RESUMO
Mechanical deformation of polymer networks causes molecular-level motion and bond scission that ultimately lead to material failure. Mitigating this strain-induced loss in mechanical integrity is a significant challenge, especially in the development of active and shape-memory materials. We report the additive manufacturing of mechanical metamaterials made with a protein-based polymer that undergo a unique stiffening and strengthening behavior after shape recovery cycles. We utilize a bovine serum albumin-based polymer and show that cyclic tension and recovery experiments on the neat resin lead to a ~60% increase in the strength and stiffness of the material. This is attributed to the release of stored length in the protein mechanophores during plastic deformation that is preserved after the recovery cycle, thereby leading to a "strain learning" behavior. We perform compression experiments on three-dimensionally printed lattice metamaterials made from this protein-based polymer and find that, in certain lattices, the strain learning effect is not only preserved but amplified, causing up to a 2.5× increase in the stiffness of the recovered metamaterial. These protein-polymer strain learning metamaterials offer a unique platform for materials that can autonomously remodel after being deformed, mimicking the remodeling processes that occur in natural materials.
Assuntos
Soroalbumina Bovina , Soroalbumina Bovina/química , Estresse Mecânico , Animais , Polímeros/química , Teste de Materiais , Proteínas/química , Bovinos , Impressão TridimensionalRESUMO
Vat photopolymerization (VP) additive manufacturing enables fabrication of complex 3D objects by using light to selectively cure a liquid resin. Developed in the 1980s, this technique initially had few practical applications due to limitations in print speed and final part material properties. In the four decades since the inception of VP, the field has matured substantially due to simultaneous advances in light delivery, interface design, and materials chemistry. Today, VP materials are used in a variety of practical applications and are produced at industrial scale. In this perspective, we trace the developments that enabled this printing revolution by focusing on the enabling themes of light, interfaces, and materials. We focus on these fundamentals as they relate to continuous liquid interface production (CLIP), but provide context for the broader VP field. We identify the fundamental physics of the printing process and the key breakthroughs that have enabled faster and higher-resolution printing, as well as production of better materials. We show examples of how in situ print process monitoring methods such as optical coherence tomography can drastically improve our understanding of the print process. Finally, we highlight areas of recent development such as multimaterial printing and inorganic material printing that represent the next frontiers in VP methods.
RESUMO
Shear bands frequently appear in lattice architectures subjected to compression, leading to an unstable stress-strain curve and global deformation. This deformation mechanism reduces their energy absorption and loading-bearing capacity and causes the architectures to prioritize mechanical protection of external components at the expense of the entire structure. Here, we leverage the design freedom offered by additive manufacturing and the geometrical relation of dual-phase nanolamellar crystals to fabricate heterogeneous lamellar lattice architectures consisting of body-centered cubic (BCC) and face-centered cubic (FCC) unit cells in alternating lamella. The lamellar lattice demonstrates more than 10 and 9 times higher specific energy absorption and energy absorption efficiency, respectively, compared to the BCC lattice. The drastic improvement arises as the nucleation of shear bands is inhibited by the discrete energy threshold for plastic buckling of adjacent heterogeneous lattice lamella during loading. Despite its lower density than the FCC lattice, the lamellar lattice exhibits significant enhancement in plateau stress and crushing force efficiency, attributed to the strengthening effect induced by simultaneous deformation of unit cells in the BCC lattice lamella and the resulting cushion shielding effect. The design improves the global mechanical properties, making lamellar lattices compare favorably against numerous materials proposed for mechanical protection. Additionally, it provides opportunities to program the local mechanical response, achieving programmable internal protection alongside overall external protection. This work provides a different route to design lattice architecture by combining internal and external dual mechanical protection, enabling a generation of multiple mechanical protectors in aerospace, automotive, and transportation fields.
RESUMO
Ice is emerging as a promising sacrificial material in the rapidly expanding area of advanced manufacturing for creating precise 3D internal geometries. Freeform 3D printing of ice (3D-ICE) can produce microscale ice structures with smooth walls, hierarchical transitions, and curved and overhang features. However, controlling 3D-ICE is challenging due to an incomplete understanding of its complex physics involving heat transfer, fluid dynamics, and phase changes. This work aims to advance our understanding of 3D-ICE physics by combining numerical modeling and experimentation. We developed a 2D thermo-fluidic model to analyze the transition from layered to continuous printing and a 3D thermo-fluidic model for the oblique deposition, which enables curved and overhang geometries. Experiments are conducted and compared with model simulations. We found that high droplet deposition rates enable the continuous deposition mode with a sustained liquid cap on top of the ice, facilitating smooth geometries. The diameter of ice structures is controlled by the droplet deposition frequency. Oblique deposition causes unidirectional spillover of the liquid cap and asymmetric heat transfer at the freeze front, rotating the freeze front. These results provide valuable insights for reproducible 3D-ICE printing that could be applied across various fields, including tissue engineering, microfluidics, and soft robotics.
RESUMO
Additive manufacturing capable of controlling and dynamically modulating structures down to the nanoscopic scale remains challenging. By marrying additive manufacturing with self-assembly, we develop a UV (ultra-violet)-assisted direct ink write approach for on-the-fly modulation of structural color by programming the assembly kinetics through photo-cross-linking. We design a photo-cross-linkable bottlebrush block copolymer solution as a printing ink that exhibits vibrant structural color (i.e., photonic properties) due to the nanoscopic lamellar structures formed post extrusion. By dynamically modulating UV-light irradiance during printing, we can program the color of the printed material to access a broad spectrum of visible light with a single ink while also creating color gradients not previously possible. We unveil the mechanism of this approach using a combination of coarse-grained simulations, rheological measurements, and structural characterizations. Central to the assembly mechanism is the matching of the cross-linking timescale with the assembly timescale, which leads to kinetic trapping of the assembly process that evolves structural color from blue to red driven by solvent evaporation. This strategy of integrating cross-linking chemistry and out-of-equilibrium processing opens an avenue for spatiotemporal control of self-assembled nanostructures during additive manufacturing.
RESUMO
This study demonstrates the use of nanoparticles prepared by a gas aggregation source for fabricating structures by combining laser sintering and ablation. At first, the morphology and optical properties of prepared nanoparticle coatings were characterized. Then, the response of coatings to laser irradiation at different powers or exposure times was studied by in situ time-of-flight mass spectrometry, followed by scanning electron microscopy measurements of the resulting structures. By comparing the numbers of detected Ag ions, that were ablated and desorbed, with changes in morphology after irradiation, the optimum conditions for laser sintering and ablation of Ag nanoparticle coatings were found. As a proof of concept we fabricated micromirrors from sintered metal, microwires from both sintered metal and interconnected nanoparticles, and arbitrary metallic bulky or nanoparticle patterns. Vacuum compatibility and the possibility of fabrication of both metallic and nanoparticle structures in one step predetermines applications of developed method in electronics or sensing.
RESUMO
In laser-based additive manufacturing (AM), porosity and unmelted metal powder are typically considered undesirable and harmful. Nevertheless in this work, precisely controlling laser parameters during printing can intentionally introduce controllable porosity, yielding a porous electrode with enhanced catalytic activity for the oxygen evolution reaction (OER). This study demonstrates that deliberate introduction of porosity, typically considered a defect, leads to improved gas molecule desorption, enhanced mass transfer, and increased catalytically active sites. The optimized P-93% electrode displays superior OER performance with an overpotential of 270 mV at 20 mA cm-2. Furthermore, it exhibits remarkable long-term stability, operating continuously for over 1000 h at 10 mA cm-2 and more than 500 h at 500 mA cm-2. This study not only provides a straightforward and mass-producible method for efficient, binder-free OER catalysts but also, if optimized, underscores the potential of laser-based AM driven defect engineering as a promising strategy for industrial water splitting.
RESUMO
HoloTile is a patented computer generated holography approach with the aim of reducing the speckle noise caused by the overlap of the non-trivial physical extent of the point spread function in Fourier holographic systems from adjacent frequency components. By combining tiling of phase-only of rapidly generated sub-holograms with a PSF-shaping phase profile, each frequency component-or output 'pixel'- in the Fourier domain is shaped to a desired non-overlapping profile. In this paper, we show the high-resolution, speckle-reduced reconstructions that can be achieved with HoloTile, as well as present new HoloTile modalities, including an expanded list of PSF options with new key properties. In addition, we discuss numerous applications for which HoloTile, its rapid hologram generation, and the new PSF options may be an ideal fit, including optical trapping and manipulation of particles, volumetric additive printing, information transfer and quantum communication.
RESUMO
This study focuses on designing and evaluating scaffolds with essential properties for bone regeneration, such as biocompatibility, macroporous geometry, mechanical strength, and magnetic responsiveness. The scaffolds are made using 3D printing with acrylic resin and iron oxides synthesized through solution combustion. Utilizing triply periodic minimal surfaces (TPMS) geometry and mask stereolithography (MSLA) printing, the scaffolds achieve precise geometrical features. The mechanical properties are enhanced through resin curing, and magnetite particles from synthesized nanoparticles and alluvial magnetite are added for magnetic properties. The scaffolds show a balance between stiffness, porosity, and magnetic responsiveness, with maximum compression strength between 4.8 and 9.2 MPa and Young's modulus between 58 and 174 MPa. Magnetic properties such as magnetic coercivity, remanence, and saturation are measured, with the best results from scaffolds containing synthetic iron oxides at 1% weight. The viscosity of the mixtures used for printing is between 350 and 380 mPas, and contact angles between 90° and 110° are achieved. Biocompatibility tests indicate the potential for clinical trials, though further research is needed to understand the impact of magnetic properties on cellular interactions and optimize scaffold design for specific applications. This integrated approach offers a promising avenue for the development of advanced materials capable of promoting enhanced bone regeneration.
Assuntos
Regeneração Óssea , Impressão Tridimensional , Alicerces Teciduais , Alicerces Teciduais/química , Porosidade , Engenharia Tecidual/métodos , Humanos , Materiais Biocompatíveis/química , Compostos Férricos/química , Fenômenos Magnéticos , Animais , MagnetismoRESUMO
3D-printed engineered living materials (ELM) are promising bioproduction platforms for agriculture, biotechnology, sustainable energy, and green technology applications. However, the design of these platforms faces several challenges, such as the processability of these materials into complex form factors and control over their mechanical properties. Herein, ELM are presented as 3D-printed bioreactors with arbitrary shape geometries and tunable mechanical properties (moduli and toughness). Poly(ethylene glycol) diacrylate (PEGDA) is used as the precursor to create polymer networks that encapsulate the microorganisms during the vat photopolymerization process. A major limitation of PEGDA networks is their propensity to swell and fracture when submerged in water. The authors overcame this issue by adding glycerol to the resin formulation to 3D print mechanically tough ELM hydrogels. While polymer concentration affects the modulus and reduces bioproduction, ELM bioreactors still maintain their metabolic activity regardless of polymer concentration. These ELM bioreactors have the potential to be used in different applications for sustainable architecture, food production, and biomedical devices that require different mechanical properties from soft to stiff.
Assuntos
Reatores Biológicos , Polietilenoglicóis , Polimerização , Impressão Tridimensional , Polietilenoglicóis/química , Hidrogéis/química , Polímeros/químicaRESUMO
Semiconductor-based materials utilized in photocatalysts and electrocatalysts present a sophisticated solution for efficient solar energy utilization and bias control, a field extensively explored for its potential in sustainable energy and environmental management. Recently, 3D printing has emerged as a transformative technology, offering rapid, cost-efficient, and highly customizable approaches to designing photocatalysts and electrocatalysts with precise structural control and tailored substrates. The adaptability and precision of printing facilitate seamless integration, loading, and blending of diverse photo(electro)catalytic materials during the printing process, significantly reducing material loss compared to traditional methods. Despite the evident advantages of 3D printing, a comprehensive compendium delineating its application in the realm of photocatalysis and electrocatalysis is conspicuously absent. This paper initiates by delving into the fundamental principles and mechanisms underpinning photocatalysts electrocatalysts and 3D printing. Subsequently, an exhaustive overview of the latest 3D printing techniques, underscoring their pivotal role in shaping the landscape of photocatalysts and electrocatalysts for energy and environmental applications. Furthermore, the paper examines various methodologies for seamlessly incorporating catalysts into 3D printed substrates, elucidating the consequential effects of catalyst deposition on catalytic properties. Finally, the paper thoroughly discusses the challenges that necessitate focused attention and resolution for future advancements in this domain.
RESUMO
Fluorescent probes are an indispensable tool in the realm of bioimaging technologies, providing valuable insights into the assessment of biomaterial integrity and structural properties. However, incorporating fluorophores into scaffolds made from melt electrowriting (MEW) poses a challenge due to the sustained, elevated temperatures that this processing technique requires. In this context, [n]cycloparaphenylenes ([n]CPPs) serve as excellent fluorophores for MEW processing with the additional benefit of customizable emissions profiles with the same excitation wavelength. Three fluorescent blends are used with distinct [n]CPPs with emission wavelengths of either 466, 494, or 533 nm, identifying 0.01 wt% as the preferred concentration. It is discovered that [n]CPPs disperse well within poly(ε-caprolactone) (PCL) and maintain their fluorescence even after a week of continuous heating at 80 °C. The [n]CPP-PCL blends show no cytotoxicity and support counterstaining with commonly used DAPI (Ex/Em: 359 nm/457 nm), rhodamine- (Ex/Em: 542/565 nm), and fluorescein-tagged (Ex/Em: 490/515 nm) phalloidin stains. Using different color [n]CPP-PCL blends, different MEW fibers are sequentially deposited into a semi-woven scaffold and onto a solution electrospun membrane composed of [8]CPP-PCL as a contrasting substrate for the [10]CPP-PCL MEW fibers. In general, [n]CPPs are potent fluorophores for MEW, providing new imaging options for this technology.
RESUMO
Additive manufacturing (AM) of ceramics has significantly contributed to advancements in ceramic fabrication, solving some of the difficulties of conventional ceramic processing and providing additional possibilities for the structure and function of components. However, defects induced by the layer-by-layer approach on which traditional AM techniques are based still constitute a challenge to address. This study presents the volumetric AM of a SiOC ceramic from a preceramic polymer using xolography, a linear volumetric AM process that allows to avoid the staircase effect typical of other vat photopolymerization techniques. Besides optimizing the trade-off between preceramic polymer content and transmittance, a pore generator is introduced to create transient channels for gas release before decomposition of the organic constituents and moieties, resulting in crack-free solid ceramic structures even at low ceramic yield. Formulation optimization alleviated sinking of printed parts during printing and prevented shape distortion. Complex solid and porous ceramic structures with a smooth surface and sharp features are fabricated under the optimized parameters. This work provides a new method for the AM of ceramics at µm/mm scale with high surface quality and large geometry variety in an efficient way, opening the possibility for applications in fields such as micromechanical systems and microelectronic components.
RESUMO
Shaping hard and brittle materials, e.g. cermets, at micrometer resolution has long been known challenging for both mechanical machining and high energy beam based additive manufacturing. Digital light processing (DLP), which features great printing quality and decent precision, unfortunately lacks capability to deal with the popular slurry-typed cermet precursor due to the tremendous optical absorption by its particles. Here, an innovative protocol based on a versatile collapsable matrix is devised to allow high-precision printing of WC-Co cermets on DLP platform. By tuning the external environment, this matrix attenuates composite powders to facilitate photopolymerization at the printing stage, and shrinks to condense green parts prior to thermal sintering. The as-obtained samples by collapsable matrix assisted DLP can reach a relative density of ≈90%, a record-breaking resolution of ≈10 µm, and a microhardness of up to 14.5 GPa. Complex delicate structures, including school emblem, honeycomb, and micro-drill can be directly fabricated, which has never been achieved before. Impressively, the as-obtained micro-drill is able to be directly used in drilling tasks. The above strategy represents a great progress in DLP by enabling shaping strong light attenuating materials at high resolution. Such advantages are ideal for the next generation ceramic-metal composite additive manufacturing.
RESUMO
Three-dimensional (3D) graphene microstructures have the potential to boost performance in high-capacity batteries and ultrasensitive sensors. Numerous techniques have been developed to create such structures; however, the methods typically rely on structural supports, and/or lengthy post-print processing, increasing cost and complexity. Additive manufacturing techniques, such as printing, show promise in overcoming these challenges. This study employs aerosol jet printing for creating 3D graphene microstructures using water as the only solvent and without any post-print processing required. The graphene pillars exhibit conductivity immediately after printing, requiring no high-temperature annealing. Furthermore, these pillars are successfully printed in freestanding configurations at angles below 45° relative to the substrate, showcasing their adaptability for tailored applications. When graphene pillars are added to humidity sensors, the additional surface area does not yield a corresponding increase in sensor performance. However, graphene trusses, which add a parallel conduction path to the sensing surface, are found to improve sensitivity nearly 2×, highlighting the advantages of a topologically suspended circuit construction when adding 3D microstructures to sensing electrodes. Overall, incorporating 3D graphene microstructures to sensor electrodes can provide added sensitivity, and aerosol jet printing is a viable path to realizing these conductive microstructures without any post-print processing.
RESUMO
This work reports a novel 3D printed grid reservoir-integrated mesoporous carbon coordinated silicon oxycarbide hybrid composite (3DP-MPC-SiOC) to establish the zincophile interphase for controlling the dendrite formation. The customized 3D printed grid patterned structure inhibits Zn dendrite growth and achieves long-term stability with reduced voltage polarization due to homogeneous electric field distribution. The hybrid composite consisting of SiOC interpenetrated within carbon constructs a high zinc nucleation interphase, hence promoting uniform Zn2+ deposition and enhancing ionic diffusion with dendrite-free growth and a reduced nucleation energy barrier. As a result, the 3DP-MPC-SiOC@Zn symmetrical cell affords a highly reversible Zn plating/stripping and dendrite-free structure over 198 h with an ultra-low voltage polarization. These inspiring performances endow the 3DP anode with a 3DP-VO cathode as a full battery, which shows a retention capacity of 78.8 mAh g-1 (Coulombic efficiency: 94.04%) at 0.1 A g-1 and a large energy density of 41 Wh kg-1 at a power density of 1.2 W kg-1 (based on the total mass of electrode) after 120 cycles. This newly developed 3D printing of hybrid composite as an electrode is straightforward and scalable and provides a novel concept for realizing dendrite-free and stable rechargeable Zn-ion batteries.
RESUMO
PURPOSE: We propose a comprehensive workflow to design and build fully customized dense receive arrays for MRI, providing prediction of SNR and g-factor. Combined with additive manufacturing, this method allows an efficient implementation for any arbitrary loop configuration. To demonstrate the methodology, an innovative two-layer, 32-channel receive array is proposed. METHODS: The design workflow is based on numerical simulations using a commercial 3D electromagnetic software associated with circuit model co-simulations to provide the most accurate results in an efficient time. A model to compute the noise covariance matrix from circuit model scattering parameters is proposed. A 32-channel receive array at 7 T is simulated and fabricated with a two-layer design made of non-geometrically decoupled loops. Decoupling between loops is achieved using home-built direct high-impedance preamplifiers. The loops are 3D-printed with a new additive manufacturing technique to speed up integration while preserving the detailed geometry as simulated. The SNR and parallel-imaging performances of the proposed design are compared with a commercial coil, and in vivo images are acquired. RESULTS: The comparison of SNR and g-factors showed a good agreement between simulations and measurements. Experimental values are comparable with the ones measured on the commercial coil. Preliminary in vivo images also ensured the absence of any unexpected artifacts. CONCLUSION: A new design and performance analysis workflow is proposed and tested with a non-conventional 32-channel prototype at 7 T. Additive manufacturing of dense arrays of loops for brain imaging at ultrahigh field is validated for clinical use.
Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Imagens de Fantasmas , Desenho de Equipamento , Razão Sinal-Ruído , Imageamento por Ressonância Magnética/métodos , Fenômenos Eletromagnéticos , Encéfalo/diagnóstico por imagemRESUMO
Triply periodic minimal surface (TPMS) scaffolds have gained attention in additive manufacturing due to their unique porous structures, which are useful in biomedical applications. Unlike metallic implants that can cause stress shielding, polymeric scaffolds offer a safer alternative. This study is focused on enhancing the compressive strength of additive-manufactured polylactic acid (PLA) scaffolds with a diamond structure. The response surface methodology (RSM)-based experimental design was developed to study the influence of printing parameters. The fused deposition modeling (FDM) process parameters were optimized, achieving a compressive strength of 56.2 MPa. Subsequently, the scaffolds were fabricated at optimized parameters and underwent ultrasonic-assisted polydopamine coating. With the utilization of the RSM approach, the study examined the effects of ultrasonic vibration power, coating solution concentration, and submersion time on compressive strength. The optimal coating conditions led to a maximum compressive strength of 92.77 MPa-a 65.1% improvement over the uncoated scaffold. This enhancement is attributed to the scaffold's porous structure, which enables uniform coating deposition. Energy-dispersive x-ray spectroscopy confirmed the successful polydopamine coating, with 10.64 wt% nitrogen content. These findings demonstrate the potential of ultrasonic-assisted coating in improving the mechanical properties of PLA scaffolds, making them suitable for biomedical applications.
RESUMO
Additive manufacturing (AM) offers a variety of material manufacturing techniques for a wide range of applications across many industries. Most efforts at process optimization and exposure assessment for AM are centered around the manufacturing process. However, identifying the material allocation and potentially harmful exposures in end-of-life (EoL) management is equally crucial to mitigating environmental releases and occupational health impacts within the AM supply chain. This research tracks the allocation and potential releases of AM EoL materials within the US through a material flow analysis. Of the generated AM EoL materials, 58% are incinerated, 33% are landfilled, and 9% are recycled by weight. The generated data set was then used to examine the theoretical occupational hazards during AM EoL material management practices through generic exposure scenario assessment, highlighting the importance of ventilation and personal protective equipment at all stages of AM material management. This research identifies pollution sources, offering policymakers and stakeholders insights to shape pollution prevention and worker safety strategies within the US AM EoL management pathways.
Assuntos
Exposição Ocupacional , Humanos , ReciclagemRESUMO
Additive manufacturing of transition metal sulfides (TMS) enables the creation of complex 3D structures, significantly expanding their applications. However, preparing 3D-structured TMS remains challenging due to difficulties in developing suitable inks. In this study, a supramolecular micelle hydrogel as the ink to fabricate 3D-structured TMS is utilized. Initially, the hydrogels are printed and infused with metal salt solutions to stabilize the structures, which are then calcined to convert into miniaturized 3D-TMS replicas. The micellar hydrogels crosslink via hydrophobic interactions, with sodium dodecyl sulfonate (SDS) micelles providing both a hydrophobic environment and sulfur sources. During calcination, the decomposed sulfur precursors coordinate with metal ions to form various TMS, including FeS2, Cu2S, Ni3S2, and Co9S8, along with several metal sulfides like PbS and SnS. Additionally, the method also allows for the preparation of transition metal dichalcogenides such as MoS2 and WS2. The formation mechanism is demonstrated using Ni3S2 as an example which exhibits notable catalytic activity in oxygen evolution reactions (OER) and hydrogen evolution reactions (HER). Given its simplicity and versatility, this dynamic micellar hydrogel-derived strategy offers a promising pathway for creating advanced TMS materials.