Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 475
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(31): e2305573120, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37487093

RESUMO

Flexible metal-organic frameworks (MOFs) exhibit an adsorption-induced structural transition known as "gate opening" or "breathing," resulting in an S-shaped adsorption isotherm. This unique feature of flexible MOFs offers significant advantages, such as a large working capacity, high selectivity, and intrinsic thermal management capability, positioning them as crucial candidates for revolutionizing adsorption separation processes. Therefore, the interest in the industrial applications of flexible MOFs is increasing, and the adsorption engineering for flexible MOFs is becoming important. However, despite the establishment of the theoretical background for adsorption-induced structural transitions, no theoretical equation is available to describe S-shaped adsorption isotherms of flexible MOFs. Researchers rely on various empirical equations for process simulations that can lead to unreliable outcomes or may overlook insights into improving material performance owing to parameters without physical meaning. In this study, we derive a theoretical equation based on statistical mechanics that could be a standard for the structural transition type adsorption isotherms, as the Langmuir equation represents type I isotherms. The versatility of the derived equation is shown through four examples of flexible MOFs that exhibit gate opening and breathing. The consistency of the formula with existing theories, including the osmotic free energy analysis and intrinsic thermal management capabilities, is also discussed. The developed theoretical equation may lead to more reliable and insightful outcomes in adsorption separation processes, further advancing the direction of industrial applications of flexible MOFs.

2.
Environ Res ; 255: 119192, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38777299

RESUMO

The present study evaluates the adsorption efficiency of low-cost carbonaceous adsorbents as fly ash (FA), saw dust biochar (SDB) (untreated and alkali - treated), live/dead pulverized white rot fungus Hypocrea lixii biomass encapsulated in sodium alginate (SA) against the commercially available activated carbon (AC) and graphene oxide (GO) SA beads for removal of benzene phenol derivatives - Bisphenol A (BPA)/triclosan (TCS). Amongst bi - and tri - composites SA beads, tri-composite beads comprising of untreated flyash - dead fungal biomass - sodium alginate (UFA - DB - SA) showed at par results with commercial composite beads. The tri - composite beads with point zero charge (Ppzc) of 6.2 was characterized using FTIR, XRD, surface area BET and SEM-EDX. The batch adsorption using tri - composite beads revealed removal of 93% BPA with adsorption capacity of 16.6 mg/g (pH 6) and 83.72% TCS with adsorption capacity of 14.23 mg/g (pH 5), respectively at 50 ppm initial concentration with 6 % adsorbent dose in 5 h. Freundlich isotherm favoring multilayered adsorption provided a better fit with r2 of 0.9674 for BPA and 0.9605 for TCS respectively. Intraparticle diffusion model showed adsorption of BPA/TCS molecules to follow pseudo - second order kinetics with boundary layer diffusion governed by first step of fast adsorption and intraparticle diffusion within pores by second slow adsorption step. Thermodynamic parameters (ΔH°, ΔS°, ΔG°) revealed adsorption process as exothermic, orderly and spontaneous. Methanol showed better desorbing efficiency leading to five cycles reusability. The phytotoxicity assay revealed increased germination rate of mung bean (Vigna radiata) seeds, sprinkled with post adsorbed treated water (0 h, 5 h and 7 h) initially spiked with 50 ppm BPA/TCS. Overall, UFA - DB - SA tri - composite beads provides a cost effective and eco - friendly matrix for effective removal of hydrophobic recalcitrant compounds.


Assuntos
Alginatos , Compostos Benzidrílicos , Fenóis , Adsorção , Fenóis/química , Alginatos/química , Compostos Benzidrílicos/química , Grafite/química , Poluentes Químicos da Água/química , Carvão Vegetal/química , Hypocrea/química , Cinza de Carvão/química
3.
Environ Res ; 241: 117702, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37980985

RESUMO

Trace heavy metals such as copper and nickel, when exceeds a certain level, cause detrimental effects on the ecosystem. The current study examined the potential of organic compounds enriched rice husk biochar (OCEB's) to remove the trace heavy metals from an aqueous solution in four steps. In 1st step, biochar' physical and chemical properties were analyzed through scanning electron microscope (SEM) and Fourier transforms infrared spectroscopy (FTIR). In the 2nd step, two biochar vis-a-vis glycine, alanine enriched biochar (GBC, ABC) was selected based on their adsorption capacity of four different metals Cr, Cu, Ni and Pb (chromium, copper, nickel, and lead). These two adsorbents (GBC, ABC) were further used to evaluate the best interaction of biochar for metal immobilization based on varying concentrations and times. Langmuir isotherm model suggested that the adsorption of Ni and Cu on the adsorbent surface supported the monolayer sorption. The qmax value of GBC for Cu removal increased by 90% compared to SBC (Simple rice husk biochar). The interaction of Cu and Ni with GBC and ABC was chemical, and 10 different time intervals were studied using pseud first and second-order kinetics models. The current study has supported the pseudo second-order kinetic model, which exhibited that the sorption of Ni and Cu occurred due to the chemical processes. The % removal efficiency with GBC was enhanced by 21% and 30% for Cu and Ni, respectively compared to the SBC. It was also noticed that GBC was 21% more efficient for % removal efficiency than the CBC. The study's findings supported that organic compound enriched rice husk biochar (GBC and ABC) is better than SBC for immobilizing the trace heavy metals from an aqueous solution.


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Cobre/química , Níquel , Adsorção , Ecossistema , Metais Pesados/química , Compostos Orgânicos , Água , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
4.
Int J Phytoremediation ; : 1-12, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39373193

RESUMO

Heavy metal environmental pollution is rapidly increasing due to the increase in industrialization and urbanization. Industrial processes, such as paint production, mining, and raw materials producing industries release effluents rich in heavy metals, like Pb2+, Cd2+, Cu2+, and Cr3+. These heavy metals are dangerous because they persist in nature, are non-biodegradable and they have high tendency to accumulate in the environment and in living organisms who are exposed to them. This work studied the removal of heavy metals (Cu, Pb, Cr, and Cd) from aqueous solution using Moringa oleifera root powder (MORP) as the adsorbent. The MORP was characterized by SEM, FTIR, BET, and XRD. Batch adsorption experiments carried out investigated the effects of adsorbate concentration, adsorbent dosage, agitation time, pH and temperature on adsorption. The optimum parameters are: contact time (90 min); pH (9); adsorbent dose (0.6); metal ion concentration (30 mg L-1) for Cr and 40 mg L-1 for the rest; and temperature (50 °C) for Cu and Pb, and 70 °C for Cr and Cd. These experimental data were analyzed with 5 isotherm models (Temkin, Flory-Huggins, Langmuir, D-R and Freundlich). The result obtained fitted best to Temkin isotherm in comparison to others. Kinetic studies revealed that the pseudo-second order kinetic model best described the adsorption (with high R2 values ranging from 0.9810-0.9976) compared to pseudo-first order and intra-particle diffusion kinetics model. Results of the thermodynamic study showed that the sorption process was endothermic for Cu and Pb, but exothermic for Cd and Cr. The adsorbent showed good adsorptive tendencies toward the ions studied, and could be applied on an industrial scale for the remediation of metal contaminated water.

5.
Prep Biochem Biotechnol ; 54(1): 39-48, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37204086

RESUMO

Natural Deep Eutectic Solvents (NADESs) have emerged as a green and sustainable alternative to conventional organic solvents to extract bioactive compounds. However, the recovery of bioactive compounds from the NADES extracts is challenging, restricting their large-scale applications. The present work investigated the recovery of glycyrrhizic acid (GA) from choline-chloride/lactic acid NADES extract using macroporous resins. GA possesses a wide spectrum of biological activities, and it is extracted from the well-known herb Glycyrrhiza glabra. During resin screening, DIAIONTM SP700 showed high adsorption and desorption capacities. The adsorption kinetics study demonstrated that the adsorption of GA on SP700 followed Pseudo First-order kinetic model. Moreover, the adsorption behaviors were elucidated by the Freundlich isotherm using a correlation coefficient based on a static adsorption study at different temperatures and pH. Furthermore, the thermodynamic parameters, for instance, the change of Gibbs free energy (ΔG*), entropy (ΔS*), and enthalpy (ΔH*), showed that the adsorption process was spontaneous, favorable and exothermic. In addition, the sample after macroporous resin treatment, which is enriched with GA exhibited good anticancer potential analyzed by SRB assay. The regenerated NADES solvent was recycled twice, keeping more than 90% extraction efficiency, indicating good reusability of NADES in the GA extraction process by using macroporous resin.


Assuntos
Solventes Eutéticos Profundos , Ácido Glicirrízico , Solventes/química , Adsorção , Termodinâmica , Extratos Vegetais/química , Resinas Vegetais/química
6.
Molecules ; 29(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38792247

RESUMO

This study explores the detailed characterization of a biosorbent (Hen Feather) and its efficient use in eradicating the azo dye Metanil Yellow (MY) from its aqueous solutions. Effects of a range of experimental parameters, including pH, initial dye concentration, biosorbent dosage and contact time on the adsorption, were studied. A detailed physical and chemical characterization of the biosorbent was made using SEM, XRD, XPS and FTIR. During the optimization of adsorption parameters, the highest dye uptake of almost 99% was recorded at pH 2, dye concentration 2 × 10-5 M, 0.05 g of biosorbent and a contact period of 75 min. Various adsorption isotherm models were studied to gather different adsorption and thermodynamic parameters. The linearity of the Langmuir, Freundlich and D-R adsorption isotherms indicate homogeneous, multilayer chemisorption with high adsorption affinity between the dye and biosorbent. Values of the changes in the Gibbs free energy (ΔG°) and the enthalpy (ΔH°) of the adsorption process have been calculated, these values indicate that it is a spontaneous and endothermic process. Kinetics of the adsorption were also measured, and it was established that the adsorption of MY over Hen Feather follows a pseudo-second-order kinetic model at temperatures 30, 40 and 50 °C. The findings of this investigation clearly indicate that the studied biosorbent exhibits a high affinity towards the dye (MY), and it can be effectively, economically and efficiently used to sequestrate and eradicate MY from its aqueous solutions.

7.
J Mol Recognit ; 36(7): e3016, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37042157

RESUMO

The present work determines efficiency of domestic food waste like tea waste in removing pharmaceutical waste such as ceftriaxone (CEF) from synthetic wastewater. Carbonaceous material; Tea waste activated carbon (TAC) has been employed and it showed high removal capacity of 787.5 mg/g. TAC was characterized using; XPS, XRD, SEM, FT-IR, and BET as well as it approved that the adsorbent a has high surface area of .6 m2 /g. Various experimental parameters are evaluated for the removal efficiency of the synthesized adsorbent under the present study. During the adsorption study through batch experiments, it approved that the adsorption isotherm was fitted to Langmuir, while kinetically fitted to pseudo-second-order; the adsorption process was chemisorption process as the adsorption energy was 23.7 kJ mol-1 . From evaluation thermodynamic parameters the adsorption reaction was endothermic and spontaneous reaction. The different real samples spiked with CEF and studies the efficiency of TAC to remove it. On the other hand, investigated the regeneration efficiency of the TAC and exhibit high regeneration efficiency as it will be used after four cycles with good efficiency of about 84.2%.


Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Antibacterianos , Ceftriaxona , Carvão Vegetal , Adsorção , Água , Alimentos , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Chá , Agricultura , Poluentes Químicos da Água/análise , Cinética , Concentração de Íons de Hidrogênio
8.
Chem Biodivers ; 20(6): e202201095, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37026436

RESUMO

The pollution of heavy metals in soil to the environment is becoming more and more serious, resulting in the reduction of crop production and the occurrence of medical accidents. In order to remove heavy metal ions from soil and reduce the harm of heavy metals to the environment, modified peanut shell was used to adsorb Cr3+ in this article. The effects of different adsorption conditions on the adsorption rate and adsorption capacity of Cr3+ on ZnCl2 modified peanut shell were studied, the best adsorption conditions were explored, and the relationship of kinetics, thermodynamics and adsorption isotherm properties of adsorption process were explored. The results showed that the optimum adsorption pH value, dosage, initial concentration, adsorption temperature and contact time of ZnCl2 modified peanut shell were 2.5, 2.5 g/L, 75 µg/mL, 25 °C and 40 min, respectively. The prepared materials were characterized and analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD) analyzer. It was concluded that the modified peanut shell had a good adsorption capacity to Cr3+ . The kinetic study showed that the adsorption process of Cr3+ on peanut shell modified by zinc chloride was in accordance with the quasi-second-order kinetic model. The adsorption process belonged to exothermic reaction and belonged to spontaneous reaction process. In summary, it is proved that zinc chloride modified peanut shell can efficiently adsorb Cr3+ , which can be used for the treatment of heavy metal wastes in industry, which is beneficial to environmental protection and avoid heavy metal pollution.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Cromo/análise , Cromo/química , Arachis , Adsorção , Cinética , Termodinâmica , Solo , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Int J Phytoremediation ; 25(10): 1348-1358, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36597778

RESUMO

This study evaluates the adsorptive capacity of elephant grass (EG) in the removal of Methylene blue (MB) dye from wastewater sourced from two major local dyeing industries in Ogun State, Nigeria. Batch adsorption method was used to determine the optimum conditions, characterization of the adsorbent, equilibrium Isotherm models, kinetics and thermodynamics studies were conducted to evaluate the nature of the adsorption process. The optimum adsorption conditions obtained for the standard solution of MB dye were; pH 7, Temp 40 °C, contact time 180 min and adsorbent dosage 2.0 g. The presence of oxygen containing functional groups and shift or disappearance of bands in the FTIR suggested the suitability of EG for the process. The SEM of EG revealed presence and disappearance of pores before and after the adsorption process. The mechanism of this adsorption is complex, the adsorption data is best fitted to Langmuir isotherm, the mean adsorption energy E (≤6.455 kJ/mol), and activation energy (10.84 kJ/mol) represents physical process but, the thermodynamic studies revealed spontaneity (ΔG° -15.93 to -14.26 kJ mol-1), randomness, and endothermic (ΔH° 40.1 kJ/mol) nature, representing chemisorption. Therefore, local dyers around the study sites can make use of the freely available EG for the remediation of their wastewater.


Elephant grass (EG) abundantly thrives on the study sites where dye wastewater is released by local dyers. This serves as the impetus for this research as no other plants thrive on the dye-polluted environment. A favorable adsorption was obtained with EG as adsorbent for the Methylene blue (MB) dye that is a major constituent of the wastewater from the two major local dyeing industries investigated. Therefore, this study provides scientific support for the local dyers around the study sites to make use of the freely available EG for the remediation of their wastewater.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Adsorção , Azul de Metileno/química , Corantes/química , Indústria Têxtil , Poluentes Químicos da Água/química , Biodegradação Ambiental , Termodinâmica , Cinética , Concentração de Íons de Hidrogênio
10.
Int J Phytoremediation ; 25(6): 765-780, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35939852

RESUMO

The novel biosorbents prepared by surface modification from leaves of Juglans regia plant were exploited for removal of methyl orange dye from aqueous solution. The leaves in the form of dust and charcoal were separately impregnated with 1-butyl-3-methyl imidazolium bromide (I) to obtain adsorbents namely J. regia dust/charcoal impregnated with I (JRDI/JRCI) which were characterized using advanced analytical approaches. The impregnation of ionic liquid was confirmed by the appearance of new bands. Langmuir isotherm fitted well; the calculated adsorption capacity being 59.37 (JRDI) and 102.72 mg g-1 (JRCI). The kinetic study revealed that sorption obeyed the pseudo-first order model; the experimental adsorption capacity being 53.53 (JRDI) and 86.82 mg g-1 (JRCI) at selected conditions of pH 3, initial dye concentration 100 ppm, dosage of adsorbent 0.3 g and contact time 70 min. The mathematical models which predicted adsorption capacity as 51.5 (JRDI) and 82.1 mg g-1 (JRCI) were found at par with experimental values. Fukui condensed functions revealed that adsorbents had electron deficient electrophilic reaction sites while dye had electron-rich nucleophilic reaction sites. The structural properties and good adsorption capability of adsorbents indicate that they could be used as potential, eco-friendly adsorbents for the treatment of negatively charged dye pollutants.


The research work is the first study on the sorption of methyl orange dye from an aqueous solution using ionic liquid impregnated leaves of J. regia plant in powder and biochar form. Juglans regia leaves are eco-friendly and cheap precursors for selected adsorbents. Impregnation of ionic liquid which makes the adsorbent surface positively charged is responsible for enhancing the adsorption capacity for negatively charged methyl orange dye. To the best of our knowledge, the use of impregnated ionic liquid in the leaves of plants as an adsorbent for the efficient removal of dye is very sparse. This motivated us to fill the gap by choosing ionic liquid and demonstrating the enhanced adsorption capacity of dye.


Assuntos
Líquidos Iônicos , Juglans , Poluentes Químicos da Água , Carvão Vegetal/química , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Biodegradação Ambiental , Cinética , Adsorção
11.
J Environ Manage ; 345: 118815, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37633104

RESUMO

This investigation is centered on the effectiveness of methylene blue (MB), a cationic dye, adsorbed from an aqueous media by H3PO4 activated papaya skin/peels (PSPAC), with initial pH (2-10), contact time (30-180 min), MB dye concentration (varying from 10 to 50 mg/L), and MB dose (0.1-0.5 gm). The findings show that the best optimal conditions for MB dye removal occur at a 6 pH, 0.3 gm dose of PSPAC adsorbent for 10 mg/L MB dye concentration, with 90 min of contact time. To optimize and validate the extraction efficiency of MB dye, a response surface methodology (RSM) study was conducted using a central composite design (CCD) with a regression model showing R2 = 0.9940. FT-IR spectroscopy shows, CO, and O-H stretching functional groups while FE-SEM is assessed to supervise morphological features of the PSPAC adsorbent. The peak adsorption capacity with 46.95 mg/g for the Langmuir isotherm model conveniently satisfies the adsorption process with R2 = 0.9984 while with R2 = 0.999, a kinetic model, pseudo-second-order, confirms MB dye adsorption by PSPAC adsorbent. Moreover, thermodynamic parameters including ΔGᵒ, ΔH°, and ΔS° were computed and found to be spontaneous and exothermic. Furthermore, regeneration studies employed with NaOH (0.1 M) and HCl (0.1 M) solution media show an acceptable MB removal efficiency consecutive up to three cycles. The study highlights that H3PO4 papaya skin/peel (PSPAC) is an effectual, sustainable, reasonably available biosorbent to remove industrial cationic dyes disposal.


Assuntos
Carica , Poluentes Químicos da Água , Azul de Metileno/química , Corantes/química , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Concentração de Íons de Hidrogênio , Termodinâmica , Água , Adsorção
12.
J Environ Manage ; 336: 117641, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36868151

RESUMO

Arsenite [As(III)] oxidizing bacteria have been widely studied for their detoxification ability through transforming As(III) into arsenate [As(V)]. However, few was focused on removal capacity of arsenic (As). In the current study, As(III) oxidation accompanied with removal of total As was observed in Pseudomonas sp. SMS11. The biosorption (unbinding and surface binding) and bioaccumulation (intracellular uptake) of As by the cells were investigated. Biosorption isotherm was defined adequately by Langmuir and Freundlich models. Biosorption kinetics was recommended by pseudo second-order model. For comparison, the bacteria were inoculated in pure water or culture media amended with different concentrations of As(III) to evaluate the remediation capacity without or with bacterial growth. After removing unbound As, surface bound and intracellular As were sequentially separated using EDTA elution and acidic extraction from bacterial cells. Without bacterial growth, oxidation of As(III) was retarded and the maximum values of surface bound and intracellular As were 4.8 and 10.5 mg/g, respectively. Efficient oxidation and high adsorption capacity were observed after bacterial growth. The surface bound and intracellular As achieved up to 555.0 and 2421.5 mg/g, respectively. Strain SMS11 exhibited great accumulation capacity of As in aqueous solutions, indicating potential application in detoxification and removal of As(III) contamination. The results also suggested that bioremediation via bacteria should be based on living cells and bacterial growth rate.


Assuntos
Arsênio , Arsenitos , Poluentes Químicos da Água , Arsenitos/metabolismo , Pseudomonas/metabolismo , Bioacumulação , Poluentes Químicos da Água/metabolismo , Cinética , Adsorção , Oxirredução , Concentração de Íons de Hidrogênio
13.
Molecules ; 28(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37836793

RESUMO

This critical review points out the most serious and problematic issues to be found in the literature on the adsorption of dyes on clay minerals. The introduction draws attention to the fundamental problems, namely the insufficient characterization of adsorbents, the influence of impurities on the adsorption of dyes, and the choice of inappropriate models for the description of the very complex systems that clay minerals and their systems represent. This paper discusses the main processes accompanying adsorption in colloidal systems of clay minerals. The relationship between the stability of the colloidal systems and the adsorption of dye molecules is analyzed. The usual methodological procedures for determining and evaluating the adsorption of dyes are critically reviewed. A brief overview and examples of modified clay minerals and complex systems for the adsorption of organic dyes are summarized. This review is a guide for avoiding some faults in characterizing the adsorption of organic dyes on clay minerals, to improve the procedure for determining adsorption, to evaluate results correctly, and to find an appropriate theoretical interpretation. The main message of this article is a critical analysis of the current state of the research in this field, but at the same time, it is a guide on how to avoid the most common problems and mistakes.

14.
Molecules ; 28(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446811

RESUMO

The utilization of biochar, derived from agricultural waste, has garnered attention as a valuable material for enhancing soil properties and serving as a substitute adsorbent for the elimination of hazardous heavy metals and organic contaminants from wastewater. In the present investigation, amide-modified biochar was synthesized via low-temperature pyrolysis of rice husk and was harnessed for the removal of Cr(VI) from wastewater. The resultant biochar was treated with 1-[3-(trimethoxysilyl) propyl] urea to incorporate an amide group. The amide-modified biochar was characterized by employing Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques. During batch experiments, the effect of various parameters, such as adsorbent dosage, metal concentration, time duration, and pH, on Cr(VI) removal was investigated. The optimal conditions for achieving maximum adsorption of Cr(VI) were observed at a pH 2, an adsorbent time of 60 min, an adsorbent dosage of 2 g/L, and a metal concentration of 100 mg/L. The percent removal efficiency of 97% was recorded for the removal of Cr(VI) under optimal conditions using amide-modified biochar. Freundlich, Langmuir, and Temkin isotherm models were utilized to calculate the adsorption data and determine the optimal fitting model. It was found that the adsorption data fitted well with the Langmuir isotherm model. A kinetics study revealed that the Cr(VI) adsorption onto ABC followed a pseudo-second-order kinetic model. The findings of this study indicate that amide-functionalized biochar has the potential to serve as an economically viable substitute adsorbent for the efficient removal of Cr(VI) from wastewater.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Amidas , Poluentes Químicos da Água/química , Carvão Vegetal/química , Cromo/química , Adsorção , Cinética , Concentração de Íons de Hidrogênio
15.
Molecules ; 28(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37241806

RESUMO

The food industry is responsible for the generation of large amounts of organic residues, which can lead to negative environmental and economic impacts when incorrectly disposed of. The jaboticaba peel is an example of organic waste, widely used in industry due to its organoleptic characteristcs. In this study, residues collected during the extraction of bioactive compounds from jaboticaba bark (JB) were chemically activated with H3PO4 and NaOH and used to develop a low-cost adsorbent material for the removal of the cationic dye methylene blue (MB). For all adsorbents, the batch tests were carried out with the adsorbent dosage of 0.5 g L-1 and neutral pH, previously determined by 22 factorial design. In the kinetics tests, JB and JB-NaOH presented a fast adsorption rate, reaching equilibrium in 30 min. For JB-H3PO4, the equilibrium was reached in 60 min. JB equilibrium data were best represented by the Langmuir model and JB-NaOH and JB-H3PO4 data by the Freundlich model. The maximum adsorption capacities from JB, JB-NaOH, and JB-H3PO4 were 305.81 mg g-1, 241.10 mg g-1, and 122.72 mg g-1, respectively. The results indicate that chemical activations promoted an increase in the volume of large pores but interacted with functional groups responsible for MB adsorption. Therefore, JB has the highest adsorption capacity, thus presenting as a low-cost and sustainable alternative to add value to the product, and it also contributes to water decontamination studies, resulting in a zero-waste approach.

16.
Molecules ; 28(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37241817

RESUMO

Fluorine is a very common element in the Earth's crust and is present in the air, food, and in natural waters. It never meets in the free state in nature due to its high reactivity, and it comes in the form of fluorides. Depending on the concentration of fluorine absorbed, it may be beneficial or harmful to human health. Similar to any trace element, fluoride ion is beneficial for the human body at low levels, but as soon as its concentration becomes too high, it is toxic, inducing dental and bone fluorosis. The lowering of fluoride concentrations that exceed the recommended standards in drinking water is practiced in various ways around the world. The adsorption process has been classified as one of the most efficient methods for the removal of fluoride from water as it is environmentally friendly, easy to operate, and cost-effective. The present study deals with fluoride ion adsorption on modified zeolite. There are several influential parameters, such as zeolite particle size, stirring rate, solution pH, initial concentration of fluoride, contact time, and solution temperature. The maximum removal efficiency of the modified zeolite adsorbent was 94% at 5 mg/L fluoride initial concentration, pH 6.3, and 0.5 g modified zeolite mass. The adsorption rate increases accordingly with increases in the stirring rate and pH value and decreases when the initial fluoride concentration is increased. The evaluation was enhanced by the study of adsorption isotherms using the Langmuir and Freundlich models. The Langmuir isotherm corresponds with the experimental results of the fluoride ions adsorption with a correlation value of 0.994. The kinetic analysis results of the fluoride ions adsorption on modified zeolite allowed us to demonstrate that the process primarily follows a pseudo-second-order and then, in the next step, follows a pseudo-first-order model. Thermodynamic parameters were calculated, and the ΔG° value is found to be in the range of -0.266 kJ/mol up to 1.613 kJ/mol amidst an increase in temperature from 298.2 to 331.7 K. The negative values of the free enthalpy ΔG° mean that the adsorption of fluoride ions on the modified zeolite is spontaneous, and the positive value of the enthalpy ∆H° shows that the adsorption process is endothermic. The ∆S° values of entropy indicate the fluoride adsorption randomness characteristics at the zeolite-solution interface.

17.
Molecules ; 28(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37298968

RESUMO

Aquatic pollution, which includes organic debris and heavy metals, is a severe issue for living things. Copper pollution is hazardous to people, and there is a need to develop effective methods for eliminating it from the environment. To address this issue, a novel adsorbent composed of frankincense-modified multi-walled carbon nanotubes (Fr-MMWCNTs) and Fe3O4 [Fr-MWCNT-Fe3O4] was created and subjected to characterization. Batch adsorption tests showed that Fr-MWCNT-Fe3O4 had a maximum adsorption capacity of 250 mg/g at 308 K and could efficiently remove Cu2+ ions over a pH range of 6 to 8. The adsorption process followed the pseudo-second-order and Langmuir models, and its thermodynamics were identified as endothermic. Functional groups on the surface of modified MWCNTs improved their adsorption capacity, and a rise in temperature increased the adsorption efficiency. These results highlight the Fr-MWCNT-Fe3O4 composites' potential as an efficient adsorbent for removing Cu2+ ions from untreated natural water sources.


Assuntos
Franquincenso , Nanotubos de Carbono , Poluentes Químicos da Água , Purificação da Água , Humanos , Cobre/química , Nanotubos de Carbono/química , Poluentes Químicos da Água/química , Cinética , Adsorção , Nanopartículas Magnéticas de Óxido de Ferro , Concentração de Íons de Hidrogênio , Purificação da Água/métodos
18.
Molecules ; 28(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36903414

RESUMO

Groundwater arsenic (As) pollution is a naturally occurring phenomenon posing serious threats to human health. To mitigate this issue, we synthesized a novel bentonite-based engineered nano zero-valent iron (nZVI-Bento) material to remove As from contaminated soil and water. Sorption isotherm and kinetics models were employed to understand the mechanisms governing As removal. Experimental and model predicted values of adsorption capacity (qe or qt) were compared to evaluate the adequacy of the models, substantiated by error function analysis, and the best-fit model was selected based on corrected Akaike Information Criterion (AICc). The non-linear regression fitting of both adsorption isotherm and kinetic models revealed lower values of error and lower AICc values than the linear regression models. The pseudo-second-order (non-linear) fit was the best fit among kinetic models with the lowest AICc values, at 57.5 (nZVI-Bare) and 71.9 (nZVI-Bento), while the Freundlich equation was the best fit among the isotherm models, showing the lowest AICc values, at 105.5 (nZVI-Bare) and 105.1 (nZVI-Bento). The adsorption maxima (qmax) predicted by the non-linear Langmuir adsorption isotherm were 354.3 and 198.5 mg g-1 for nZVI-Bare and nZVI-Bento, respectively. The nZVI-Bento successfully reduced As in water (initial As concentration = 5 mg L-1; adsorbent dose = 0.5 g L-1) to below permissible limits for drinking water (10 µg L-1). The nZVI-Bento @ 1% (w/w) could stabilize As in soils by increasing the amorphous Fe bound fraction and significantly diminish the non-specific and specifically bound fraction of As in soil. Considering the enhanced stability of the novel nZVI-Bento (upto 60 days) as compared to the unmodified product, it is envisaged that the synthesized product could be effectively used for removing As from water to make it safe for human consumption.

19.
Artigo em Inglês | MEDLINE | ID: mdl-36840367

RESUMO

In recent times, ground water contamination by toxic elements is of great concern and it is to be addressed for consumption of human, animal, and plant growth. In this context, we have synthesized an adsorbent by modifying commercially available activated carbon with aluminum and tested for de-fluoridation studies. The activity results suggested that the optimized adsorbent is highly efficient in removing the fluoride from ground water. Adsorption maxima are obtained over a wide pH range from 4 to 9, with a contact time of 15 minutes at a dosage of 4 g/L. The results also revealed that the synthesized adsorbent is suitable for application in ground water without any pH adjustment and has exhibited 85%-95% tolerance for common anions in the range of 100-500 mg/L. Equilibrium adsorption isotherm models as well as kinetics of adsorption were applied for the system. An adsorption capacity of 20.4 mg/g and fast kinetics observed are most favorable for defluoridation. Reuse of adsorbent over repeated cycles was investigated. Residual amount of aluminum in treated water is found to be negligible. The removal of toxic elements like Pb, Cd, Cr, Cu, Ni, Zn, As, and Se under the optimized experimental conditions has also been investigated. Al-AC found to be a highly promising material for removal of fluoride and toxic metals from drinking water.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Humanos , Fluoretos/química , Alumínio/química , Carvão Vegetal , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise , Purificação da Água/métodos
20.
Environ Monit Assess ; 195(7): 814, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286884

RESUMO

The present study investigates the removal of glyphosate, glufosinate, aminomethylphosphonic acid and bialaphos herbicides from their 5 × 10-5 M aqueous solutions onto activated carbon cloth by adsorption and electrosorption. Analysis of these highly polar herbicides was achieved by UV-visible absorbance measurements, after derivatization with 9-fluorenylmethyloxycarbonyl chloride. The limit of quantification values of glyphosate, glufosinate, aminomethylphosphonic acid and bialaphos were 1.06 × 10-6 mol L-1, 1.38 × 10-6 mol L-1, 1.32 × 10-6 mol L-1 and 1.08 × 10-6 mol L-1, respectively. Glyphosate, glufosinate, aminomethylphosphonic acid and bialaphos were removed from their aqueous solutions with higher efficiencies by means of electrosorption (78.2%, 94.9%, 82.3% and 97%, respectively) than of open-circuit adsorption (42.5%, 22%, 6.9% and 81.8%, respectively). Experimental kinetic data were fitted to pseudo-first order and pseudo-second order kinetic models. It was determined that pseudo-second order kinetic model represents experimental data better with satisfactory coefficient of determination, r2 (> 0.985) and normalized percent deviation, P (< 5.15) values. Adsorption isotherm data were treated according to Freundlich and Langmuir isotherm models. Based on the r2 (> 0.98) and P (< 5.9) values, it was found that experimental data well fitted to Freundlich isotherm model. Adsorption capacities of activated carbon cloth for glyphosate, glufosinate, aminomethylphosphonic acid and bialaphos, expressed in terms of Freundlich constant, were calculated as 20.31, 118.73, 239.33 and 30.68 mmol g-1, respectively. The results show that the studied ACC can be used in home/business water treatment systems as an adsorbent due to its high adsorption capacity.


Assuntos
Carvão Vegetal , Herbicidas , Adsorção , Monitoramento Ambiental , Cinética , Soluções , Concentração de Íons de Hidrogênio , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA