Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Neurobiol Dis ; 184: 106226, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37451474

RESUMO

Loss of dopaminergic midbrain neurons perturbs l-serine and d-serine homeostasis in the post-mortem caudate putamen (CPu) of Parkinson's disease (PD) patients. However, it is unclear whether the severity of dopaminergic nigrostriatal degeneration plays a role in deregulating serine enantiomers' metabolism. Here, through high-performance liquid chromatography (HPLC), we measured the levels of these amino acids in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and MPTP-plus-probenecid (MPTPp)-treated mice to determine whether and how dopaminergic midbrain degeneration affects the levels of serine enantiomers in various basal ganglia subregions. In addition, in the same brain regions, we measured the levels of key neuroactive amino acids modulating glutamatergic neurotransmission, including l-glutamate, glycine, l-aspartate, d-aspartate, and their precursors l-glutamine, l-asparagine. In monkeys, MPTP treatment produced severe denervation of nigrostriatal dopaminergic fibers (⁓75%) and increased the levels of serine enantiomers in the rostral putamen (rPut), but not in the subthalamic nucleus, and the lateral and medial portion of the globus pallidus. Moreover, this neurotoxin significantly reduced the protein expression of the astrocytic serine transporter ASCT1 and the glycolytic enzyme GAPDH in the rPut of monkeys. Conversely, concentrations of d-serine and l-serine, as well as ASCT1 and GAPDH expression were unaffected in the striatum of MPTPp-treated mice, which showed only mild dopaminergic degeneration (⁓30%). These findings unveil a link between the severity of dopaminergic nigrostriatal degeneration and striatal serine enantiomers concentration, ASCT1 and GAPDH expression. We hypothesize that the up-regulation of d-serine and l-serine levels occurs as a secondary response within a homeostatic loop to support the metabolic and neurotransmission demands imposed by the degeneration of dopaminergic neurons.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Serina , Camundongos , Animais , Serina/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Dopamina/metabolismo , Corpo Estriado/metabolismo , Mesencéfalo/metabolismo , Aminoácidos/metabolismo , Putamen/metabolismo , Homeostase
2.
Neurochem Res ; 46(9): 2359-2375, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34146194

RESUMO

Long-term potentiation (LTP) is a neurobiological mechanism of cognitive function, and the N-methyl-D-aspartate (NMDA) receptors is fundamental for LTP. Previous studies showed that over activation of NMDA receptors may be a crucial cause of LTP and cognitive impairment induced by stress or corticosterone. However, other studies showed that the function of NMDA receptors is insufficient since the NMDA receptors co-agonist D-serine could improve stress-induced cognitive impairment. The purpose of this study is to clarify whether over activation of NMDA receptors or hypofunction of NMDA receptors is involved in hippocampal impairment of LTP by corticosterone and the underlying mechanisms. Results showed that hippocampal LTP and object location recognition memory were impaired in corticosterone-treated mice. Corticosterone increased the glutamate level in hippocampal tissues, neither NMDA receptors antagonist nor its subtype antagonists alleviated impairment of LTP, while enhancing the function of NMDA receptors by D-serine did alleviate impairment of LTP by corticosterone, suggesting that hypofunction of NMDA receptors might be one of the main reasons for impairment of LTP by corticosterone. Further results showed that the level of D-serine and its precursor L-serine did not change. D-serine release-related protein Na+-independent alanine-serine-cysteine transporter-1 (ASC-1) in the cell membrane was decreased and increasing D-serine release by the selective activator of ASC-1 antiporter activity alleviated impairment of LTP by corticosterone. Taken together, this study demonstrates that hypofunction of NMDA receptors may be involved in impairment of LTP by corticosterone and reduced D-serine release may be an important reason for its hypofunction, which is an important complement to existing mechanisms of corticosterone-induced LTP and cognitive impairment.


Assuntos
Corticosterona/farmacologia , Giro Denteado/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Via Perfurante/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo , Animais , Giro Denteado/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Teste de Campo Aberto/efeitos dos fármacos , Via Perfurante/metabolismo , Fenóis/farmacologia , Piperidinas/farmacologia , Quinolonas/farmacologia , Quinoxalinas/farmacologia , Serina/farmacologia
3.
Microvasc Res ; 117: 16-21, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29247719

RESUMO

l-Arginine is required for regulating synapse formation/patterning and angiogenesis in the developing brain. We hypothesized that this requirement would be met by increased transporter-mediated supply across the blood-brain barrier (BBB). Thus, the purpose of this work was to test the idea that elevation of blood-to-brain l-arginine transport across the BBB in the postnatal period coincides with up-regulation of cationic acid transporter 1 (CAT1) expression in developing brain capillaries. We found that the apparent brain-to-plasma concentration ratio (Kp, app) of l-arginine after intravenous administration during the first and second postnatal weeks was 2-fold greater than that at the adult stage. Kp, app of l-serine was also increased at the first postnatal week. In contrast, Kp, app of d-mannitol, a passively BBB-permeable molecule, did not change, indicating that increased transport of l-arginine and l-serine is not due to BBB immaturity. Double immunohistochemical staining of CAT1 and a marker protein, glucose transporter 1, revealed that CAT1 was localized on both luminal and abluminal membranes of brain capillary endothelial cells during the developmental and adult stages. A dramatic increase in CAT1 expression in the brain was seen at postnatal day 7 (P7) and day 14 (P14) and the expression subsequently decreased as the brain matured. In accordance with this, intense immunostaining of CAT1 was observed in brain capillaries at P7 and P14. These findings strongly support our hypothesis and suggest that the supply of blood-born l-arginine to the brain via CAT1 at the BBB plays a key role in meeting the elevated demand for l-arginine in postnatal brain.


Assuntos
Arginina/metabolismo , Barreira Hematoencefálica/metabolismo , Capilares/metabolismo , Transportador 1 de Aminoácidos Catiônicos/metabolismo , Células Endoteliais/metabolismo , Fatores Etários , Animais , Arginina/administração & dosagem , Arginina/sangue , Transporte Biológico , Barreira Hematoencefálica/embriologia , Capilares/embriologia , Transportador 1 de Aminoácidos Catiônicos/genética , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Injeções Intravenosas , Masculino , Ratos Wistar , Regulação para Cima
4.
Br J Nutr ; : 1-7, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27839528

RESUMO

Arginine is a multifaceted amino acid that is critical to the normal physiology of the gastrointestinal tract. Oral arginine administration has been shown to improve mucosal recovery following intestinal injury. The present study investigated the influence of extracellular arginine concentrations on epithelial cell barrier regulation and nutrition uptake by porcine small intestinal epithelial cell line (IPEC-J2). The results show that reducing arginine concentration from 0·7 to 0·2 mm did not affect the transepithelial electrical resistance value, tight-junction proteins (claudin-1, occludin, E-cadherin), phosphorylated extracellular signal-regulated protein kinases (p-ERK) and mucin-1 expression. Furthermore, reducing arginine concentration stimulated greater expression of cationic amino acid transporter (CAT1), excitatory amino acid transporter (EAAT3) and alanine/serine/cysteine transporter (ASCT1) mRNA by IPEC-J2 cells, which was verified by elevated efficiency of amino acid uptake. Glucose consumption by IPEC-J2 cells treated with 0·2 mm-arginine remained at the same physiological level to guarantee energy supply and to maintain the cell barrier. This experiment implied that reducing arginine concentration is feasible in IPEC-J2 cells guaranteed by nutrient uptake and cell barrier function.

5.
Exp Eye Res ; 116: 219-26, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24056007

RESUMO

In this study we have sought to identify whether cystine uptake mechanisms previously identified in the rat lens are also found in the human lens. Using a combination of reverse transcriptase PCR, Western blotting and immunohistochemistry, we show that the light chain subunit of the cystine/glutamate exchanger (XC-), xCT, and members of the glutamate transporter family (XAG) which include the Excitatory Amino Acid Transporter 4 (EAAT4) and the Alanine Serine Cysteine Transporter 2 (ASCT2) are all present at the transcript and protein level in human lenses. We demonstrate that in young lenses xCT, EAAT4 and ASCT2 are expressed in all regions indicating that a potential cystine uptake pathway similar to that found in the rat might also exist in human lenses. However, with increasing age, the immunolabeling for all transporters decreases, with no xCT labelling detected in the centre of old donor lenses. Our results show that XC- and EAAT4/ASCT2 may work together to mediate cystine uptake in the lens core of young human lenses. This suggests that the lens contains uptake mechanisms that are capable of accumulating cystine/cysteine in the lens centre where cysteine can be used as an antioxidant or cystine utilised as a source for protein-S-S-cysteine (PSSC) formation to buffer against oxidative stress. With increasing age, transporters in the lens core undergo age dependent post translational modifications. However, despite processing of these transporters with age, our results indicate that this cystine uptake pathway could account for the increased PSSC levels previously observed in the nucleus of older human lenses.


Assuntos
Catarata/metabolismo , Cisteína/metabolismo , Cistina/metabolismo , Cristalino/metabolismo , RNA/análise , Adulto , Idoso , Sistema X-AG de Transporte de Aminoácidos , Transporte Biológico , Western Blotting , Catarata/genética , Catarata/patologia , Humanos , Imuno-Histoquímica , Cristalino/patologia , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
J Colloid Interface Sci ; 629(Pt B): 773-784, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36195017

RESUMO

The efficiency of reactive oxygen species (ROS)-based photodynamic therapy (PDT) is far from satisfactory, because cancer cells can adapt to PDT by upregulating glutathione (GSH) levels. The GSH levels in tumor cells are determined based on glutamine availability via alanine-serine-cysteine transporter 2 (ASCT2)-mediated entry into cells. Herein, we develop co-assembled nanoparticles (PPa/V-9302 NPs) of the photosensitizer pyropheophorbide a (PPa) and V-9302 (a known inhibitor of ASCT2) in a 1:1 M ratio using a one-step precipitation method to auto-enhance photodynamic therapy. The computational simulations revealed that PPa and V-9302 could self-assemble through different driving forces, such as π-π stacking, hydrophobic interactions, and ionic bonds. Such PPa/V-9302 NPs could disrupt the intracellular redox homeostasis due to enhanced ROS production via PPa-induced PDT and reduced GSH synthesis via inhibition of the ASCT2-mediated glutamine flux by V-9302. The in vivo assays reveal that PPa/V-9302 NPs could increase the drug accumulation in tumor sites and suppress tumor growth in BALB/c mice bearing mouse breast carcinoma (4 T1) tumor. Our findings provide a new paradigm for the rational design of the PDT-based combinational cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Animais , Camundongos , Fármacos Fotossensibilizantes/química , Cisteína , Espécies Reativas de Oxigênio , Glutamina/uso terapêutico , Neoplasias/tratamento farmacológico , Nanopartículas/química , Linhagem Celular Tumoral
7.
Elife ; 122023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36856089

RESUMO

Excitatory amino acid transporter 1 (EAAT1) is a glutamate transporter belonging to the SLC1 family of solute carriers. It plays a key role in the regulation of the extracellular glutamate concentration in the mammalian brain. The structure of EAAT1 was determined in complex with UCPH-101, apotent, non-competitive inhibitor of EAAT1. Alanine serine cysteine transporter 2 (ASCT2) is a neutral amino acid transporter, which regulates pools of amino acids such as glutamine between intracellular and extracellular compartments . ASCT2 also belongs to the SLC1 family and shares 58% sequence similarity with EAAT1. However, allosteric modulation of ASCT2 via non-competitive inhibitors is unknown. Here, we explore the UCPH-101 inhibitory mechanisms of EAAT1 and ASCT2 by using rapid kinetic experiments. Our results show that UCPH-101 slows substrate translocation rather than substrate or Na+ binding, confirming a non-competitive inhibitory mechanism, but only partially inhibits wild-type ASCT2. Guided by computational modeling using ligand docking and molecular dynamics simulations, we selected two residues involved in UCPH-101/EAAT1 interaction, which were mutated in ASCT2 (F136Y, I237M, F136Y/I237M) in the corresponding positions. We show that in the F136Y/I237M double-mutant transporter, 100% of the inhibitory effect of UCPH-101 could be restored, and the apparent affinity was increased (Ki = 4.3 µM), much closer to the EAAT1 value of 0.6 µM. Finally, we identify a novel non-competitive ASCT2 inhibitor, through virtual screening and experimental testing against the allosteric site, further supporting its localization. Together, these data indicate that the mechanism of allosteric modulation is conserved between EAAT1 and ASCT2. Due to the difference in binding site residues between ASCT2 and EAAT1, these results raise the possibility that more potent, and potentially selective ASCT2 allosteric inhibitors can be designed .


Assuntos
Aminoácidos , Glutamina , Animais , Glutamina/metabolismo , Ácido Glutâmico , Sítios de Ligação , Alanina , Transportador 1 de Aminoácido Excitatório/metabolismo , Serina , Antígenos de Histocompatibilidade Menor/genética , Mamíferos/metabolismo
8.
Int J Biol Macromol ; 218: 679-689, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35863662

RESUMO

The effect of low and high molecular weight hyaluronic acid on glutamine metabolism in luminal and basal breast cancer and cancer stem cells is being investigated. In luminal cell lines (MCF-7), HA enhances the intracellular utilization of gln in redox metabolism and decreases its use in TCA. On the contrary, in MDAMB-231 cells, HA induces the uptake of gln to be utilized in anaplerosis rather than ROS maintenance. However, in MCF-7 CSCs, HA induces up-regulation of xCT, further, it uses gln-derived glutamate for the exchange of cystine, thus maintaining ROS levels through xCT. MDA-MB-231 CSCs reduce the secretion of glutamate in response to HA and decrease the gln flux towards reductive carboxylation. Conclusively, our study demonstrated that although the uptake of gln is enhanced by HA, it is differentially utilized intracellularly in breast cancer cells. This study could significantly influence the therapeutics involving HA and Gln in breast cancer.


Assuntos
Neoplasias da Mama , Glutamina , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Humanos , Ácido Hialurônico , Células-Tronco Neoplásicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA