RESUMO
Eukaryotic transcription factors (TFs) from the same structural family tend to bind similar DNA sequences, despite the ability of these TFs to execute distinct functions in vivo. The cell partly resolves this specificity paradox through combinatorial strategies and the use of low-affinity binding sites, which are better able to distinguish between similar TFs. However, because these sites have low affinity, it is challenging to understand how TFs recognize them in vivo. Here, we summarize recent findings and technological advancements that allow for the quantification and mechanistic interpretation of TF recognition across a wide range of affinities. We propose a model that integrates insights from the fields of genetics and cell biology to provide further conceptual understanding of TF binding specificity. We argue that in eukaryotes, target specificity is driven by an inhomogeneous 3D nuclear distribution of TFs and by variation in DNA binding affinity such that locally elevated TF concentration allows low-affinity binding sites to be functional.
Assuntos
Eucariotos/metabolismo , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Regulação da Expressão Gênica , HumanosRESUMO
The association between two intrinsically disordered proteins (IDPs) may produce a fuzzy complex characterized by a high binding affinity, similar to that found in the ultrastable complexes formed between two well-structured proteins. Here, using coarse-grained simulations, we quantified the biophysical forces driving the formation of such fuzzy complexes. We found that the high-affinity complex formed between the highly and oppositely charged H1 and ProTα proteins is sensitive to electrostatic interactions. We investigated 52 variants of the complex by swapping charges between the two oppositely charged proteins to produce sequences whose negatively or positively charged residue content was more homogeneous or heterogenous (i.e., polyelectrolytic or polyampholytic, having higher or lower absolute net charges, respectively) than the wild type. We also changed the distributions of oppositely charged residues within each participating sequence to produce variants in which the charges were segregated or well mixed. Both types of changes significantly affect binding affinity in fuzzy complexes, which is governed by both enthalpy and entropy. The formation of H1-ProTa is supported by an increase in configurational entropy and by entropy due to counterion release. The latter can be twice as large as the former, illustrating the dominance of counterion entropy in modulating the binding thermodynamics. Complexes formed between proteins with greater absolute net charges are more stable, both enthalpically and entropically, indicating that enthalpy and entropy have a mutually reinforcing effect. The sensitivity of the thermodynamics of the complex to net charge and the charge pattern within each of the binding constituents may provide a means to achieve binding specificity between IDPs.
Assuntos
Histonas , Proteínas Intrinsicamente Desordenadas , Receptores Imunológicos , Entropia , Histonas/química , Humanos , Proteínas Intrinsicamente Desordenadas/química , Ligação Proteica , Receptores Imunológicos/química , Eletricidade EstáticaRESUMO
Oriented antibody immobilization has been widely employed in immunoassays and immunodiagnoses due to its efficacy in identifying target antigens. Herein, a heptapeptide ligand, HWRGWVC (HC7), was coupled to poly(glycidyl methacrylate) (PGMA) nanospheres (PGMA-HC7). The antibody immobilization behavior and antigen recognition performance were investigated and compared with those on PGMA nanospheres by nonspecific adsorption and covalent coupling via carbodiimide chemistry. The antibodies tested included bovine, rabbit, and human immunoglobulin G (IgG), while the antigens included horseradish peroxidase (HRP) and ß-2-Microglobulin (ß2-MG). The nanospheres were characterized using zeta potential and particle size analyzers, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and reversed-phase chromatography, proving each synthesis step was succeeded. Isothermal titration calorimetry assay demonstrated the strong affinity interaction between IgG and PGMA-HC7. Notably, PGMA-HC7 achieved rapid and extremely high IgG adsorption capacity (~3 mg/mg) within 5 min via a specific recognition via HC7 without nonspecific interactions. Moreover, the activities of immobilized anti-HRP and anti-ß2-MG antibodies obtained via affinity binding were 1.5-fold and 2-fold higher than those of their covalent coupling counterparts. Further, the oriented-immobilized anti-ß2-MG antibody on PGMA-HC7 exhibited excellent performance in antigen recognition with a linear detection range of 0-5.3 µg/mL, proving its great potential in immunoassay applications.
Assuntos
Anticorpos Imobilizados , Nanosferas , Nanosferas/química , Imunoensaio/métodos , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Humanos , Animais , Imunoglobulina G/química , Imunoglobulina G/imunologia , Coelhos , Ácidos Polimetacrílicos/química , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Bovinos , Adsorção , Oligopeptídeos/químicaRESUMO
Neurotrophin signaling is essential for normal nervous system development and adult function. Neurotrophins are secreted proteins that signal via interacting with two neurotrophin receptor types: the multifaceted p75 neurotrophin receptor and the tropomyosin receptor kinase receptors. In vivo, neurons compete for the limited quantities of neurotrophins, a process that underpins neural plasticity, axonal targeting, and ultimately survival of the neuron. Thirty years ago, it was discovered that p75 neurotrophin receptor and tropomyosin receptor kinase A form a complex and mediate high-affinity ligand binding and survival signaling; however, despite decades of functional and structural research, the mechanism of modulation that yields this high-affinity complex remains unclear. Understanding the structure and mechanism of high-affinity receptor generation will allow development of pharmaceuticals to modulate this function for treatment of the many nervous system disorders in which altered neurotrophin expression or signaling plays a causative or contributory role. Here we re-examine the key older literature and integrate it with more recent studies on the topic of how these two receptors interact. We also identify key outstanding questions and propose a model of inside-out allosteric modulation to assist in resolving the elusive high-affinity mechanism and complex.
Assuntos
Receptor de Fator de Crescimento Neural , Receptor trkA , Tropomiosina , Animais , Humanos , Fatores de Crescimento Neural/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Receptor trkA/genética , Receptor trkA/metabolismo , Receptores de Fator de Crescimento NeuralRESUMO
Hox genes encode Homeodomain-containing transcription factors, which specify segmental identities along the anterior-posterior axis. Functional changes in Hox genes have been directly implicated in the evolution of body plans across the metazoan lineage. The Hox protein Ultrabithorax (Ubx) is expressed and required in developing third thoracic (T3) segments in holometabolous insects studied so far, particularly, of the order Coleoptera, Lepidoptera and Diptera. Ubx function is key to specify differential development of the second (T2) and T3 thoracic segments in these insects. While Ubx is expressed in the third thoracic segment in developing larvae of Hymenopteran Apis mellifera, the morphological differences between T2 and T3 are subtle. To identify evolutionary changes that are behind the differential function of Ubx in Drosophila and Apis, which are diverged for more than 350 million years, we performed comparative analyses of genome wide Ubx-binding sites between these two insects. Our studies reveal that a motif with a TAAAT core is a preferred binding site for Ubx in Drosophila, but not in Apis. Biochemical and transgenic assays suggest that in Drosophila, the TAAAT core sequence in the Ubx binding sites is required for Ubx-mediated regulation of two of its target genes studied here; CG13222, a gene that is normally upregulated by Ubx and vestigial (vg), whose expression is repressed by Ubx in T3. Interestingly, changing the TAAT site to a TAAAT site was sufficient to bring an otherwise unresponsive enhancer of the vg gene from Apis under the control of Ubx in a Drosophila transgenic assay. Taken together, our results suggest an evolutionary mechanism by which critical wing patterning genes might have come under the regulation of Ubx in the Dipteran lineage.
RESUMO
Discovery of target-binding molecules, such as aptamers and peptides, is usually performed with the use of high-throughput experimental screening methods. These methods typically generate large datasets of sequences of target-binding molecules, which can be enriched with high affinity binders. However, the identification of the highest affinity binders from these large datasets often requires additional low-throughput experiments or other approaches. Bioinformatics-based analyses could be helpful to better understand these large datasets and identify the parts of the sequence space enriched with high affinity binders. BinderSpace is an open-source Python package that performs motif analysis, sequence space visualization, clustering analyses, and sequence extraction from clusters of interest. The motif analysis, resulting in text-based and visual output of motifs, can also provide heat maps of previously measured user-defined functional properties for all the motif-containing molecules. Users can also run principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) analyses on whole datasets and on motif-related subsets of the data. Functionally important sequences can also be highlighted in the resulting PCA and t-SNE maps. If points (sequences) in two-dimensional maps in PCA or t-SNE space form clusters, users can perform clustering analyses on their data, and extract sequences from clusters of interest. We demonstrate the use of BinderSpace on a dataset of oligonucleotides binding to single-wall carbon nanotubes in the presence and absence of a bioanalyte, and on a dataset of cyclic peptidomimetics binding to bovine carbonic anhydrase protein. BinderSpace is openly accessible to the public via the GitHub website: https://github.com/vukoviclab/BinderSpace.
Assuntos
Nanotubos de Carbono , Oligonucleotídeos , Animais , Bovinos , Peptídeos , Biologia Computacional , Análise de Sequência , AlgoritmosRESUMO
Accurately distinguishing between enantiomeric molecules is a fundamental challenge in the field of chemistry. However, there is still significant room for improvement in both the enantiomeric selectivity (KR(S) /KS(R) ) and binding strength of most reported macrocyclic chiral receptors to meet the demands of practical application scenarios. Herein, we synthesized a water-soluble conjugated tubular host-namely, corral[4]BINOL-using a chiral 1,1'-bi-2-naphthol (BINOL) derivative as the repeating unit. The conjugated chiral backbone endows corral[4]BINOL with good fluorescent emission (QY=34 % ) and circularly polarized luminescence (|glum | up to 1.4×10-3 ) in water. Notably, corral[4]BINOL exhibits high recognition affinity up to 8.6×1010 â M-1 towards achiral guests in water, and manifested excellent enantioselectivity up to 18.7 towards chiral substrates, both of which represent the highest values observed among chiral macrocycles in aqueous solution. The ultrastrong binding strength, outstanding enantioselectivity, and facile accessibility, together with the superior fluorescent and chiroptical properties, endow corral[4]BINOL with great potential for a wide range of applications.
RESUMO
Strong-binding host-guest pairings in aqueous media have potential as "supramolecular glues" in biomedical techniques, complementing the widely-used (strept)avidin-biotin combination. We have previously found that squaraine dyes are bound very strongly by tetralactam macrocycles possessing anthracenyl units as cavity walls. Here we show that replacing the anthracenes with pentacyclic 5,7,12,14-tetrahydro-5,7,12,14-tetraoxapentacene (TOP) units generates receptors which bind squaraines with increased affinities (around Ka =1010 â m-1 ) and improved selectivities. Binding can be followed through changes to squaraine fluorescence and absorbance. The TOP units are easy to prepare and potentially variable, while the TOP-based receptor shows improved photostability, both in itself and in complex with squaraines. The results suggest that this system could prove valuable in the further development of practical "synthavidin" chemistry.
RESUMO
Eukaryotic transcription factors are versatile mediators of specificity in gene regulation. This versatility is achieved through mutual specification by context-specific DNA binding on the one hand, and identity-specific protein-protein partnerships on the other. This interactivity, known as combinatorial control, enables a repertoire of complex transcriptional outputs that are qualitatively disjoint, or non-continuum, with respect to binding affinity. This feature contrasts starkly with prokaryotic gene regulators, whose activities in general vary quantitatively in step with binding affinity. Biophysical studies on prokaryotic model systems and more recent investigations on transcription factors highlight an important role for folded state dynamics and molecular hydration in protein/DNA recognition. Analysis of molecular models of combinatorial control and recent literature in low-affinity gene regulation suggest that transcription factors harbor unique conformational dynamics that are inaccessible or unused by prokaryotic DNA-binding proteins. Thus, understanding the intrinsic dynamics involved in DNA binding and co-regulator recruitment appears to be a key to understanding how transcription factors mediate non-continuum outcomes in eukaryotic gene expression, and how such capability might have evolved from ancient, structurally conserved counterparts.
Assuntos
Eucariotos , Regulação da Expressão Gênica , Proteínas de Ligação a DNA/genética , Eucariotos/genética , Eucariotos/metabolismo , Células Eucarióticas/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Nonlinear regression is widely used to fit experimental data to a specific mathematical model to extract numerical values for parameters representing the studied process. However, assessing the degree of precision that can be expected from such an analysis for a given parameter can be quite challenging for complex mathematical models. To address this issue, we propose here a method based on the analysis of a large number of data sets generated in such a way to mimic specific experimental conditions. Applying this methodology to high-affinity binding models, we report here a quantitative analysis of the robustness of such models, and how the precision on the fitting parameters can be expected to vary based on, e.g., the initial experimental conditions, the number or distribution of experimental points, or the experimental variability. We also show that these models, although widely used, are intrinsically limited by the fact that the two main fitting parameters, one representing the concentration of the studied species and the other its affinity, are inversely correlated, but demonstrate that this limitation can be overcome by global analysis of multiple data series generated at different concentrations of the titrated species.
Assuntos
Modelos BiológicosRESUMO
Transcription factors (TFs) control gene expression by binding to genomic DNA in a sequence-specific manner. Mutations in TF binding sites are increasingly found to be associated with human disease, yet we currently lack robust methods to predict these sites. Here, we developed a versatile maximum likelihood framework named No Read Left Behind (NRLB) that infers a biophysical model of protein-DNA recognition across the full affinity range from a library of in vitro selected DNA binding sites. NRLB predicts human Max homodimer binding in near-perfect agreement with existing low-throughput measurements. It can capture the specificity of the p53 tetramer and distinguish multiple binding modes within a single sample. Additionally, we confirm that newly identified low-affinity enhancer binding sites are functional in vivo, and that their contribution to gene expression matches their predicted affinity. Our results establish a powerful paradigm for identifying protein binding sites and interpreting gene regulatory sequences in eukaryotic genomes.
Assuntos
Pegada de DNA/métodos , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Animais , Sítios de Ligação , Conjuntos de Dados como Assunto , Proteínas de Drosophila/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Elementos Facilitadores Genéticos , Biblioteca Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismoRESUMO
The HMG-box protein Capicua (Cic) is a conserved transcriptional repressor that functions downstream of receptor tyrosine kinase (RTK) signaling pathways in a relatively simple switch: In the absence of signaling, Cic represses RTK-responsive genes by binding to nearly invariant sites in DNA, whereas activation of RTK signaling down-regulates Cic activity, leading to derepression of its targets. This mechanism controls gene expression in both Drosophila and mammals, but whether Cic can also function via other regulatory mechanisms remains unknown. Here, we characterize an RTK-independent role of Cic in regulating spatially restricted expression of Toll/IL-1 signaling targets in Drosophila embryogenesis. We show that Cic represses those targets by binding to suboptimal DNA sites of lower affinity than its known consensus sites. This binding depends on Dorsal/NF-κB, which translocates into the nucleus upon Toll activation and binds next to the Cic sites. As a result, Cic binds to and represses Toll targets only in regions with nuclear Dorsal. These results reveal a mode of Cic regulation unrelated to the well-established RTK/Cic depression axis and implicate cooperative binding in conjunction with low-affinity binding sites as an important mechanism of enhancer regulation. Given that Cic plays a role in many developmental and pathological processes in mammals, our results raise the possibility that some of these Cic functions are independent of RTK regulation and may depend on cofactor-assisted DNA binding.
Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/genética , Proteínas HMGB/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Drosophila/embriologia , Drosophila/enzimologia , Drosophila/metabolismo , Proteínas de Drosophila/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas HMGB/genética , Masculino , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Regiões Promotoras Genéticas , Receptores Proteína Tirosina Quinases/genética , Proteínas Repressoras/genética , Receptores Toll-Like/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Immobilization of enzymes provides many benefits, including facile separation and recovery of enzymes from reaction mixtures, enhanced stability, and co-localization of multiple enzymes. Calcium-phosphate-protein supraparticles imbued with a leucine zipper binding domain (ZR ) serve as a modular immobilization platform for enzymes fused to the complementary leucine zipper domain (ZE ). The zippers provide high-affinity, specific binding, separating enzymatic activity from the binding event. Using fluorescent model proteins (mCherryZE and eGFPZE ), an amine dehydrogenase (AmDHZE ), and a formate dehydrogenase (FDHZE ), the efficacy of supraparticles as a biocatalytic solid support was assessed. Supraparticles demonstrated several benefits as an immobilization support, including predictable loading of multiple proteins, structural integrity in a panel of solvents, and the ability to elute and reload proteins without damaging the support. The dual-enzyme reaction successfully converted ketone to amine on supraparticles, highlighting the efficacy of this system.
Assuntos
Fosfatos de Cálcio/química , Enzimas Imobilizadas/química , Sítios de Ligação , Estabilidade Enzimática , Formiato Desidrogenases/química , Proteínas de Fluorescência Verde/química , Zíper de Leucina , Proteínas Luminescentes/química , Oxirredutases/química , Proteína Vermelha FluorescenteRESUMO
CD20 molecule, a phosphoprotein with 297 amino acids and four transmembrane domains, is a member of MS4A protein family. Anti-CD20 antibodies such as ofatumumab, which have been developed for cancer treatment and has demonstrated efficacy in relapsed/refractory chronic lymphocytic leukemia, are among the most successful therapies to date. Rational engineering methods can be applied with reasonable success to improve functional characteristics of antibodies. Considering the importance of this issue, we have used in silico modeling approach for the improvement of ofatumumab monoclonal antibody. Four mutated variants of ofatumumab were developed and expressed in Chinese hamster ovary (CHO) cells along with the unmodified antibody. Analysis of affinity of the purified antibodies with CD20 showed significant improvement in antigen-binding characteristics of one of the variants compared with the control antibody. This study represents the first step toward development of the second generation ofatumumab antibody with improved affinity.
Assuntos
Anticorpos Monoclonais Humanizados/genética , Anticorpos Monoclonais Humanizados/imunologia , Afinidade de Anticorpos/imunologia , Antígenos CD20/imunologia , Desenho de Fármacos , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Antígenos CD20/química , Linfócitos B/imunologia , Células CHO , Cricetulus , Ensaio de Imunoadsorção Enzimática , Vetores Genéticos/genética , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Leves de Imunoglobulina/genética , Cinética , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Proteínas Mutantes , Mutação , Plasmídeos/genética , Plasmídeos/imunologia , Ressonância de Plasmônio de Superfície , TransfecçãoRESUMO
Enzyme immobilization is widely used for large-scale industrial applications. However, the weak absorption through physical methods limits the recovery ability. Here, affinity-binding immobilization of enzymes was explored using a silica-specific affinity peptide (SAP) as a fusion tag to intensify the binding force between the enzyme and mesoporous silica (MPS) carrier. D-amino acid oxidase (DAAO) of Rhodosporidium toruloides was used as a model enzyme. The optimal screened SAP (LPHWHPHSHLQP) was selected from a M13 phage display peptide library and fused to the C-terminal of DAAO to obtain fused DAAOs with one, two and three SAP tags, respectively. The activity of DAAO-SAP-MPS was superior comparing with DAAO-2SAP-MPS and DAAO-3SAP-MPS; meanwhile DAAO-SAP-MPS shows 36% higher activity than that of DAAO-MPS. Fusion with one SAP improved the thermal stability with a 10% activity increase for immobilized DAAO-SAP-MPS compared to that of DAAO-MPS at 50 °C for 3 h. Moreover, the activity recovery of immobilized DAAO-SAP-MPS was 25% higher in operation stability assessment after six-batch conversions of cephalosporin to glutaryl-7-amino cephalosporanic acid than that of DAAO-MPS.
Assuntos
Aminoácidos/metabolismo , D-Aminoácido Oxidase/metabolismo , Peptídeos/metabolismo , Cefalosporinas/metabolismo , D-Aminoácido Oxidase/genética , Dióxido de Silício/químicaRESUMO
Osteochondral defects (OCDs) are conditions affecting both cartilage and the underlying bone. Since cartilage is not spontaneously regenerated, our group has recently developed a strategy of injecting bioactive alginate hydrogel into the defect for promoting endogenous regeneration of cartilage via presentation of affinity-bound transforming growth factor ß1 (TGF-ß1). As in vivo model systems often provide only limited insights as for the mechanism behind regeneration processes, here we describe a novel flow bioreactor for the in vitro modeling of the OCD microenvironment, designed to promote cell recruitment from the simulated bone marrow compartment into the hydrogel, under physiological flow conditions. Computational fluid dynamics modeling confirmed that the bioreactor operates in a relevant slow-flowing regime. Using a chemotaxis assay, it was shown that TGF-ß1 does not affect human mesenchymal stem cell (hMSC) chemotaxis in 2D culture. Accessible through live imaging, the bioreactor enabled monitoring and discrimination between erosion rates and profiles of different alginate hydrogel compositions, using green fluorescent protein-expressing cells. Mathematical modeling of the erosion front progress kinetics predicted the erosion rate in the bioreactor up to 7 days postoperation. Using quantitative real-time polymerase chain reaction of early chondrogenic markers, the onset of chondrogenic differentiation in hMSCs was detected after 7 days in the bioreactor. In conclusion, the designed bioreactor presents multiple attributes, making it an optimal device for mechanistical studies, serving as an investigational tool for the screening of other biomaterial-based, tissue engineering strategies.
Assuntos
Doenças das Cartilagens/terapia , Cartilagem Articular/fisiologia , Hidrogel de Polietilenoglicol-Dimetacrilato/administração & dosagem , Microscopia Intravital/métodos , Modelos Teóricos , Reatores Biológicos , Células Cultivadas , Quimiotaxia , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Regeneração , Fator de Crescimento Transformador beta/metabolismoRESUMO
Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins and draws great concern in health and food safety. A DNA aptamer against AFB1 having a stem-loop structure shows high binding affinity to AFB1 and promise in assay development for AFB1 detection. Based on the structure-switching property of the aptamer, we report an aptamer fluorescence assay for AFB1 detection. Aptamer with fluorescein (FAM) label at 5' end was used as affinity ligand, while its short complementary DNA (cDNA) with BHQ1 (black hole quencher 1) label at 3' end was used as a quencher. In the absence of AFB1, FAM-labeled aptamer hybridized with BHQ1-labeled cDNA, forming a duplex of cDNA and aptamer, resulting in fluorescence quenching of FAM. When AFB1 bound with aptamer, the BHQ1-labeled cDNA was displaced from aptamer, causing fluorescence restoration of FAM. We tested a series of FAM-labeled aptamers and BHQ1-labeled cDNAs with different lengths. The lengths of the aptamer stem and the cDNA, Mg2+ in binding buffer, and temperature had significant influence on the performance of the assay. Under optimized conditions, we achieved sensitive detection of AFB1 by using a 29-mer FAM-labeled aptamer and a 14-mer BHQ1-labeled cDNA, and the detection limit of AFB1 reached 0.2 nM. The maximum fluorescence recovery rate of FAM-labeled aptamer caused by AFB1 was about 69-fold. This method enabled the detection of AFB1 in complex sample matrix, e.g., diluted wine samples and maize flour samples. This aptamer-based fluorescent assay for AFB1 determination shows potential for broad applications. Graphical abstract á .
Assuntos
Aflatoxina B1/análise , Alcanossulfonatos/análise , Aptâmeros de Nucleotídeos/química , Compostos Azo/análise , DNA Complementar/química , Fluoresceína/química , Corantes Fluorescentes/química , Venenos/análise , Limite de DetecçãoRESUMO
BACKGROUND: Natural mutations of R218 in human serum albumin (HSA) result in an increased affinity for L-thyroxine and lead to the autosomal dominant condition of familial dysalbuminemic hyperthyroxinemia. METHODS: Binding was studied by equilibrium dialysis and computer modeling. RESULTS: Ten of 32 other isoforms tested had modified high-affinity hormone binding. L-thyroxine has been reported to bind to four sites (Tr) in HSA; Tr1 and Tr4 are placed in the N-terminal and C-terminal part of the protein, respectively. Site-directed mutagenesis gave new information about all the sites. CONCLUSIONS: It is widely assumed that Tr1 is the primary hormone site, and that this site, on a modified form, is responsible for the above syndrome, but the binding experiments with the genetic variants and displacement studies with marker ligands indicated that the primary site is Tr4. This new assignment of the high-affinity site was strongly supported by results of MM-PBSA analyses and by molecular docking performed on relaxed protein structure. However, dockings also revealed that mutating R218 for a smaller amino acid increases the affinity of Tr1 to such an extent that it can become the high-affinity site. GENERAL SIGNIFICANCE: Placing the high-affinity binding site (Tr4) and the one which can result in familial dysalbuminemic hyperthyroxinemia (Tr1) in two very different parts of HSA is not trivial, because in this way persons with and without the syndrome can have different types of interactions, and thereby complications, when given albumin-bound drugs. The molecular information is also useful when designing drugs based on L-thyroxine analogues.
Assuntos
Hipertireoxinemia Disalbuminêmica Familiar , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Albumina Sérica/química , Tiroxina/química , Sítios de Ligação , Albumina Sérica/genética , Albumina Sérica/metabolismo , Tiroxina/metabolismoRESUMO
The development of sorbents for selective binding of cholesterol, which is a risk factor for cardiovascular disease, has a great importance for analytical science and medicine. In this work, two series of macroporous cholesterol-imprinted monolithic sorbents differing in the composition of functional monomers (methacrylic acid, butyl methacrylate, 2-hydroxyethyl methacrylate and ethylene dimethacrylate), amount of a template (4, 6 and 8 mol%) used for molecular imprinting, as well as mean pore size were synthesized by in situ free-radical process in stainless steel housing of 50 mm × 4.6 mm i.d. All prepared materials were characterized regarding to their hydrodynamic permeability and porous properties, as well as examined by BET and SEM methods. Imprinting factors, apparent dynamic dissociation constants, the maximum binding capacity, the number of theoretical plates and the height equivalent to a theoretical palate of MIP monoliths at different mobile phase flow rates were determined. The separation of a mixture of structural analogues, namely, cholesterol and prednisolone, was demonstrated. Additionally, the possibility of using the developed monoliths for cholesterol solid-phase extraction from simulated biological solution was shown.
Assuntos
Colesterol/análise , Colesterol/isolamento & purificação , Impressão Molecular/métodos , Extração em Fase Sólida/métodos , Colesterol/química , Cromatografia , Modelos Biológicos , PorosidadeRESUMO
The HIV-1 Pr55Gag precursor specifically selects genomic RNA (gRNA) from a large variety of cellular and spliced viral RNAs (svRNAs), however the molecular mechanisms of this selective recognition remains poorly understood. To gain better understanding of this process, we analyzed the interactions between Pr55Gag and a large panel of viral RNA (vRNA) fragments encompassing the main packaging signal (Psi) and its flanking regions by fluorescence spectroscopy. We showed that the gRNA harbors a high affinity binding site which is absent from svRNA species, suggesting that this site might be crucial for selecting the HIV-1 genome. Our stoichiometry analysis of protein/RNA complexes revealed that few copies of Pr55Gag specifically associate with the 5' region of the gRNA. Besides, we found that gRNA dimerization significantly impacts Pr55Gag binding, and we confirmed that the internal loop of stem-loop 1 (SL1) in Psi is crucial for specific interaction with Pr55Gag. Our analysis of gRNA fragments of different length supports the existence of a long-range tertiary interaction involving sequences upstream and downstream of the Psi region. This long-range interaction might promote optimal exposure of SL1 for efficient Pr55Gag recognition. Altogether, our results shed light on the molecular mechanisms allowing the specific selection of gRNA by Pr55Gag among a variety of svRNAs, all harboring SL1 in their first common exon.