., type strain ES2T (=NRRL B-65679T=KCTC 102120T).


Assuntos
Chryseobacterium , Ácidos Graxos , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Vitamina K 2 , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA
3.
Environ Sci Technol ; 58(17): 7357-7366, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38568220

RESUMO

Although sulfur cycling in acid mine drainage (AMD)-contaminated rice paddy soils is critical to understanding and mitigating the environmental consequences of AMD, potential sources and transformations of organosulfur compounds in such soils are poorly understood. We used sulfur K-edge X-ray absorption near edge structure (XANES) spectroscopy to quantify organosulfur compounds in paddy soils from five AMD-contaminated sites and one AMD-uncontaminated reference site near the Dabaoshan sulfide mining area in South China. We also determined the sulfur stable isotope compositions of water-soluble sulfate (δ34SWS), adsorbed sulfate (δ34SAS), fulvic acid sulfur (δ34SFAS), and humic acid sulfur (δ34SHAS) in these samples. Organosulfate was the dominant functional group in humic acid sulfur (HAS) in both AMD-contaminated (46%) and AMD-uncontaminated paddy soils (42%). Thiol/organic monosulfide contributed a significantly lower proportion of HAS in AMD-contaminated paddy soils (8%) compared to that in AMD-uncontaminated paddy soils (21%). Within contaminated soils, the concentration of thiol/organic monosulfide was positively correlated with cation exchange capacity (CEC), moisture content (MC), and total Fe (TFe). δ34SFAS ranged from -6.3 to 2.7‰, similar to δ34SWS (-6.9 to 8.9‰), indicating that fulvic acid sulfur (FAS) was mainly derived from biogenic S-bearing organic compounds produced by assimilatory sulfate reduction. δ34SHAS (-11.0 to -1.6‰) were more negative compared to δ34SWS, indicating that dissimilatory sulfate reduction and abiotic sulfurization of organic matter were the main processes in the formation of HAS.


Assuntos
Mineração , Oryza , Poluentes do Solo , Solo , Solo/química , Oryza/química , Substâncias Húmicas , Enxofre , Compostos de Enxofre
4.
Environ Sci Technol ; 58(16): 7176-7185, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38606801

RESUMO

Hydrous ferric arsenate (HFA) is a common thermodynamically metastable phase in acid mine drainage (AMD). However, little is known regarding the structural forms and transformation mechanism of HFA. We investigated the local atomic structures and the crystallization transformation of HFA at various Fe(III)/As(V) ratios (2, 1, 0.5, 0.33, and 0.25) in acidic solutions (pH 1.2 and 1.8). The results show that the Fe(III)/As(V) in HFA decreases with decreasing initial Fe(III)/As(V) at acidic pHs. The degree of protonation of As(V) in HFA increases with increasing As(V) concentrations. The Fe K-edge extended X-ray absorption fine structure and X-ray absorption near-edge structure results reveal that each FeO6 is linked to more than two AsO4 in HFA precipitated at Fe(III)/As(V) < 1. Furthermore, the formation of scorodite (FeAsO4·2H2O) is greatly accelerated by decreasing the initial Fe(III)/As(V). The release of As(V) from HFA is observed during its crystallization transformation process to scorodite at Fe(III)/As(V) < 1, which is different from that at Fe(III)/As(V) ≥ 1. Scanning electron microscopy results show that Oswald ripening is responsible for the coarsening of scorodite regardless of the initial Fe(III)/As(V) or pH. Moreover, the formation of crystalline ferric dihydrogen arsenate as an intermediate phase at Fe(III)/As(V) < 1 is responsible for the enhanced transformation rate from HFA to scorodite. This work provides new insights into the local atomic structure of HFA and its crystallization transformation that may occur in AMD and has important implications for arsenic geochemical cycling.

5.
Environ Res ; 252(Pt 4): 119086, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723986

RESUMO

Uncontrolled coal mining using non-scientific methods has presented a major threat to the quality of environment, particularly the water resources in eastern himalayan sub-region of India. Water bodies in the vicinity of mining areas are contaminated by acid mine drainage (AMD) that is released into streams and rivers. This study attempted to assess the impact of AMD, deciphering hydrogeochemical processes, seasonal fluctuations, and stable isotope features of water bodies flowing through and around coal mining areas. Self-organizing maps (SOMs) used to separate and categorize AMD, AMD-impacted and non-AMD impacted water from the different study locations for two sampling seasons revealed four clusters (C), with C1 and C2 impacted by AMD, C3 and C4 showing negligible to no impact of AMD. AMD impacted water was SO42- - Mg2+- Ca2+ hydrochemical type with sulphide oxidation and evaporation dominating water chemistry, followed by silicate weathering during both the sampling seasons. Water with negligible-to-no AMD-impact was Mg2+- Ca2+- SO42- to Ca2+ - HCO3- to mixed hydrochemical type with rock weathering and dissolution, followed by ion exchange as major factors controlling water chemistry during both the sampling seasons. Most of physicochemical parameters of C1 and C2 exceeded the prescribed limits, whereas in C3 and C4 water samples, parameters were found within the prescribed limits. Stable isotopes of hydrogen (δ2H) and oxygen (δ18O) during post-monsoon (PoM) varied between -41.04 ‰ and -29.98 ‰, and -6.60 ‰ to -3.94 ‰; and during pre-monsoon (PrM) varied between -58.18 ‰ and - 33.76 ‰ and -8.60 ‰ to -5.46 ‰. Deuterium excess (d-excess) ranged between 1.57 ‰ and 12.47 ‰ during PoM and 5.70 ‰ to 15.17 ‰ during PrM season. The stable isotopes analysis revealed that evaporation, mineral dissolution and mixing with rainwater are the key factors in study area.


Assuntos
Minas de Carvão , Monitoramento Ambiental , Isótopos de Oxigênio , Estações do Ano , Índia , Isótopos de Oxigênio/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Deutério/análise , Rios/química
6.
J Environ Manage ; 351: 119943, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38169263

RESUMO

Acid mine drainage (AMD) is recognized as a major environmental challenge in the Western United States, particularly in Colorado, leading to extreme subsurface contamination issue. Given Colorado's arid climate and dependence on groundwater, an accurate assessment of AMD-induced contamination is deemed crucial. While in past, machine learning (ML)-based inversion algorithms were used to reconstruct ground electrical properties (GEP) such as relative dielectric permittivity (RDP) from ground penetrating radar (GPR) data for contamination assessment, their inherent non-linear nature can introduce significant uncertainty and non-uniqueness into the reconstructed models. This is a challenge that traditional ML methods are not explicitly designed to address. In this study, a probabilistic hybrid technique has been introduced that combines the DeepLabv3+ architecture-based deep convolutional neural network (DCNN) with an ensemble prediction-based Monte Carlo (MC) dropout method. Different MC dropout rates (1%, 5%, and 10%) were initially evaluated using 1D and 2D synthetic GPR data for accurate and reliable RDP model prediction. The optimal rate was chosen based on minimal prediction uncertainty and the closest alignment of the mean or median model with the true RDP model. Notably, with the optimal MC dropout rate, prediction accuracy of over 95% for the 1D and 2D cases was achieved. Motivated by these results, the hybrid technique was applied to field GPR data collected over an AMD-impacted wetland near Silverton, Colorado. The field results underscored the hybrid technique's ability to predict an accurate subsurface RDP distribution for estimating the spatial extent of AMD-induced contamination. Notably, this technique not only provides a precise assessment of subsurface contamination but also ensures consistent interpretations of subsurface condition by different environmentalists examining the same GPR data. In conclusion, the hybrid technique presents a promising avenue for future environmental studies in regions affected by AMD or other contaminants that alter the natural distribution of GEP.


Assuntos
Água Subterrânea , Áreas Alagadas , Colorado , Monitoramento Ambiental/métodos , Mineração
7.
Environ Geochem Health ; 46(2): 60, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280088

RESUMO

Acid mine drainage (AMD) has resulted in significant risks to both human health and the environment of the Han River watershed. In this study, water and sediment samples from typical mine adits were selected to investigate the hydrogeochemical characteristics and assess the environmental impacts of AMD. The interactions between coexisting chemical factors, geochemical processes in the mine adit, and the causes of AMD formation are discussed based on statistical analysis, mineralogical analysis, and geochemical modeling. The results showed that the hydrochemical types of AMD consisted of SO4-Ca-Mg, SO4-Ca, and SO4-Mg, with low pH and extremely high concentrations of Fe and SO42-. The release behaviors of most heavy metals are controlled by the oxidation of sulfide minerals (mainly pyrite) and the dissolution/precipitation of secondary minerals. Along the AMD pathway in the adit, the species of Fe-hydroxy secondary minerals tend to initially increase and later decrease. The inverse model results indicated that (1) oxidative dissolution of sulfide minerals, (2) interconversion of Fe-hydroxy secondary minerals, (3) precipitation of gypsum, and (4) neutralization by calcite are the main geochemical reactions in the adit, and chlorite might be the major neutralizing mineral of AMD with calcite. Furthermore, there were two sources of AMD in abandoned mine adits: oxidation of pyrite within the adits and infiltration of AMD from the overlying waste rock dumps. The findings can provide deeper insight into hydrogeochemical processes and the formation of AMD contamination produced in abandoned mine adits under similar mining and hydrogeological conditions.


Assuntos
Ferro , Poluentes Químicos da Água , Humanos , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Sulfetos/análise , Minerais/análise , Rios , Carbonato de Cálcio/análise
8.
Environ Monit Assess ; 196(4): 332, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429461

RESUMO

Machine learning was used to provide data for further evaluation of potential extraction of octathiocane (S8), a commercially useful by-product, from Acid Mine Drainage (AMD) by predicting sulphate levels in an AMD water quality dataset. Individual ML regressor models, namely: Linear Regression (LR), Least Absolute Shrinkage and Selection Operator (LASSO), Ridge (RD), Elastic Net (EN), K-Nearest Neighbours (KNN), Support Vector Regression (SVR), Decision Tree (DT), Extreme Gradient Boosting (XGBoost), Random Forest (RF), Multi-Layer Perceptron Artificial Neural Network (MLP) and Stacking Ensemble (SE-ML) combinations of these models were successfully used to predict sulphate levels. A SE-ML regressor trained on untreated AMD which stacked seven of the best-performing individual models and fed them to a LR meta-learner model was found to be the best-performing model with a Mean Squared Error (MSE) of 0.000011, Mean Absolute Error (MAE) of 0.002617 and R2 of 0.9997. Temperature (°C), Total Dissolved Solids (mg/L) and, importantly, iron (mg/L) were highly correlated to sulphate (mg/L) with iron showing a strong positive linear correlation that indicated dissolved products from pyrite oxidation. Ensemble learning (bagging, boosting and stacking) outperformed individual methods due to their combined predictive accuracies. Surprisingly, when comparing SE-ML that combined all models with SE-ML that combined only the best-performing models, there was only a slight difference in model accuracies which indicated that including bad-performing models in the stack had no adverse effect on its predictive performance.


Assuntos
Monitoramento Ambiental , Epicloroidrina , Ferro , Aprendizado de Máquina , Sulfatos
9.
Bull Environ Contam Toxicol ; 112(2): 33, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38342847

RESUMO

Abundant iron and sulfate resources are present in acid mine drainage. The synthesis of schwertmannite from AMD rich in iron and sulfate could achieve the dual objectives of resource recovery and wastewater purification. However, schwertmannite cannot emerge spontaneously due to the Gibbs free energy greater than 0. This results in the iron and sulfate in AMD only being able to use the energy generated by oxidation in the coupling reaction to promote the formation of minerals, but this only achieved partial mineralization, which limited the remediation of AMD through mineralization. In order to clarify the mechanism of iron and sulfate removal by the formation of schwertmannite in AMD, kinetic and thermodynamic parameters were crucial. This work used H2O2 oxidation of Fe2+ as a coupling reaction to promote the formation of schwertmannite from 64.4% of iron and 15.7% of sulfate in AMD, and determined that 99.7% of the iron and 89.9% of sulfate were immobilized in the schwertmannite structural, and only a small fraction was immobilized by the adsorption of schwertmannite, both of which were consistent with second-order kinetics models. The thermodynamic data suggested that reducing the concentration of excess sulfate ions or increasing the energy of the system may allow more iron and sulfate to be immobilized by forming schwertmannite. Experimental verification using the reaction of potassium bicarbonate with the acidity in solution to increase the energy in the system showed that the addition of potassium bicarbonate effectively promoted the formation of schwertmannite from Fe3+ and SO42-. It provided a theoretical and research basis for the direct synthesis of schwertmannite from Fe3+ and SO42- rich AMD for the removal of contaminants from water and the recovery of valuable resources.


Assuntos
Bicarbonatos , Compostos de Ferro , Ferro , Compostos de Potássio , Adsorção , Peróxido de Hidrogênio , Compostos de Ferro/química , Oxirredução , Sulfatos/química , Concentração de Íons de Hidrogênio
10.
Appl Environ Microbiol ; 89(2): e0197322, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36656039

RESUMO

Viruses are widespread in various ecosystems, and they play important roles in regulating the microbial community via host-virus interactions. Recently, metagenomic studies showed that there are extremely diverse viruses in different environments from the ocean to the human gut, but the influences of viral communities on microbial communities are poorly understood, especially in extreme environments. Here, we used metagenomics to characterize microbial communities and viral communities in acid mine drainage (AMD) and evaluated how viruses shape microbial community constrained by the harsh environments. Our results showed that AMD viral communities are significantly associated with the microbial communities, and viral diversity has positive correlations with microbial diversity. Viral community explained more variations of microbial community composition than environmental factors in AMD of a polymetallic mine. Moreover, we found that viruses harboring adaptive genes regulate a relative abundance of hosts under the modulation of environmental factors, such as pH. We also observed that viral diversity has significant correlations with the global properties of microbial cooccurrence networks, such as modularity. In addition, the results of null modeling analyses revealed that viruses significantly affect microbial community phylogeny and play important roles in regulating ecological processes of community assembly, such as dispersal limitation and homogenous dispersal. Together, these results revealed that AMD viruses are critical forces driving microbial network and community assembly via host-virus interactions. IMPORTANCE Viruses as mobile genetic elements play critical roles in the adaptive evolution of their hosts in extreme environments. However, how viruses further influence microbial community structure and assembly is still unclear. A recent metagenomic study observed diverse viruses unexplored in acid mine drainage, revealing the associations between the viral community and environmental factors. Here, we showed that viruses together with environmental factors can constrain the relative abundance of host and microbial community assembly in AMD of copper mines and polymetallic mines. Our results highlight the importance of viruses in shaping the microbial community from the individual host level to the community level.


Assuntos
Microbiota , Vírus , Humanos , Bactérias/genética , Mineração , Microbiota/genética , Consórcios Microbianos , Vírus/genética
11.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37990983

RESUMO

A polyphasic taxonomic study was carried out on strain TSed Te1T, isolated from sediment of a stream contaminated with acid drainage from a coal mine. The bacterium forms pink-pigmented colonies and has a rod-coccus growth cycle, which also includes some coryneform arrangements. This bacterium is capable of growing in the presence of up to 750 µg ml-1 tellurite and 5000 µg ml-1 selenite, reducing each to elemental form. Nearly complete 16S rRNA gene sequence analysis associated the strain with Gordonia, with 99.5 and 99.3 % similarity to Gordonia namibiensis and Gordonia rubripertincta, respectively. Computation of the average nucleotide identity and digital DNA-DNA hybridization comparisons with the closest phylogenetic neighbour of TSed Te1T revealed genetic differences at the species level, which were further substantiated by differences in several physiological characteristics. The dominant fatty acids were C16 : 0, C18 : 1, C16 : 1 and tuberculostearic acid. The DNA G+C content was 67.6 mol%. Major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside, while MK-9(H2) was the only menaquinone found. Mycolic acids of C56-C60 were present. Whole-cell hydrolysates contained meso-diaminopimelic acid along with arabinose and galactose as the major cell-wall sugars. On the basis of the results obtained in this study, the bacterium was assigned to the genus Gordonia and represents a new species with the name Gordonia metallireducens sp. nov. The type strain is TSed Te1T (=NRRL B-65678T=DSM 114093T).


Assuntos
Ácidos Graxos , Bactéria Gordonia , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Rios , DNA Bacteriano/genética , Análise de Sequência de DNA , Composição de Bases , Técnicas de Tipagem Bacteriana , Vitamina K 2
12.
Extremophiles ; 27(1): 5, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36800123

RESUMO

Xichú River is a Mexican river located in an environmental preservation area called Sierra Gorda Biosphere Reserve. Around it, there are tons of abandoned mine residues that represent a serious environmental issue. Sediment samples of Xichú River, visibly contaminated by flows of an acid mine drainage, were collected to study their prokaryotic diversity. The study was based on both cultural and non-cultural approaches. The analysis of total 16S rRNA gene by MiSEQ sequencing allowed to identify 182 Operational Taxonomic Units. The community was dominated by Pseudomonadota, Bacteroidota, "Desulfobacterota" and Acidobacteriota (27, 21, 19 and 16%, respectively). Different culture conditions were used focusing on the isolation of anaerobic bacteria, including sulfate-reducing bacteria (SRB) and arsenate-reducing bacteria (ARB). Finally, 16 strains were isolated. Among them, 12 were phylogenetically identified, with two strains being SRB, belonging to the genus Solidesulfovibrio ("Desulfobacterota"), while ten are ARB belonging to the genera Azospira (Pseudomonadota), Peribacillus (Bacillota), Raineyella and Propionicimonas (Actinomycetota). The isolate representative of Raineyella genus probably corresponds to a new species, which, besides arsenate, also reduces nitrate, nitrite, and fumarate.


Assuntos
Arseniatos , Desulfovibrio , RNA Ribossômico 16S/genética , Rios/microbiologia , México , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Bactérias/genética , Ácidos
13.
Appl Geochem ; 157: 1-17, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37941778

RESUMO

Contamination from acid mine drainage affects ecosystems and usability of groundwater for domestic and municipal purposes. The Captain Jack Superfund Site outside of Ward, Boulder County, Colorado, USA, hosts a draining mine adit that was remediated through emplacement of a hydraulic bulkhead to preclude acid mine drainage from entering nearby Lefthand Creek. During impoundment of water within the mine workings in 2020, a diverse and novel dataset of stable isotopes of water, sulfate, and carbon (δ2H, δ18OH2O, δ18OSO4, δ34S, δ13CDIC), rare earth elements, and environmental tracers (noble gases and tritium) were collected to understand groundwater recharge and mixing, mechanisms of sulfide oxidation and water-rock interaction, and the influence of remediation on the hydrologic and geochemical system. Water isotopes indicate that groundwater distal from the mine workings has seasonally variable recharge sources whereas water within the workings has a distinctive composition with minimal temporal variability. Sulfate isotopes indicate that sulfide oxidation occurs both within the mine workings and in adjacent igneous dikes, and that sulfide oxidation may occur under suboxic conditions with ferric iron as the oxidant. Carbon isotopes track the neutralization of acidic waters and the carbon mass budget of the system. Rare earth elements corroborate stable isotopes in indicating groundwater compartmentalization, and additionally illustrate enhanced mineral weathering in the mine workings. Environmental tracers indicate mixing of modern and pre-modern groundwater and inform timelines that active remediation may be needed. Together these datasets provide a useful template for similar investigations of abandoned mine sites where physical mixing processes, sources of solute loading, or remediation timeframes are of importance.

14.
Int J Mol Sci ; 24(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38003680

RESUMO

In this work, the plasmonic and photothermal effects of CuS nanoparticles biosynthesized from acid mine drainage (AMD) were studied. CuS were formed by delivering the H2S generated by a sulfidogenic bioreactor to an off-line system containing the AMD. The precipitates collected after contact for an hour were washed and physico-chemically characterized, showing a nanoparticle with a mean diameter of 33 nm, crystalline nature and semiconductor behavior with a direct band gap of 2.2 eV. Moreover, the CuS nanoparticles exhibited localized surface plasmonic resonance in the near infrared range, with a high absorption band centered at 973 nm of wavelength, which allowed an increase in the temperature of the surrounding media under irradiation. Finally, the cytotoxicity of the CuS nanoparticles as well as their potential use as part of drug delivery platforms were investigated.


Assuntos
Cobre , Nanopartículas , Cobre/química , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Temperatura , Fototerapia
15.
J Environ Manage ; 330: 117148, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36584458

RESUMO

Bioremediation techniques utilizing sulfate-reducing bacteria (SRB) for acid mine drainage (AMD) treatment have attracted growing attention in recent years, yet substrate bioavailability for SRB is a key factor influencing treatment effectiveness and long-term stability. This study investigated the effects of external organic substrates, including four complex organic wastes (i.e., sugarcane bagasse, straw compost, shrimp shell (SS), and crab shell (CS)) and a small-molecule organic acid (i.e., propionate), on AMD removal performance and associated microbial communities during the 30-day operation of sulfate-reducing microcosms. The results showed that the pH values increased in all five microcosms, while CS exhibited the highest neutralization ability and a maximum alkalinity generation of 1507 mg/L (as CaCO3). Sulfate reduction was more effective in SS and CS microcosms, with sulfate removal efficiencies of 95.6% and 86.0%, respectively. All sulfate-reducing microcosms could remove heavy metals to different degrees, with the highest removal rate of >99.0% observed for aluminum. The removal efficiency of manganese, the most recalcitrant metal, was the highest (96%) in the CS microcosm. Correspondingly, SRB was more abundant in the CS and SS microcosms as revealed by sequencing analysis, while Desulfotomaculum was the dominant SRB in the CS microcosm, accounting for 10.8% of total effective bacterial sequences. Higher abundances of functional genes involved in fermentation and sulfur cycle were identified in CS and SS microcosms. This study suggests that complex organic wastes such as CS and SS could create and maintain preferable micro-environments for active growth and metabolism of functional microorganisms, thus offering a cost-efficient, stable, and environmental-friendly solution for AMD treatment and management.


Assuntos
Desulfovibrio , Metais Pesados , Microbiota , Saccharum , Celulose , Sulfatos/química , Metais Pesados/química , Ácidos , Desulfovibrio/metabolismo , Reatores Biológicos/microbiologia
16.
J Environ Manage ; 334: 117517, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801678

RESUMO

Long-term heavy metals accumulation caused by acid mine drainage (AMD) irrigation in paddy soils poses a severe threat to environmental health. However, the soil adsorption mechanisms under AMD flooding remain unclear. This study provides key insights into the fate of heavy metals in soil, particularly the retention and mobility mechanisms of Cu (copper) and Cd (cadmium) after AMD flooding. The migration and fate of Cu and Cd in uncontaminated paddy soils treated by AMD in Dabaoshan Mining area was investigated via column leaching experiments in the laboratory. The maximum adsorption capacities of Cu (658.04 mg kg-1) and Cd (335.20 mg kg-1) cations were predicted and the breakthrough curves were fitted using the Thomas and Yoon-Nelson models. Our findings demonstrated that Cd was more mobile than Cu. Furthermore, the soil had a greater adsorption capacity for Cu than Cd. Tessier's five-step extraction method was used to determine Cu and Cd fractions in leached soils at different depths and times. After AMD leaching, the relative and absolute concentrations of the easily mobile forms were all increased at different soil depths, thus increasing the potential risk to the groundwater system. Mineralogical characterization of the soil indicated that AMD flooding leads to the formation of mackinawite. This study provides insights into the distribution and transportation processes of soil Cu and Cd and their ecological effects under AMD flooding, as well as a theoretical basis for the establishment of corresponding geochemical evolution models and environmental governance in mining areas.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio , Conservação dos Recursos Naturais , Política Ambiental , Metais Pesados/análise , Solo , Poluentes do Solo/análise , China
17.
J Environ Manage ; 345: 118765, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37604103

RESUMO

The aim of this work was to evaluate the feasibility of the use of different industrial and agricultural wastes as reactive materials in Permeable Reactive Barriers (PRB) for Acid Mine Drainage (AMD) remediation. Sugar foam (SF), paper mill sludge (PMS), drinking water sludge (DWS) and olive mill waste (OMW) were evaluated in terms of pH neutralization and metal removal from AMD. Laboratory batch tests and continuous pilot scale up-flow columns containing 82% of Volcanic Slag (VS), as porous fill material, and 18% w/w of one of the industrial and agricultural wastes previously indicated, were tested. From the batch tests it was observed that the reactive material presenting the best results were the SF and the PMS. The results obtained in all the PRB were accurately described by a pseudo-first order model, presenting coefficient of determination higher than 0.96 in all the cases. During the continuous operation of the PRB, the porosity and hydraulic retention time (HRT) of most of the up-flow columns strongly decreased due to chemical precipitation and biofilm growth. The SF presented a significant number of fine particles that were washed out by the liquid flow, generating an effluent with very high total suspended solid concentration. Despite SF was the material with the highest alkalinity potential, the reduction of the HRT limited its neutralization and metal removal capacity. PMS and DWS presented the best pollutant removal yields in the continuous operation of the PRB, ranging from 55 to 99% and 55-95% (except in the case of the Mn), respectively. These results allowed the metal removal from the AMD. Additionally, these wastes presented very good biological sulphate reduction. Based on these results, the use of PMS and DWS as reactive material in PRB would allow to simultaneously valorise the industrial waste, which is very interesting within the circular economy framework, and to remove metals from the AMD by means of a low-cost and environmentally sustainable procedure.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Esgotos , Metais , Mineração , Resíduos Industriais/análise , Ácidos , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
18.
Environ Geochem Health ; 45(3): 771-785, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35312930

RESUMO

Combining environmental isotope analysis with principal component analysis can be an effective method to discriminate the inflows and sources of contamination in mining-affected watersheds. This paper presents a field-scale study conducted at an acid mine drainage (AMD)-contaminated site adjacent to a pyrite mine in South China. Samples of surface water and groundwater were collected to investigate transport in the vadose zone using stable isotopes of oxygen (δ18O) and hydrogen (δD) as environmental tracers. Principal component analysis of hydrogeochemical data was used to identify the probable sources of heavy metals in the AMD. The heavy metal pollution index (HPI) was applied to evaluate the pollution status of heavy metals in the groundwater. The groundwater associated with the Datai reservoir was recharged by atmospheric precipitation and surface water. On the side near the AMD pond, the groundwater was significantly affected by the soluble metals produced by pyrite oxidation. The concentrations of some metals (Al, Mn, and Pb) in all of the samples exceed the desirable limits prescribed by the World Health Organization (Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva, 2011). Among them, the concentration of Al is more than 30,000 times higher than the desirable limits prescribed by the World Health Organization (2011), and the concentration of Mn is more than 3000 times higher. The HPI values based on these heavy metal concentrations were found to be 10-1000 times higher than the critical pollution index value of 100. These findings provide a reference and guidance for research on the migration and evolution of heavy metals in vadose zone water in AMD-contaminated areas.


Assuntos
Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Qualidade da Água , Metais Pesados/análise , Isótopos/análise
19.
Artigo em Inglês | MEDLINE | ID: mdl-37085964

RESUMO

Sulfate-rich effluents have been successfully treated in anaerobic reactors using sulfate-reducing bacteria (SRB). Many authors have demonstrated that these systems require nitrogen and phosphorous supplementation to achieve high sulfate removal rates. However, the resource ratio theory assumes that some species can be dominant according to the nutritional relations used or even without external nutrient supplementation. Thus, this study evaluated the SRB communities in batch reactors without external nitrogen and phosphorus sources based on most probable number (MPN) quantification, denaturing gradient gel electrophoresis (DGGE) analyses and sequencing. The sulfate and chemical oxygen demand (COD) removal and kinetic parameters were also determined. After 100 days of operation, the sulfate and COD removal achieved 71.8 ± 10% and 86.5 ± 10%, respectively. The SRB population increased from 8.106 to 4 × 1012 MPN 100 mL-1, and the richness of SRB bands was much higher at the end of the experiment compared to the inoculum. In addition, the sequenced bands from SRB-DGGE showed similarities to Desulfacinum infernum, Desulfobulbus sp, Syntrophobacter and Desulfomicrobium aestuarii-related sequences. Therefore, biological treatment of acid mine drainage wastewater was effective in the absence of nutrients, lowering costs and providing high sulfate removal efficiency.


Assuntos
Nitrogênio , Sulfatos , Sulfatos/química , Anaerobiose , Reatores Biológicos/microbiologia , Águas Residuárias , Fósforo
20.
Environ Geochem Health ; 45(12): 9855-9873, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37864130

RESUMO

Acid mine drainage (AMD) is generally outlined as one of the largest environmental concerns, characterized by very low pH value of mine waste, heavy metals and high sulphate content. This extremely hostile environment reduces plant ability to develop and grow. Present study focuses on a silver birch (Betula pendula Roth), a pioneer species that grows on an extremely hostile gold mine waste, to investigate the bioaccumulation of rare metals (thallium (Tl) and indium (In)), as well as nine other more common heavy metals (bismuth (Bi), cadmium (Cd), cobalt (Co), copper (Cu), lead (Pb), manganese (Mn), nickel (Ni), silver (Ag) and zinc (Zn)), and to asses phytoextraction and phytostabilization potential of silver birch. Additionally, parameters determining AMD process and overall contamination (pH, electrical conductivity (EC), sulphates (SO42-), arsenic (As), iron (Fe), oxidation-reduction potential (ORP), turbidity, dissolved oxygen (DO), total dissolved solids (TDS), acidity, hardness, X-ray diffraction (XRD) and radioactivity) were determined in mine waste and drainage water samples. To assess the heavy metals bioaccumulation and mine waste status, statistical geochemical indices were determined: bioaccumulation factor (BCF), pollution load index (PLI), geochemical abundance index (GAI) and exposure index (EI). The results show that silver birch bioaccumulates the essential elements Cu, Ni, Mn and Zn, and the nonessential elements Tl (average BCF = 24.99), In (average BC = 23.01) and Pb (average BCF = 0.84). Investigated mine waste was enriched by Bi, Ag and Cd according to positive values of GAI index. Present research provides a novel insight into bioaccumulation of nonessential heavy metals in silver birches who grow on the extremely hostile mine waste, and they exhibit significant phytoremediation potential.


Assuntos
Betula , Metais Pesados , Ouro , Cádmio , Bioacumulação , Chumbo , Metais Pesados/análise , Zinco , Manganês , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA