Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(2): e23425, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38226852

RESUMO

Postprandial hyperglycemia is an early indicator of impaired glucose tolerance that leads to type 2 diabetes mellitus (T2DM). Alterations in the fatty acid composition of phospholipids have been implicated in diseases such as T2DM and nonalcoholic fatty liver disease. Lysophospholipid acyltransferase 10 (LPLAT10, also called LPCAT4 and LPEAT2) plays a role in remodeling fatty acyl chains of phospholipids; however, its relationship with metabolic diseases has not been fully elucidated. LPLAT10 expression is low in the liver, the main organ that regulates metabolism, under normal conditions. Here, we investigated whether overexpression of LPLAT10 in the liver leads to improved glucose metabolism. For overexpression, we generated an LPLAT10-expressing adenovirus (Ad) vector (Ad-LPLAT10) using an improved Ad vector. Postprandial hyperglycemia was suppressed by the induction of glucose-stimulated insulin secretion in Ad-LPLAT10-treated mice compared with that in control Ad vector-treated mice. Hepatic and serum levels of phosphatidylcholine 40:7, containing C18:1 and C22:6, were increased in Ad-LPLAT10-treated mice. Serum from Ad-LPLAT10-treated mice showed increased glucose-stimulated insulin secretion in mouse insulinoma MIN6 cells. These results indicate that changes in hepatic phosphatidylcholine species due to liver-specific LPLAT10 overexpression affect the pancreas and increase glucose-stimulated insulin secretion. Our findings highlight LPLAT10 as a potential novel therapeutic target for T2DM.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase , Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Animais , Camundongos , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Glucose/farmacologia , Secreção de Insulina , Fígado , Fosfatidilcolinas , Fosfolipídeos
2.
Eur J Immunol ; 53(6): e2250022, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36330560

RESUMO

Replication-incompetent adenovirus (Ad) vector and mRNA-lipid nanoparticle (LNP) constructs represent two modular vaccine platforms that have attracted substantial interest over the past two decades. Due to the COVID-19 pandemic and the rapid development of multiple successful vaccines based on these technologies, there is now clear real-world evidence of the utility and efficacy of these platforms. Considerable optimization and refinement efforts underpin the successful application of these technologies. Despite this, our understanding of the specific pathways and processes engaged by these vaccines to stimulate the immune response remains incomplete. This review will synthesize our current knowledge of the specific mechanisms by which CD8+ T cell and antibody responses are induced by each of these vaccine platforms, and how this can be impacted by specific vaccine construction techniques. Key gaps in our knowledge are also highlighted, which can hopefully focus future studies.


Assuntos
COVID-19 , Vacinas de mRNA , Humanos , Pandemias , COVID-19/prevenção & controle , Vetores Genéticos/genética , Adenoviridae/genética
3.
J Gene Med ; 26(1): e3576, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37580111

RESUMO

BACKGROUND: Adenoviral vectors are among the most frequently used vectors for gene therapy and cancer treatment. Most vectors are derived from human adenovirus (Ad) serotype 5 despite limited applicability caused by pre-existing immunity and unfavorable liver tropism, whereas the other more than 100 known human serotypes remain largely unused. Here, we screened a library of human Ad types and identified Ad4 as a promising candidate vector. METHODS: Reporter-gene-expressing viruses representative of the natural human Ad diversity were used to transduce an array of muscle cell lines and two- or three-dimensional tumor cultures. The time-course of transgene expression was monitored by fluorescence or luminescence measurements. To generate replication-deficient Ad4 vector genomes, successive homologous recombination was applied. RESULTS: Ad4, 17 and 50 transduced human cardiomyocytes more efficiently than Ad5, whereas Ad37 was found to be superior in rhabdomyocytes. Despite its moderate transduction efficiency, Ad4 showed efficient and long-lasting gene expression in papillomavirus (HPV) positive tumor organoids. Therefore, we aimed to harness the potential of Ad4 for improved muscle transduction or oncolytic virotherapy of HPV-positive tumors. We deleted the E1 and E3 transcription units to produce first generation Ad vectors for gene therapy. The E1- and E1/E3-deleted vectors were replication-competent in HEK293 cells stably expressing E1 but not in the other cell lines tested. Furthermore, we show that the Ad5 E1 transcription unit can complement the replication of E1-deleted Ad4 vectors. CONCLUSIONS: Our Ad4-based gene therapy vector platform contributes to the development of improved Ad vectors based on non-canonical serotypes for a broad range of applications.


Assuntos
Adenovírus Humanos , Neoplasias , Infecções por Papillomavirus , Humanos , Sorogrupo , Células HEK293 , Adenoviridae/genética , Adenovírus Humanos/genética , Vetores Genéticos/genética , Terapia Genética , Neoplasias/genética , Neoplasias/terapia
4.
J Virol ; 97(10): e0067423, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37830821

RESUMO

IMPORTANCE: Vaccines targeting highly conserved proteins can protect broadly against diverse viral strains. When a vaccine is administered to the respiratory tract, protection against disease is especially powerful. However, it is important to establish that this approach is safe. When vaccinated animals later encounter viruses, does reactivation of powerful local immunity, including T cell responses, damage the lungs? This study investigates the safety of mucosal vaccination of the respiratory tract. Non-replicating adenoviral vaccine vectors expressing conserved influenza virus proteins were given intranasally. This vaccine-induced protection persists for at least 15 months. Vaccination did not exacerbate inflammatory responses or tissue damage upon influenza virus infection. Instead, vaccination with nucleoprotein reduced cytokine responses and histopathology, while neutrophil and T cell responses resolved earlier. The results are promising for safe vaccination at the site of infection and thus have implications for the control of influenza and other respiratory viruses.


Assuntos
Vacinas contra Influenza , Infecções por Orthomyxoviridae , Animais , Camundongos , Anticorpos Antivirais , Vacinas contra Influenza/imunologia , Pulmão , Camundongos Endogâmicos BALB C , Orthomyxoviridae , Infecções por Orthomyxoviridae/prevenção & controle , Vacinação/métodos , Adenoviridae
5.
J Virol ; 97(7): e0013523, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37338377

RESUMO

The development of effective and flexible vaccine platforms is a major public health challenge, especially in the context of influenza vaccines that have to be renewed every year. Adenoviruses (AdVs) are easy to produce and have a good safety and efficacy profile when administered orally, as demonstrated by the long-term use of oral AdV-4 and -7 vaccines in the U.S. military. These viruses therefore appear to be the ideal backbone for the development of oral replicating vector vaccines. However, research into these vaccines is limited by the ineffectiveness of human AdV replication in laboratory animals. The use of mouse AdV type 1 (MAV-1) in its natural host allows infection to be studied under replicating conditions. Here, we orally vaccinated mice with a MAV-1 vector expressing influenza hemagglutinin (HA) to assess the protection conferred against an intranasal challenge of influenza. We showed that a single oral immunization with this vaccine generates influenza-specific and -neutralizing antibodies and completely protects mice against clinical signs and viral replication, similar to traditional inactivated vaccines. IMPORTANCE Given the constant threat of pandemics and the need for annual vaccination against influenza and possibly emerging agents such as SARS-CoV-2, new types of vaccines that are easier to administer and therefore more widely accepted are a critical public health need. Here, using a relevant animal model, we have shown that replicative oral AdV vaccine vectors can help make vaccination against major respiratory diseases more available, better accepted, and therefore more effective. These results could be of major importance in the coming years in the fight against seasonal or emerging respiratory diseases such as COVID-19.


Assuntos
Infecções por Adenoviridae , Vacinas contra Adenovirus , COVID-19 , Vacinas contra Influenza , Influenza Humana , Humanos , Camundongos , Animais , Adenoviridae/genética , Influenza Humana/prevenção & controle , Anticorpos Antivirais , SARS-CoV-2 , Imunização , Vacinação/métodos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética
6.
J Virol ; 97(10): e0072423, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37706688

RESUMO

IMPORTANCE: The development of broad-spectrum SARS-CoV-2 vaccines will reduce the global economic and public health stress from the COVID-19 pandemic. The use of conserved T-cell epitopes in combination with spike antigen that induce humoral and cellular immune responses simultaneously may be a promising strategy to further enhance the broad spectrum of COVID-19 vaccine candidates. Moreover, this research suggests that the combined vaccination strategies have the ability to induce both effective systemic and mucosal immunity, which may represent promising strategies for maximizing the protective efficacy of respiratory virus vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacinas Combinadas , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Imunidade Celular , Imunização , Pandemias/prevenção & controle , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação
7.
J Virol ; 97(10): e0101423, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37712705

RESUMO

IMPORTANCE: Adenoviruses are widely used in gene therapy and vaccine delivery. Due to the high prevalence of human adenoviruses (HAdVs), the pre-existing immunity against HAdVs in humans is common, which limits the wide and repetitive use of HAdV vectors. In contrast, the pre-existing immunity against simian adenoviruses (SAdVs) is low in humans. Therefore, we performed epidemiological investigations of SAdVs in simians and found that the SAdV prevalence was as high as 33.9%. The whole-genome sequencing and sequence analysis showed SAdV diversity and possible cross species transmission. One isolate with low level of pre-existing neutralizing antibodies in humans was used to construct replication-deficient SAdV vectors with E4orf6 substitution and E1/E3 deletion. Interestingly, we found that the E3 region plays a critical role in its replication in human cells, but the absence of this region could be compensated for by the E4orf6 from HAdV-5 and the E1 expression intrinsic to HEK293 cells.


Assuntos
Adenovirus dos Símios , Terapia Genética , Vetores Genéticos , Vacinas , Animais , Humanos , Adenovírus Humanos/genética , Adenovirus dos Símios/genética , Vetores Genéticos/genética , Células HEK293 , Macaca/genética
8.
Biol Pharm Bull ; 47(5): 886-894, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38692864

RESUMO

The number of patients with lifestyle-related diseases such as type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), has continued to increase worldwide. Therefore, development of innovative therapeutic methods targeting lifestyle-related diseases is required. Gene therapy has attracted considerable attention as an advanced medical treatment. Safe and high-performance vectors are essential for the practical application of gene therapy. Replication-incompetent adenovirus (Ad) vectors are widely used in clinical gene therapy and basic research. Here, we developed a novel Ad vector, named Ad-E4-122aT, exhibiting higher and longer-term transgene expression and lower hepatotoxicity than conventional Ad vectors. We also elucidated the mechanisms underlying Ad vector-induced hepatotoxicity during the early phase using Ad-E4-122aT. Next, we examined the therapeutic effects of the genes of interest, namely zinc finger AN1-type domain 3 (ZFAND3), lipoprotein lipase (LPL), and lysophospholipid acyltransferase 10 (LPLAT10), on lifestyle-related diseases using Ad-E4-122aT. We showed that the overexpression of ZFAND3 in the liver improved glucose tolerance and insulin resistance. Liver-specific LPL overexpression suppressed hepatic lipid accumulation and improved glucose metabolism. LPLAT10 overexpression in the liver suppressed postprandial hyperglycemia by increasing glucose-stimulated insulin secretion. Furthermore, we also focused on foods to advance research on the pathophysiology and treatment of lifestyle-related diseases. Cranberry and calamondin, which are promising functional foods, attenuated the progression of MASLD/NAFLD. Our findings will aid the development of new therapeutic methods, including gene therapy, for lifestyle-related diseases such as T2DM and MASLD/NAFLD.


Assuntos
Adenoviridae , Diabetes Mellitus Tipo 2 , Terapia Genética , Vetores Genéticos , Estilo de Vida , Animais , Humanos , Adenoviridae/genética , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Resistência à Insulina , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/genética
9.
Int J Mol Sci ; 25(16)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39201470

RESUMO

CRISPR/Cas9 technology is expected to offer novel genome editing-related therapies for various diseases. We previously showed that an adenovirus vector (AdV) possessing eight expression units of multiplex guide RNAs (gRNAs) was obtained with no deletion of these units. Here, we attempted to construct "all-in-one" AdVs possessing expression units of four and eight gRNAs with Cas9 nickase, although we expected obstacles to obtain complete all-in-one AdVs. The first expected obstacle was that extremely high copies of viral genomes during replication may cause severe off-target cleavages of host cells and induce homologous recombination. However, surprisingly, four units in the all-in-one AdV genome were maintained completely intact. Second, for the all-in-one AdV containing eight gRNA units, we enlarged the E3 deletion in the vector backbone and shortened the U6 promoter of the gRNA expression units to shorten the AdV genome within the adenovirus packaging limits. The final size of the all-in-one AdV genome containing eight gRNA units still slightly exceeded the reported upper limit. Nevertheless, approximately one-third of the eight units remained intact, even upon preparation for in vivo experiments. Third, the genome editing efficiency unexpectedly decreased upon enlarging the E3 deletion. Our results suggested that complete all-in-one AdVs containing four gRNA units could be obtained if the problem of the low genome editing efficiency is solved, and those containing even eight gRNA units could be obtained if the obstacle of the vector size is also removed.


Assuntos
Adenoviridae , Sistemas CRISPR-Cas , Edição de Genes , Vetores Genéticos , RNA Guia de Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas/genética , Vetores Genéticos/genética , Adenoviridae/genética , Edição de Genes/métodos , Humanos , Células HEK293 , Genoma Viral , Proteína 9 Associada à CRISPR/metabolismo , Proteína 9 Associada à CRISPR/genética , Desoxirribonuclease I/metabolismo , Desoxirribonuclease I/genética
10.
Clin Immunol ; 251: 109342, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37100338

RESUMO

BACKGROUND: Information regarding the heterologous prime-boost COVID vaccination has been fully elucidated. The study aimed to evaluate both humoral, cellular immunity and cross-reactivity against variants after heterologous vaccination. METHODS: We recruited healthcare workers previously primed with Oxford/AstraZeneca ChAdOx1-S vaccines and boosted with Moderna mRNA-1273 vaccine boost to evaluate the immunological response. Assay used: anti-spike RBD antibody, surrogate virus neutralizing antibody and interferon-γ release assay. RESULTS: All participants exhibited higher humoral and cellular immune response after the booster regardless of prior antibody level, but those with higher antibody level demonstrated stronger booster response, especially against omicron BA.1 and BA.2 variants. The pre-booster IFN-γ release by CD4+ T cells correlates with post-booster neutralizing antibody against BA.1 and BA.2 variant after adjustment with age and gender. CONCLUSIONS: A heterologous mRNA boost is highly immunogenic. The pre-existing neutralizing antibody level and CD4+ T cells response correlates with post-booster neutralization reactivity against the Omicron variant.


Assuntos
COVID-19 , Imunidade Humoral , Humanos , Linfócitos T , Vacina de mRNA-1273 contra 2019-nCoV , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinação , Anticorpos Neutralizantes , Linfócitos T CD4-Positivos , Anticorpos Antivirais
11.
Microb Pathog ; 185: 106444, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951410

RESUMO

Bovine parainfluenza virus type 3 (BPIV3) is a viral respiratory pathogen of cattle that causes substantial economic losses. A replicating-defective recombinant human adenovirus type 5 (HAd5), carrying a fusion protein of BPIV3 genotype C (HAd5-F), was constructed and evaluated for its immunogenicity and protective efficacy in mice. After intramuscular injection with the HAd5-F, the IgG titers against F proteins increased to 1:102,400, and virus-neutralizing titers increased to 1:256, significantly higher than those in the group injected with inactivated BPIV3C in mice (p<0.05). The splenic CD4+/CD8+T lymphocytes and IFN-γ+/IL-4+ cytokine percentages were more significant in the HAd5-F group than those in the control group. A BPIV3C challenge in a mouse model was used to assess protective efficacy of the HAd5-F. The viral loads in the lungs and tracheas of mice immunized with the HAd5-F were significantly lower than those in the control group (p<0.0001). There were no significant histopathological alterations in the lungs of mice vaccinated with the HAd5-F. These findings suggested that the HAd5-F elicited excellent immunity against BPIV3C infection.


Assuntos
Adenoviridae , Vírus da Parainfluenza 3 Humana , Animais , Bovinos , Humanos , Camundongos , Adenoviridae/genética , Anticorpos Antivirais , Vírus da Parainfluenza 3 Bovina/genética , Proteínas Recombinantes/genética , Genótipo
12.
J Formos Med Assoc ; 122(2): 187-191, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35987747

RESUMO

The appropriate interval between heterologous prime adenoviral vectored vaccination and boost mRNA vaccination remains unclear. We recruited 100 adult participants to receive a prime adenoviral vectored vaccine (ChAdOx1, AstraZeneca) and a boost mRNA vaccine (mRNA-1273, Moderna) 12 weeks apart and checked their serum SARS-CoV-2 anti-spike IgG titers and neutralizing antibody titers against B.1.1.7 (alpha) and B.1.617.2 (delta) variants on the 28th day after the boost dose. Results were compared with our previous study cohorts who received the same prime-boost vaccinations at 4- and 8-week intervals. Compared to other heterologous vaccination groups, the 12-week interval group had higher neutralizing antibody titers against SARS-CoV-2 variants than the 4-week interval group and was similar to the 8-week interval group at day 28. Adverse reactions after the boost dose were mild and transient. Our results support deploying viral vectored and mRNA vaccines in a flexible schedule with intervals from 8 to 12 weeks.


Assuntos
COVID-19 , Vacinas Virais , Adulto , Humanos , Vacina de mRNA-1273 contra 2019-nCoV , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinação , Adenoviridae , ChAdOx1 nCoV-19 , Imunoglobulina G , Anticorpos Neutralizantes , Anticorpos Antivirais
13.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37373123

RESUMO

Expression of human endogenous retrovirus type W (HERV-W) has been linked to cancer, making HERV-W antigens potential targets for therapeutic cancer vaccines. In a previous study, we effectively treated established tumours in mice by using adenoviral-vectored vaccines targeting the murine endogenous retrovirus envelope and group-specific antigen (Gag) of melanoma-associated retrovirus (MelARV) in combination with anti-PD-1. To break the immunological tolerance to MelARV, we mutated the immunosuppressive domain (ISD) of the MelARV envelope. However, reports on the immunogenicity of the HERV-W envelope, Syncytin-1, and its ISD are conflicting. To identify the most effective HERV-W cancer vaccine candidate, we evaluated the immunogenicity of vaccines encoding either the wild-type or mutated HERV-W envelope ISD in vitro and in vivo. Here, we show that the wild-type HERV-W vaccine generated higher activation of murine antigen-presenting cells and higher specific T-cell responses than the ISD-mutated counterpart. We also found that the wild-type HERV-W vaccine was sufficient to increase the probability of survival in mice subjected to HERV-W envelope-expressing tumours compared to a control vaccine. These findings provide the foundation for developing a therapeutic cancer vaccine targeting HERV-W-positive cancers in humans.


Assuntos
Vacinas Anticâncer , Retrovirus Endógenos , Neoplasias , Humanos , Animais , Camundongos , Retrovirus Endógenos/genética , Linfócitos T , Terapia de Imunossupressão
14.
Mol Biol Rep ; 49(4): 3187-3196, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35124793

RESUMO

BACKGROUND: Bones and muscles originated together from the mesoderm during embryogenesis, and they can influence each other through mechanical stimulations and chemical signals. The sclerostin (SOST) is secreted from mature osteocytes. Here, we used a bird model to illustrate the potential roles of SOST on duck myoblasts to verify the hypothesis that SOST might play functions in coordinating the development of bones and muscles. METHODS AND RESULTS: Firstly, a recombinant adenovirus vector carrying duck SOST was constructed. Then, the adenovirus-mediated duck SOST was transfected into duck myoblasts. The results revealed by CCK-8 showed that the cell proliferation of myoblasts was inhibited after 12 h, 36 h, and 48 h treatment by transfection of SOST. The labeling rates of EdU positive cells in the Ad-duSOST group were significantly lower than the Ad-NC group (P < 0.05). However, the flow cytometry showed that the cells' G0/G1 phase number was not significantly different. Furthermore, the immunofluorescence results showed that the formation of myotubes was inhibited. Subsequent transcriptome revealed that, under the ectopic expression of SOST, the genes related to Cytokine-cytokine receptor interaction, muscle development (regulation of action cytoskeleton, Wnt signaling pathway), and intercellular regulation were changed. Six of the top 20 DEGs were related to morphogenesis. CONCLUSIONS: Our studies demonstrated that the SOST played critical roles in myoblasts differentiation by mediating the crosstalk among several pathways and transcription factors related to cell differentiation. Our data provided cellular evidence supporting the combined functions of SOST in coordinating bone and muscle co-development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Patos , Proteínas Adaptadoras de Transdução de Sinal/genética , Adenoviridae/genética , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Patos/genética , Desenvolvimento Muscular/genética , Via de Sinalização Wnt
15.
Arch Toxicol ; 96(5): 1437-1453, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35226134

RESUMO

Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 has rapidly expanded into a serious global pandemic. Due to the high morbidity and mortality of COVID-19, there is an urgent need to develop safe and effective vaccines. AdC68-19S is an investigational chimpanzee adenovirus serotype 68 (AdC68) vector-based vaccine which encodes the full-length spike protein of SARS-CoV-2. Here, we evaluated the immunogenicity, biodistribution and safety profiles of the candidate vaccine AdC68-19S in Sprague Dawley (SD) rat and rhesus macaque under GLP conditions. To characterize the biodistribution profile of AdC68-19S, SD rats were given a single intramuscular injection of AdC68-19S 2 × 1011 VP/dose. Designated organs were collected on day 1, day 2, day 4, day 8 and day 15. Genomic DNA was extracted from all samples and was further quantified by real-time quantitative polymerase chain reaction (qPCR). To characterize the toxicology and immunogenicity profiles of AdC68-19S, the rats and rhesus macaques were injected intramuscularly with AdC68-19S up to 2 × 1011vp/dose or 4 × 1011vp/dose (2 and fourfold the proposed clinical dose of 1 × 1011vp/dose) on two or three occasions with a 14-day interval period, respectively. In addition to the conventional toxicological evaluation indexes, the antigen-specific cellular and humoral responses were evaluated. We proved that multiple intramuscular injections could elicit effective and long-lasting neutralizing antibody responses and Th1 T cell responses. AdC68-19S was mainly distributed in injection sites and no AdC68-19S related toxicological reaction was observed. In conclusion, these results have shown that AdC68-19S could induce an effective immune response with a good safety profile, and is a promising candidate vaccine against COVID-19.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adenoviridae/genética , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Humanos , Macaca mulatta , Pan troglodytes , Ratos , Ratos Sprague-Dawley , SARS-CoV-2 , Distribuição Tecidual
16.
J Korean Med Sci ; 37(27): e210, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35818701

RESUMO

BACKGROUND: As the coronavirus disease 2019 (COVID-19) pandemic continues, there are concerns regarding waning immunity and the emergence of viral variants. The immunogenicity of Ad26.COV2.S against wild-type (WT) and variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) needs to be evaluated. METHOD: This prospective cohort study was conducted between June 2021 and January 2022 at two university hospitals in South Korea. Healthy adults who were scheduled to be vaccinated with Ad26.COV2.S were enrolled in this study. The main outcomes included anti-spike (S) IgG antibody and neutralizing antibody responses, S-specific T-cell responses (interferon-γ enzyme-linked immunospot assay), solicited adverse events (AEs), and serious AEs. RESULTS: Fifty participants aged ≥ 19 years were included in the study. Geometric mean titers (GMTs) of anti-S IgG were 0.4 U/mL at baseline, 5.2 ± 3.0 U/mL at 3-4 weeks, 55.7 ± 2.4 U/mL at 5-8 weeks, and 81.3 ± 2.5 U/mL at 10-12 weeks after vaccination. GMTs of 50% neutralizing dilution (ND50) against WT SARS-CoV-2 were 164.6 ± 4.6 at 3-4 weeks, 313.9 ± 3.6 at 5-8 weeks, and 124.4 ± 2.6 at 10-12 weeks after vaccination. As for the S-specific T-cell responses, the median number of spot-forming units/106 peripheral blood mononuclear cell was 25.0 (5.0-29.2) at baseline, 60.0 (23.3-178.3) at 5-8 weeks, and 35.0 (13.3-71.7) at 10-12 weeks after vaccination. Compared to WT SARS-CoV-2, ND50 against Delta and Omicron variants was attenuated by 3.6-fold and 8.2-fold, respectively. The most frequent AE was injection site pain (82%), followed by myalgia (80%), fatigue (70%), and fever (50%). Most AEs were grade 1-2, and resolved within two days. CONCLUSION: Single-dose Ad26.COV2.S was safe and immunogenic. NAb titer and S-specific T-cell immunity peak at 5-8 weeks and rather decrease at 10-12 weeks after vaccination. Cross-reactive neutralizing activity against the Omicron variant was negligible.


Assuntos
COVID-19 , SARS-CoV-2 , Ad26COVS1 , Adulto , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Leucócitos Mononucleares , Estudos Prospectivos
17.
J Formos Med Assoc ; 121(4): 766-777, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35305895

RESUMO

BACKGROUND/PURPOSE: Efficacy and safety data of heterologous prime-boost vaccination against SARS-CoV-2 remains limited. METHODS: We recruited adult volunteers for homologous or heterologous prime-boost vaccinations with adenoviral (ChAdOx1, AstraZeneca) and/or mRNA (mRNA-1273, Moderna) vaccines. Four groups of prime-boost vaccination schedules were designed: Group 1, ChAdOx1/ChAdOx1 8 weeks apart; Group 2, ChAdOx1/mRNA-1273 8 weeks apart; Group 3, ChAdOx1/mRNA-1273 4 weeks apart; and Group 4, mRNA-1273/mRNA-1273 4 weeks apart. The primary outcome was serum anti-SARS-CoV-2 IgG titers and neutralizing antibody titers against B.1.1.7 (alpha) and B.1.617.2 (delta) variants on day 28 after the second dose. Adverse events were recorded up until 84 days after the second dose. RESULTS: We enrolled 399 participants with a median age of 41 years and 75% were female. On day 28 after the second dose, the anti-SARS-CoV-2 IgG titers of both heterologous vaccinations (Group 2 and Group 3) were significantly higher than that of homologous ChAdOx1 vaccination (Group 1), and comparable with homologous mRNA-1273 vaccination (Group 4). The heterologous vaccination group had better neutralizing antibody responses against the alpha and delta variant as compared to the homologous ChAdOx1 group. Most of the adverse events (AEs) were mild and transient. AEs were less frequent when heterologous boosting was done at 8 weeks rather than at 4 weeks. CONCLUSION: Heterologous ChAdOx1/mRNA-1273 vaccination provided higher immunogenicity than homologous ChAdOx1 vaccination and comparable immunogenicity with the homologous mRNA-1273 vaccination. Our results support the safety and efficacy of heterologous prime-boost vaccination using the ChAdOx1 and mRNA-1273 COVID-19 vaccines. (ClinicalTrials.gov number, NCT05074368).


Assuntos
COVID-19 , SARS-CoV-2 , Vacina de mRNA-1273 contra 2019-nCoV , Adulto , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , ChAdOx1 nCoV-19 , Feminino , Humanos , Imunidade , Vacinação
18.
Cytotherapy ; 23(12): 1045-1052, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34548241

RESUMO

Adenoviruses (Ads), common self-limiting pathogens in humans and animals, usually cause conjunctivitis, mild upper respiratory tract infection or gastroenteritis in humans and hepatotoxicity syndrome in chickens and dogs, posing great threats to public health and livestock husbandry. Artificially modified Ads, which wipe out virulence-determining genes, are the most frequently used viral vectors in gene therapy, and some Ad vector (AdV)-related medicines and vaccines have been licensed and applied. Inherent liver tropism enables AdVs to specifically deliver drugs/genes to the liver; however, AdVs are closely associated with acute hepatotoxicity in immunocompromised individuals, and the side effects of AdVs, which stimulate a strong inflammatory reaction in the liver and cause acute hepatotoxicity, have largely limited clinical application. Therefore, this review systematically elucidates the intimate relationship between AdVs and hepatotoxicity in terms of virus and host and precisely illustrates the accumulated understanding in this field over the past decades. This review demonstrates the liver tropism of AdVs and molecular mechanism of AdV-induced hepatotoxicity and looks at the studies on AdV-mediated animal hepatotoxicity, which will undoubtedly deepen the understanding of AdV-caused liver injury and be of benefit in the further safe development of AdVs.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Galinhas , Adenoviridae/genética , Animais , Doença Hepática Induzida por Substâncias e Drogas/genética , Cães , Terapia Genética , Vetores Genéticos/genética
19.
Biol Pharm Bull ; 44(10): 1506-1513, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602559

RESUMO

Replication-incompetent adenovirus (Ad) vectors are promising gene delivery vehicles, especially for hepatocytes, due to their superior hepatic tropism; however, in vivo application of an Ad vector often results in hepatotoxicity, mainly due to the leaky expression of Ad genes from the Ad vector genome. In order to reduce the Ad vector-induced hepatotoxicity, we previously developed an Ad vector containing the sequences perfectly complementary to a liver-specific microRNA (miRNA), miR-122a, in the 3'-untranslated region (UTR) of the E4 gene. This improved Ad vector showed a significant reduction in the leaky expression of Ad genes and hepatotoxicity in the mouse liver and primary mouse hepatocytes; however, the safety profiles and transduction properties of this improved Ad vector in human hepatocytes remained to be elucidated. In this study, we examined the transgene expression and safety profiles of Ad vectors with miR-122a-targeted sequences in the 3'-UTR of the E4 gene in human hepatocytes from chimeric mice with humanized liver. The transgene expression levels of Ad vectors with miR-122a-targeted sequences in the 3'-UTR of the E4 gene were significantly higher than those of the conventional Ad vectors. The leaky expression levels of Ad genes of Ad vectors with miR-122a-targeted sequences in the 3'-UTR of the E4 gene in the primary human hepatocytes were largely reduced, compared with the conventional Ad vectors, resulting in an improvement in Ad vector-induced cytotoxicity. These data indicated that this improved Ad vector was a superior gene delivery vehicle without severe cytotoxicity for not only mouse hepatocytes but also human hepatocytes.


Assuntos
Adenoviridae/genética , Proteínas E4 de Adenovirus/genética , MicroRNAs/genética , Transdução Genética/métodos , Regiões 3' não Traduzidas/genética , Animais , Terapia Genética/métodos , Vetores Genéticos/genética , Células HEK293 , Hepatócitos , Humanos , Camundongos , Regiões Promotoras Genéticas , Quimeras de Transplante
20.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638909

RESUMO

Hepatitis B virus (HBV) chronically infects more than 240 million people worldwide, causing chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). Genome editing using CRISPR/Cas9 could provide new therapies because it can directly disrupt HBV genomes. However, because HBV genome sequences are highly diverse, the identical target sequence of guide RNA (gRNA), 20 nucleotides in length, is not necessarily present intact in the target HBV DNA in heterogeneous patients. Consequently, possible genome-editing drugs would be effective only for limited numbers of patients. Here, we show that an adenovirus vector (AdV) bearing eight multiplex gRNA expression units could be constructed in one step and amplified to a level sufficient for in vivo study with lack of deletion. Using this AdV, HBV X gene integrated in HepG2 cell chromosome derived from a heterogeneous patient was cleaved at multiple sites and disrupted. Indeed, four targets out of eight could not be cleaved due to sequence mismatches, but the remaining four targets were cleaved, producing irreversible deletions. Accordingly, the diverse X gene was disrupted at more than 90% efficiency. AdV containing eight multiplex gRNA units not only offers multiple knockouts of genes, but could also solve the problems of heterogeneous targets and escape mutants in genome-editing therapy.


Assuntos
Adenoviridae/genética , Sistemas CRISPR-Cas , Edição de Genes/métodos , Vírus da Hepatite B/genética , RNA Guia de Cinetoplastídeos/genética , Transativadores/genética , Proteínas Virais Reguladoras e Acessórias/genética , Adenoviridae/fisiologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Vetores Genéticos/genética , Células HEK293 , Células Hep G2 , Vírus da Hepatite B/metabolismo , Hepatite B Crônica/genética , Hepatite B Crônica/terapia , Hepatite B Crônica/virologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/virologia , RNA Guia de Cinetoplastídeos/metabolismo , Transativadores/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA