Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(12): 8373-8383, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35635317

RESUMO

Indoor semivolatile organic compounds (SVOCs), present in the air, airborne particles, settled dust, and other indoor surfaces, can enter the human body through several pathways. Knowing the partitioning between gaseous and particulate phases is important in identifying specific pathway contributions and thereby accurately assessing human exposure. Numerous studies have developed equilibrium equations to predict airborne particle/gas (P/G) partitioning in air (KP) and dust/gas (D/G) partitioning in settled dust (KD). The assumption that P/G and D/G equilibria are instantaneous for airborne and settled dust phases, commonly adopted by current indoor fate models, is not likely valid for compounds with high octanol-air partition coefficients (KOA). Here, we develop steady-state based equations to predict KP and KD in the indoor environment. Results show that these equations perform well and are verified by worldwide monitoring data. It is suggested that instantaneous steady state could work for P/G and D/G partitioning of SVOCs in indoor environments, and the equilibrium is just a special case of the steady state when log KOA < 11.38 for P/G partitioning and log KOA < 10.38 for D/G partitioning. These newly developed equations and methods provide a tool for more accurate assessment for human exposure to SVOCs in the indoor environment.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Ácidos Ftálicos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Poeira/análise , Gases , Humanos
2.
Build Environ ; 207: 108543, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34776597

RESUMO

Social distancing is a key factor for health during the COVID-19 pandemic. In many indoor spaces, such as elevators, it is difficult to maintain social distancing. This investigation used computational-fluid-dynamics (CFD) to study airborne particle exposure in riding an elevator in a typical building with 35 floors. The elevator traveled from the ground floor to the 35th floor with two stops on floor 10 and floor 20, comprising 114 s. The CFD simulated the dispersion of the aerosolized particles exhaled by an index person while breathing in both lobby and elevator areas. The study calculated the accumulated dose of susceptible riders riding in elevators with the index person under different conditions including different ventilation rates, air supply methods, and elevator cab geometries. This investigation also studied a case with a single cough from the index person as the person entered the elevator. The results show that, due to the short duration of the average elevator ride, the number of particles inhaled by a susceptible rider was low. For the reference case with a 72 ACH (air changes per hour) ventilation rate, the highest accumulated particle dose by a susceptible passenger close to the index person was only 1.59. The cough would cause other riders to inhale approximately 8 orders of magnitude higher particle mass than from continuous breathing by the index person for the whole duration of the ride.

3.
Environ Res ; 200: 111752, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34302822

RESUMO

With the outbreak of Coronavirus (2019) (COVID-19), as of late March 2020, understanding how the cause of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) transmitted is one of the most important questions that researchers are seeking to answer; because this effort helps to reduce the spread of disease. The COVID-19 is highly transmissible and deadly. Despite "tracking the call" and carefully examining patient contact, it is not yet clear how the virus is transmitted from one sick person to another. Why it is so transmissible? Can viruses be transmitted through speech and exhalation aerosols? How far can these aerosols go? How long can an aerosol containing a virus stay in the air? Is the virus amount in these aerosols enough to lead to an infection? There is no consensus on aerosols' role in the transmission of SARS-CoV-2. Findings show that SARS-CoV-2 aerosol transmission is possible. Therefore, to effectively reduce SARS-CoV-2, precautionary control strategies for aerosol transfer should be considered. Our aim is to review the evidence of the aerosol transmission containing SARS-CoV-2.


Assuntos
COVID-19 , Aerossóis , Expiração , Humanos , SARS-CoV-2
4.
Environ Res ; 196: 110953, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33667474

RESUMO

Air pollution by airborne particles is a serious health problem worldwide. The present study was aimed at investigating the concentrations and composition of total suspended particles (TSPs) and PM2.5 at various industrial/commercial sites of Guangzhou, a megacity of Southern China. Major and trace elements, ions and carbonaceous fraction were determined and main components were calculated. In addition, in order to assess the potential toxic on the respiratory system of these PM, cytotoxicity of size-fractionated particles (PM10-5.6, PM5.6-3.3, PM3.3-1.1, PM1.1-0.43) for a human lung cancer cell line (A549) was also investigated. Correlations between PM constituents and toxicity were assessed. Median levels of TSPs and PM2.5 in industrial/commercial sites were 206 and 57.7 µg/m3, respectively. Nickel, Cu, Mo, Mn, Pb, and Ti were the most abundant metals in TSPs and PM2.5. Industrial activities and coal combustion were the most important sources of carbonaceous particles in the zone. MTT assays showed that PM10-5.6 and PM1.1-0.43 had the highest and the lowest cytotoxicity to A549 cell lines, respectively. Inhalable particles around the manufacturing of metal facilities and formal waste treatment plants showed a high cytotoxicity to A549 cell lines. In general terms, no significant correlations were found between main components of PM and toxicity. However, W showed a significant correlation with cell viability.


Assuntos
Poluentes Atmosféricos , Neoplasias Pulmonares , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Linhagem Celular , China , Monitoramento Ambiental , Humanos , Tamanho da Partícula , Material Particulado/análise , Material Particulado/toxicidade
5.
Environ Res ; 196: 110929, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33640498

RESUMO

According to the WHO, on October 16, 2020, the spreading of the SARS-CoV-2, responsible for the COVID-19 pandemic, reached 235 countries and territories, and resulting in more than 39 million confirmed cases and 1.09 million deaths globally. Monitoring of the virus outbreak is one of the main activities pursued to limiting the number of infected people and decreasing the number of deaths that have caused high pressure on the health care, social, and economic systems of different countries. Wastewater based epidemiology (WBE), already adopted for the surveillance of life style and health conditions of communities, shows interesting features for the monitoring of the COVID-19 diffusion. Together with wastewater, the analysis of airborne particles has been recently suggested as another useful tool for detecting the presence of SARS-CoV-2 in given areas. The present review reports the status of research currently performed concerning the monitoring of SARS-CoV-2 spreading by WBE and airborne particles. The former have been more investigated, whereas the latter is still at a very early stage, with a limited number of very recent studies. Nevertheless, the main results highlights in both cases necessitate more research activity for better understating and defining the biomarkers and the related sampling and analysis procedures to be used for this important aim.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , RNA Viral , Águas Residuárias
6.
Indoor Air ; 31(6): 2033-2048, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34297865

RESUMO

Burning candles release a variety of pollutants to indoor air, some of which are of concern for human health. We studied emissions of particles and gases from the stressed burning of five types of pillar candles with different wax and wick compositions. The stressed burning was introduced by controlled fluctuating air velocities in a 21.6 m3 laboratory chamber. The aerosol physicochemical properties were measured both in well-mixed chamber air and directly above the candle flame with online and offline techniques. All candles showed different emission profiles over time with high repeatability among replicates. The particle mass emissions from stressed burning for all candle types were dominated by soot (black carbon; BC). The wax and wick composition strongly influenced emissions of BC, PM2.5 , and particle-phase polycyclic aromatic hydrocarbons (PAHs), and to lower degree ultrafine particles, inorganic and organic carbon fraction of PM, but did not influence NOx , formaldehyde, and gas-phase PAHs. Measurements directly above the flame showed empirical evidence of short-lived strong emission peaks of soot particles. The results show the importance of including the entire burn time of candles in exposure assessments, as their emissions can vary strongly over time. Preventing stressed burning of candles can reduce exposure to pollutants in indoor air.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Humanos , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Fuligem
7.
Indoor Air ; 31(4): 1164-1177, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34080742

RESUMO

This study presents for the first time comprehensive measurements of the particle number size distribution (10 nm to 10 µm) together with next-generation sequencing analysis of airborne bacteria inside a dental clinic. A substantial enrichment of the indoor environment with new particles in all size classes was identified by both activities to background and indoor/outdoor (I/O) ratios. Grinding and drilling were the principal dental activities to produce new particles in the air, closely followed by polishing. Illumina MiSeq sequencing of 16S rRNA of bioaerosol collected indoors revealed the presence of 86 bacterial genera, 26 of them previously characterized as potential human pathogens. Bacterial species richness and concentration determined both by qPCR, and culture-dependent analysis were significantly higher in the treatment room. Bacterial load of the treatment room impacted in the nearby waiting room where no dental procedures took place. I/O ratio of bacterial concentration in the treatment room followed the fluctuation of I/O ratio of airborne particles in the biology-relevant size classes of 1-2.5, 2.5-5, and 5-10 µm. Exposure analysis revealed increased inhaled number of particles and microorganisms during dental procedures. These findings provide a detailed insight on airborne particles of both biotic and abiotic origin in a dental clinic.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Clínicas Odontológicas , Odontologia , Monitoramento Ambiental , Humanos , Tamanho da Partícula , RNA Ribossômico 16S
8.
Proc Natl Acad Sci U S A ; 115(10): E2386-E2392, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463703

RESUMO

Epidemics and pandemics of influenza are characterized by rapid global spread mediated by non-mutually exclusive transmission modes. The relative significance between contact, droplet, and airborne transmission is yet to be defined, a knowledge gap for implementing evidence-based infection control measures. We devised a transmission chamber that separates virus-laden particles by size and determined the particle sizes mediating transmission of influenza among ferrets through the air. Ferret-to-ferret transmission was mediated by airborne particles larger than 1.5 µm, consistent with the quantity and size of virus-laden particles released by the donors. Onward transmission by donors was most efficient before fever onset and may continue for 5 days after inoculation. Multiple virus gene segments enhanced the transmissibility of a swine influenza virus among ferrets by increasing the release of virus-laden particles into the air. We provide direct experimental evidence of influenza transmission via droplets and fine droplet nuclei, albeit at different efficiency.


Assuntos
Ar/análise , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/transmissão , Influenza Humana/virologia , Microbiologia do Ar , Animais , Furões , Humanos , Vírus da Influenza A Subtipo H1N1/química , Vírus da Influenza A Subtipo H1N1/genética , Masculino , Replicação Viral
9.
Ecotoxicol Environ Saf ; 214: 112071, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33690004

RESUMO

PM2.5 and PM10 samples were collected from the outdoor environment of five types of cities (provincial central cities, regional central cities, resource-based cities, agricultural cities, and forested cities) situated in Northeast China. Based on bioaccessibility and respiratory deposition fluxes, health risks of PM2.5- and PM10-bound six heavy metals [HM6: Arsenic (As), Chromium (Cr), Cadmium (Cd), Nickel (Ni), Cobalt (Co), and Lead (Pb)] were studied. Cobalt (Co) and Cr were found to be the most abundantly bioaccessible fraction among HM6 after extraction of simulated lung fluids. After inhalation exposure, among HM6, Co mainly contributed 88.39-93.19% to the non-carcinogenic risk, while Cr account for 82.92-93.72% of cancer risk. The estimated daily intake of bioaccessible HM6 in outdoor environment during the heating period was calculated to be 293.11 ± 121.03, 117.08 ± 32.46, 105.57 ± 32.49, 100.35 ± 25.58 and 83.11 ± 17.64 ng/h for provincial central cities, regional central cities, agricultural city, resource-based cities and forested cities, respectively, for local residents. During the heating period of 180 days, non-carcinogenic risks (As, Cr, Cd, Ni, Co) in outdoor environment of 0.5 residence time were below the safety threshold (HQ < 1). Cancer risks for Cr and Co were above 10-5 in the five types of cities, but in the assumable range (< 10-4). Our study highlighted the wide range of measures needed to cut airborne particles pollution to safer levels.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Poluição do Ar/estatística & dados numéricos , Arsênio , China , Cidades , Poluição Ambiental , Calefação , Humanos , Exposição por Inalação , Metais Pesados/análise , Medição de Risco , Estações do Ano
10.
Environ Geochem Health ; 43(9): 3533-3556, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33575968

RESUMO

The composition and distribution of airborne particles in different locations in a salt mine were determined in terms of their origin, the distance from the air inlet, and the adaptation of post-mining chambers and corridors for tourists and general audience. The composition of aerosols in air was also evaluated from the perspective of human health. Air samples were collected on filters by using portable air pumps, in a historical underground salt mine in Bochnia (Poland), which is currently a touristic and recreation attraction and sanatorium. The particulate matter (PM) concentration was determined using the gravimetric method by weighing quartz filters. The content of carbon, water-soluble constituents, trace elements, and minerals was also determined. A genetic classification of the suspended matter was proposed and comprised three groups: geogenic (fragments of rock salt and associated minerals from the deposit), anthropogenic (carbon-bearing particles from tourist traffic and small amounts of fly ash, soot, and rust), and biogenic particles (occasional pollen). The total PM concentration in air varied between 21 and 79 µg/m3 (with PM4 constituting 4-24 µg/m3). The amount of atmospheric dust components coming from the surface was low and decreased with the distance from the intake shaft, thus indicating the self-cleaning process. NaCl dominated the water-soluble constituents, while Fe, Al, Ag, Mn, and Zn dominated the trace elements, with the concentration of majority of them below 30 ng/m3. These metals are released into air from both natural sources and the wear or/and corrosion of mining and tourists facilities in the underground functional space. No potentially toxic elements or constituents were detected. The presence of salt particles and salty spray in the atmosphere of salt mine, which may have anti-inflammatory and antiallergic properties, is beneficial to human health. This study will allow for a broader look at the potential of halotherapy in underground salt mines from a medical and regulatory point of view.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Humanos , Mineração , Material Particulado/análise , Polônia , Cloreto de Sódio
11.
Clin Infect Dis ; 70(5): 850-858, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30963180

RESUMO

BACKGROUND: Respiratory virus-laden particles are commonly detected in the exhaled breath of symptomatic patients or in air sampled from healthcare settings. However, the temporal relationship of detecting virus-laden particles at nonhealthcare locations vs surveillance data obtained by conventional means has not been fully assessed. METHODS: From October 2016 to June 2018, air was sampled weekly from a university campus in Hong Kong. Viral genomes were detected and quantified by real-time reverse-transcription polymerase chain reaction. Logistic regression models were fitted to examine the adjusted odds ratios (aORs) of ecological and environmental factors associated with the detection of virus-laden airborne particles. RESULTS: Influenza A (16.9% [117/694]) and influenza B (4.5% [31/694]) viruses were detected at higher frequencies in air than rhinovirus (2.2% [6/270]), respiratory syncytial virus (0.4% [1/270]), or human coronaviruses (0% [0/270]). Multivariate analyses showed that increased crowdedness (aOR, 2.3 [95% confidence interval {CI}, 1.5-3.8]; P < .001) and higher indoor temperature (aOR, 1.2 [95% CI, 1.1-1.3]; P < .001) were associated with detection of influenza airborne particles, but absolute humidity was not (aOR, 0.9 [95% CI, .7-1.1]; P = .213). Higher copies of influenza viral genome were detected from airborne particles >4 µm in spring and <1 µm in autumn. Influenza A(H3N2) and influenza B viruses that caused epidemics during the study period were detected in air prior to observing increased influenza activities in the community. CONCLUSIONS: Air sampling as a surveillance tool for monitoring influenza activity at public locations may provide early detection signals on influenza viruses that circulate in the community.


Assuntos
Influenza Humana , Infecções Respiratórias , Hong Kong/epidemiologia , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/diagnóstico , Influenza Humana/epidemiologia , Estudos Longitudinais , Universidades
12.
Indoor Air ; 30(4): 725-734, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31953898

RESUMO

Persistent Organic Pollutants (POPs) are anthropogenic chemicals extensively used in the past for industrial and agricultural purposes, characterized by their lipophilicity, ubiquity, volatility and environmental persistence. By other hand, chlorpyrifos is the most widely used current pesticide (CUPs) being the main insecticide used for crops in Argentina. The aim of this work was to assess levels of POPs and CUPs in different fractions of airborne particles collected indoor in agricultural areas from Argentina. Particles higher than 2.5 µm were trapped in polyurethane foams (PUF) while particles smaller than 1 µm and volatile compounds were adsorbed on activated charcoal. Compounds were analyzed by gas chromatograph with electron capture detector (GC-ECD). Endosulfans, chlordanes, PCBs, and HCHs were detected in all PUF samples, while endosulfans, chlorpyrifos, PCBs, and HCHs were the most abundant in smaller particles. Majority of pesticides showed higher concentrations during the summer season (1397.7 vs 832.5 pg/m3 ). Even adding up all measured organic compounds, no sample reaches the threshold limit value for indoor pesticides levels (0.1 pg/m3 ), neither in the large or small particle fraction. However, the fact that chronic exposure to POPs has been linked to several diseases raises concern for human health.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Agricultura , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Argentina , Éteres Difenil Halogenados/análise , Praguicidas/análise , Bifenilos Policlorados/análise , Estações do Ano
13.
J Toxicol Environ Health A ; 82(11): 645-663, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31290376

RESUMO

Corian®, a solid-surface composite (SSC), is composed of alumina trihydrate and acrylic polymer. The aim of the present study was to examine the pulmonary toxicity attributed to exposure to SSC sawing dust. Male mice were exposed to either phosphate buffer saline (PBS, control), 62.5, 125, 250, 500, or 1000 µg of SSC dust, or 1000 µg silica (positive control) via oropharyngeal aspiration. Body weights were measured for the duration of the study. Bronchoalveolar lavage fluid (BALF) and tissues were collected for analysis at 1 and 14 days post-exposure. Enhanced-darkfield and histopathologic analysis was performed to assess particle distribution and inflammatory responses. BALF cells and inflammatory cytokines were measured. The geometric mean diameter of SSC sawing dust following suspension in PBS was 1.25 µm. BALF analysis indicated that lactate dehydrogenase (LDH) activity, inflammatory cells, and pro-inflammatory cytokines were significantly elevated in the 500 and 1000 µg SSC exposure groups at days 1 and 14, suggesting that exposure to these concentrations of SSC induced inflammatory responses, in some cases to a greater degree than the silica positive control. Histopathology indicated the presence of acute alveolitis at all doses at day 1, which was largely resolved by day 14. Alveolar particle deposition and granulomatous mass formation were observed in all exposure groups at day 14. The SSC particles were poorly cleared, with 81% remaining at the end of the observation period. These findings demonstrate that SSC sawing dust exposure induces pulmonary inflammation and damage that warrants further investigation. Abbreviations: ANOVA: Analysis of Variance; ATH: Alumina Trihydrate; BALF: Bronchoalveolar Lavage Fluid; Dpg: Geometric Mean Diameter; FE-SEM: Field Emission Scanning Electron Microscopy; IACUC: Institutional Animal Care and Use Committee; IFN-γ: Interferon Gamma; IL-1 Β: Interleukin-1 Beta; IL-10: Interleukin-10; IL-12: Interleukin-12; IL-2: Interleukin-2; IL-4: Interleukin-4; IL-5: Interleukin-5; IL-6: Interleukin-6; KC/GRO: Neutrophil-Activating Protein 3; MMAD: Mass Median Aerodynamic Diameter; PBS: Phosphate-Buffered Saline; PEL: Permissible Exposure Limit; PM: Polymorphonuclear Leukocytes; PNOR: Particles Not Otherwise Regulated; SEM/EDX: Scanning Electron Microscope/Energy-Dispersive X-Ray; SSA: Specific Surface Area; SSC: Solid Surface Composite; TNFα: Tumor Necrosis Factor-Alpha; VOC: Volatile Organic Compounds; σg: Geometric Standard Deviation.


Assuntos
Poeira , Pneumopatias/induzido quimicamente , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Materiais de Construção , Citocinas/química , Citocinas/metabolismo , Inflamação/induzido quimicamente , Exposição por Inalação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Organismos Livres de Patógenos Específicos
14.
Lett Appl Microbiol ; 68(3): 206-211, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30578733

RESUMO

Indoor air can spread pathogens, which can be removed/inactivated by a variety of means in healthcare and other settings. We quantitatively assessed if air decontamination could also simultaneously reduce environmental surface contamination in the same setting. Two types of vegetative bacteria (Staphylococcus aureus and Acinetobacter baumannii), and a bacterial spore-former (Geobacillus stearothermophilus) were tested as representative airborne bacteria. They were separately aerosolized with a Collison nebulizer into a 24-m3 aerobiology chamber and air samples collected with a programmable slit-to-agar sampler. Settling airborne particles were collected on culture plates placed at, and collected from, five different locations on the floor of the chamber with a custom-built remote plate-placement and -retriever system. Experimentally contaminated air in the chamber was decontaminated for 45 min with a device based on HEPA filtration and UV light. The plates were incubated and CFU counted. The device reduced the viability levels of all tested bacteria in the air by >3 log10 (>99·9%) in 45 min. Based on two separate tests, the average reductions in surface contamination for S. aureus, A. baumannii and G. stearothermophilus were respectively, 97, 87 and 97%. We thus showed that air decontamination could substantially and simultaneously reduce the levels of surface contamination in the same setting irrespective of the type of pathogen present. SIGNIFICANCE AND IMPACT OF THE STUDY: The innovative and generic test protocol described can quantitatively assess the reduction in environmental surface contamination from microbial decontamination of indoor air in the same setting. This added advantage from air decontamination has implications for infection prevention and control in healthcare and other settings without the need for additional expense or effort. Continuous operation of an air decontamination device, such as the one tested here, can lead to ongoing reductions in pathogens in air and on environmental surfaces.


Assuntos
Acinetobacter baumannii/crescimento & desenvolvimento , Poluição do Ar em Ambientes Fechados/análise , Descontaminação/métodos , Geobacillus stearothermophilus/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Microbiologia do Ar , Contagem de Colônia Microbiana , Filtração , Humanos , Esporos/crescimento & desenvolvimento , Raios Ultravioleta
15.
Ecotoxicol Environ Saf ; 178: 211-220, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31009927

RESUMO

Due to similar aerodynamic and micro-nano sized properties between airborne particles and synthetic nanoparticles, a large number of studies have been conducted using carbon-based particles, such as carbon black (CB), carbon nanotubes and graphite, in order to achieve deeper understandings of their adverse effects on human health. It has been reported that particulate matters can aggravate morbidity of patients suffering from bone and joint diseases, e.g. arthritis. However, the molecular mechanism is still elusive thus far. Under this context, we employed two cell lines of osteoblasts, MC3T3-E1 and MG-63, upon exposure to 4 different CB samples with differential physicochemical properties in research of mechanistic insights. Our results indicated that the carbon/oxygen ratio differed in these 4 CB materials showing the order: SB4A < Printex U < C1864 < C824455. In stark contrast, their cytotoxicity and capacity to trigger reactive oxygen species (ROS) in MC3T3-E1 and MG-63 cells closely correlated to oxygen content, revealing the reverse order: SB4A < Printex U < C1864 < C824455. It would be reasonable to speculate that ROS production was a predominant cause of CB cytotoxicity, which strongly relied on the oxygen content of CB. Our study further manifested that all CB samples even at low concentrations significantly inhibited osteoblast differentiation, as reflected by remarkably reduced activity of alkaline phosphatase (ALP) and compromised expression of the differentiation-related genes. And the inhibition on osteoblast differentiation also closely correlated to oxygen content of CB samples. Taken together, our combined data recognized oxygen-associated toxicity towards osteoblasts for CBs. More importantly, we uncovered a new adverse effect of CB exposure: suppression on osteoblast differentiation, which has been overlooked in the past.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Nanopartículas/toxicidade , Osteoblastos/efeitos dos fármacos , Material Particulado/toxicidade , Fuligem/toxicidade , Fosfatase Alcalina/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Camundongos , Nanopartículas/química , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Tamanho da Partícula , Material Particulado/química , Espécies Reativas de Oxigênio/metabolismo , Fuligem/química , Propriedades de Superfície
16.
J Occup Environ Hyg ; 15(5): 363-375, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29341859

RESUMO

Understanding of indoor air quality (IAQ) during and after spray polyurethane foam (SPF) application is essential to protect the health of both workers and building occupants. Previous efforts such as field monitoring, micro-chamber/spray booth emission studies, and fate/transport modeling have been conducted to understand the chemical exposure of SPF and guide risk mitigation strategies. However, each type of research has its limitation and can only reveal partial information on the relationship between SPF and IAQ. A comprehensive study is truly needed to integrate the experimental design and analytical testing methods in the field/chamber studies with the mathematical tools employed in the modeling studies. This study aims to bridge this gap and provide a more comprehensive understanding on the impact of SPF to IAQ. The field sampling plan of this research aims to evaluate the airborne concentrations of methylene diphenyl diisocyanate (MDI), formaldehyde, acetaldehyde, propionaldehyde, tris(1-chlor-2-propyl)phosphate (TCPP), trans-1-chloro-3,3,3-trifluoropropene (SolsticeTM), and airborne particles. Modifications to existing MDI sampling and analytical methods were made so that level of quantification was improved. In addition, key fate and transport modeling input parameters such as air changes per hour and airborne particle size distribution were measured. More importantly, TCPP accumulation onto materials was evaluated, which is important to study the fate and transport of semi-volatile organic compounds. The IAQ results showed that after spray application was completed in the entire building, airborne concentrations decreased for all chemicals monitored. However, it is our recommendation that during SPF application, no one should return to the application site without proper personal protection equipment as long as there are active spray activities in the building. The comparison between this field study and a recent chamber study proved surface sorption and particle deposition is an important factor in determining the fate of airborne TCPP. The study also suggests the need for further evaluation by employing mathematical models, proving the data generated in this work as informative to industry and the broader scientific community.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Exposição Ocupacional/análise , Poliuretanos , Aldeídos/análise , Clorofluorcarbonetos/análise , Indústria da Construção , Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Habitação , Isocianatos/análise , Compostos Organofosforados/análise , Tamanho da Partícula , Material Particulado/análise
17.
Part Fibre Toxicol ; 14(1): 10, 2017 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-28388961

RESUMO

BACKGROUND: Exposure to airborne particles has a major impact on global health. The probability of these particles to deposit in the respiratory tract during breathing is essential for their toxic effects. Observations have shown that there is a substantial variability in deposition between subjects, not only due to respiratory diseases, but also among individuals with healthy lungs. The factors determining this variability are, however, not fully understood. METHOD: In this study we experimentally investigate factors that determine individual differences in the respiratory tract depositions of inhaled particles for healthy subjects at relaxed breathing. The study covers particles of diameters 15-5000 nm and includes 67 subjects aged 7-70 years. A comprehensive examination of lung function was performed for all subjects. Principal component analyses and multiple regression analyses were used to explore the relationships between subject characteristics and particle deposition. RESULTS: A large individual variability in respiratory tract deposition efficiency was found. Individuals with high deposition of a certain particle size generally had high deposition for all particles <3500 nm. The individual variability was explained by two factors: breathing pattern, and lung structural and functional properties. The most important predictors were found to be breathing frequency and anatomical airway dead space. We also present a linear regression model describing the deposition based on four variables: tidal volume, breathing frequency, anatomical dead space and resistance of the respiratory system (the latter measured with impulse oscillometry). CONCLUSIONS: To understand why some individuals are more susceptible to airborne particles we must understand, and take into account, the individual variability in the probability of particles to deposit in the respiratory tract by considering not only breathing patterns but also adequate measures of relevant structural and functional properties.


Assuntos
Poluentes Atmosféricos/farmacocinética , Exposição por Inalação/análise , Pulmão/efeitos dos fármacos , Material Particulado/farmacocinética , Respiração/efeitos dos fármacos , Adulto , Idoso , Poluentes Atmosféricos/toxicidade , Variação Biológica Individual , Criança , Feminino , Humanos , Exposição por Inalação/efeitos adversos , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Tamanho da Partícula , Material Particulado/toxicidade , Análise de Componente Principal , Testes de Função Respiratória , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/metabolismo , Distribuição Tecidual , Adulto Jovem
18.
Indoor Air ; 27(5): 988-1000, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28303606

RESUMO

Fluorescent particles can be markers of bioaerosols and are therefore relevant to nosocomial infections. To date, little research has focused on fluorescent particles in occupied indoor environments, particularly hospitals. In this study, we aimed to determine the spatial and temporal variation of fluorescent particles in two large hospitals in Brisbane, Australia (one for adults and one for children). We used an Ultraviolet Aerodynamic Particle Sizer (UVAPS) to identify fluorescent particle sources, as well as their contribution to total particle concentrations. We found that the average concentrations of both fluorescent and non-fluorescent particles were higher in the adults' hospital (0.06×106 and 1.20×106  particles/m3 , respectively) than in the children's hospital (0.03×106 and 0.33×106  particles/m3 , respectively) (P<.01). However, the proportion of fluorescent particles was higher in the children's hospital. Based on the concentration results and using activity diaries, we were able to identify sources of particle production within the two hospitals. We demonstrated that particles can be easily generated by a variety of everyday activities, which are potential sources of exposure to pathogens. Future studies to further investigate their role in nosocomial infection are warranted.


Assuntos
Aerossóis/análise , Microbiologia do Ar , Poluição do Ar em Ambientes Fechados/análise , Infecção Hospitalar/transmissão , Fluorescência , Hospitais/classificação , Austrália , Monitoramento Ambiental , Fatores de Tempo
19.
Build Environ ; 121: 79-92, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32287972

RESUMO

An urgent demand of assessing passengers' exposure risks in airliner cabins was raised as commercial airliners are one of the major media that carrying and transmitting infectious disease worldwide. In this study, simulations were conducted using a Boeing 737 cabin model to study the transport characteristics of airborne droplets and the associated infection risks of passengers. The numerical results of the airflow field were firstly compared against the experimental data in the literature to validate the reliability of the simulations. Airborne droplets were assumed to be released by passengers through coughing and their transport characteristics were modelled using the Lagrangian approach. Numerical results found that the particle travel distance was very sensitive to the release locations, and the impact was more significant along the longitudinal and horizontal directions. Particles released by passengers sitting next to the windows could travel much further than the others. A quantifiable approach was then applied to assess the individual infection risks of passengers. The key particle transport information such as the particle residence time yielded from the Lagrangian tracking process was extracted and integrated into the Wells-Riley equation to estimate the risks of infection. Compared to the Eulerian-based approach, the Lagrangian-based approach presented in this study is more robust as it addresses both the particle concentration and particle residence time in the breathing zone of every individual passenger.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA