Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(10): 107772, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39276938

RESUMO

Lipid-rich deposits called drusen accumulate under the retinal pigment epithelium (RPE) in the eyes of patients with age-related macular degeneration and Sorsby's fundus dystrophy (SFD). Drusen may contribute to photoreceptor degeneration in these blinding diseases. Stimulating ß-oxidation of fatty acids could decrease the availability of lipid with which RPE cells generate drusen. Inhibitors of acetyl-CoA carboxylase (ACC) stimulate ß-oxidation and diminish lipid accumulation in fatty liver disease. In this report, we test the hypothesis that an ACC inhibitor, Firsocostat, can diminish lipid deposition by RPE cells. We probed metabolism and cellular function in mouse RPE-choroid tissue and human RPE cells. We used 13C6-glucose, 13C16-palmitate, and gas chromatography-linked mass spectrometry to monitor effects of Firsocostat on glycolytic, Krebs cycle, and fatty acid metabolism. We quantified lipid abundance, apolipoprotein E levels, and vascular endothelial growth factor release using liquid chromatography-mass spectrometry, ELISAs, and immunostaining. RPE barrier function was assessed by trans-epithelial electrical resistance (TEER). Firsocostat-mediated ACC inhibition increases ß-oxidation, decreases intracellular lipid levels, diminishes lipoprotein release, and increases TEER. When human serum or outer segments are used to stimulate lipoprotein release, fewer lipoproteins are released in the presence of Firsocostat. In a culture model of SFD, Firsocostat stimulates fatty acid oxidation, increases TEER, and decreases apolipoprotein E release. We conclude that Firsocostat remodels RPE metabolism and can limit lipid deposition. This suggests that ACC inhibition could be an effective strategy for diminishing pathologic drusen in the eyes of patients with age-related macular degeneration or SFD.

2.
J Biol Chem ; 300(6): 107313, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657864

RESUMO

Sortilin-related receptor 1 (SORL1) is an intracellular sorting receptor genetically implicated in Alzheimer's disease (AD) that impacts amyloid precursor protein trafficking. The objective of these studies was to test the hypothesis that SORL1 binds tau, modulates its cellular trafficking and impacts the aggregation of cytoplasmic tau induced by pathological forms of tau. Using surface plasmon resonance measurements, we observed high-affinity binding of tau to SORL1 and the vacuolar protein sorting 10 domain of SORL1. Interestingly, unlike LDL receptor-related protein 1, SORL1 binds tau at both pH 7.4 and pH 5.5, revealing its ability to bind tau at endosomal pH. Immunofluorescence studies confirmed that exogenously added tau colocalized with SORL1 in H4 neuroglioma cells, while overexpression of SORL1 in LDL receptor-related protein 1-deficient Chinese hamster ovary (CHO) cells resulted in a marked increase in the internalization of tau, indicating that SORL1 can bind and mediate the internalization of monomeric forms of tau. We further demonstrated that SORL1 mediates tau seeding when tau RD P301S FRET biosensor cells expressing SORL1 were incubated with high molecular weight forms of tau isolated from the brains of patients with AD. Seeding in H4 neuroglioma cells is significantly reduced when SORL1 is knocked down with siRNA. Finally, we demonstrate that the N1358S mutant of SORL1 significantly increases tau seeding when compared to WT SORL1, identifying for the first time a potential mechanism that connects this specific SORL1 mutation to Alzheimer's disease. Together, these studies identify SORL1 as a receptor that contributes to trafficking and seeding of pathogenic tau.


Assuntos
Cricetulus , Proteínas Relacionadas a Receptor de LDL , Proteínas de Membrana Transportadoras , Proteínas tau , Humanos , Proteínas tau/metabolismo , Proteínas tau/genética , Animais , Células CHO , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Linhagem Celular Tumoral , Ligação Proteica , Transporte Proteico
3.
J Proteome Res ; 23(8): 2970-2985, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38236019

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease with a complex etiology influenced by confounding factors such as genetic polymorphisms, age, sex, and race. Traditionally, AD research has not prioritized these influences, resulting in dramatically skewed cohorts such as three times the number of Apolipoprotein E (APOE) ε4-allele carriers in AD relative to healthy cohorts. Thus, the resulting molecular changes in AD have previously been complicated by the influence of apolipoprotein E disparities. To explore how apolipoprotein E polymorphism influences AD progression, 62 post-mortem patients consisting of 33 AD and 29 controls (Ctrl) were studied to balance the number of ε4-allele carriers and facilitate a molecular comparison of the apolipoprotein E genotype. Lipid and protein perturbations were assessed across AD diagnosed brains compared to Ctrl brains, ε4 allele carriers (APOE4+ for those carrying 1 or 2 ε4s and APOE4- for non-ε4 carriers), and differences in ε3ε3 and ε3ε4 Ctrl brains across two brain regions (frontal cortex (FCX) and cerebellum (CBM)). The region-specific influences of apolipoprotein E on AD mechanisms showcased mitochondrial dysfunction and cell proteostasis at the core of AD pathophysiology in the post-mortem brains, indicating these two processes may be influenced by genotypic differences and brain morphology.


Assuntos
Doença de Alzheimer , Apolipoproteínas E , Genótipo , Lipidômica , Proteômica , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Humanos , Proteômica/métodos , Feminino , Masculino , Idoso , Apolipoproteínas E/genética , Encéfalo/metabolismo , Encéfalo/patologia , Idoso de 80 Anos ou mais , Apolipoproteína E4/genética , Cerebelo/metabolismo , Cerebelo/patologia , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Alelos
4.
Angiogenesis ; 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39276310

RESUMO

Apolipoprotein E4 (ApoE4) plays an important role responding to monomeric C-reactive protein (mCRP) via binding to CD31 leading to cerebrovascular damage and Alzheimer's disease (AD). Using phosphor-proteomic profiling, we found altered cytoskeleton proteins in the microvasculature of AD brains, including increased levels of hyperphosphorylated tau (pTau) and the actin-related protein, LIMA1. To address the hypothesis that cytoskeletal changes serve as early pathological signatures linked with CD31 in brain endothelia in ApoE4 carriers, ApoE4 knock-in mice intraperitoneal injected with mCRP revealed that mCRP increased the expressions of phosphorylated CD31 (pCD31) and LIMA1, and facilitate the binding of pCD31 to LIMA1. mCRP combined with recombinant APOE4 protein decreased interaction of CD31 and VE-Cadherin at adherens junctions (AJs), along with altered the expression of various actin cytoskeleton proteins, causing microvasculature damage. Notably, the APOE2 protein attenuated these changes. Overall, our study demonstrates that ApoE4 responds to mCRP to disrupt the endothelial AJs which link with the actin cytoskeleton and this pathway could play a key role in the barrier dysfunction leading to AD risk.

5.
Pharm Res ; 41(7): 1427-1441, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38937373

RESUMO

BACKGROUND: Individuals with Alzheimer's disease (AD) often require many medications; however, these medications are dosed using regimens recommended for individuals without AD. This is despite reduced abundance and function of P-glycoprotein (P-gp) at the blood-brain barrier (BBB) in AD, which can impact brain exposure of drugs. The fundamental mechanisms leading to reduced P-gp abundance in sporadic AD remain unknown; however, it is known that the apolipoprotein E (apoE) gene has the strongest genetic link to sporadic AD development, and apoE isoforms can differentially alter BBB function. The aim of this study was to assess if apoE affects P-gp abundance and function in an isoform-dependent manner using a human cerebral microvascular endothelial cell (hCMEC/D3) model. METHODS: This study assessed the impact of apoE isoforms on P-gp abundance (by western blot) and function (by rhodamine 123 (R123) uptake) in hCMEC/D3 cells. Cells were exposed to recombinant apoE3 and apoE4 at 2 - 10 µg/mL over 24 - 72 hours. hCMEC/D3 cells were also exposed for 72 hours to astrocyte-conditioned media (ACM) from astrocytes expressing humanised apoE isoforms. RESULTS: P-gp abundance in hCMEC/D3 cells was not altered by recombinant apoE4 relative to recombinant apoE3, nor did ACM containing human apoE isoforms alter P-gp abundance. R123 accumulation in hCMEC/D3 cells was also unchanged with recombinant apoE isoform treatments, suggesting no change to P-gp function, despite both abundance and function being altered by positive controls SR12813 (5 µM) and PSC 833 (5 µM), respectively. CONCLUSIONS: Different apoE isoforms have no direct influence on P-gp abundance or function within this model, and further in vivo studies would be required to address whether P-gp abundance or function are reduced in sporadic AD in an apoE isoform-specific manner.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Barreira Hematoencefálica , Encéfalo , Células Endoteliais , Isoformas de Proteínas , Humanos , Doença de Alzheimer/metabolismo , Apolipoproteína E3/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E4/metabolismo , Apolipoproteína E4/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/irrigação sanguínea , Linhagem Celular , Meios de Cultivo Condicionados/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Microvasos/metabolismo , Microvasos/citologia , Isoformas de Proteínas/metabolismo , Rodamina 123/metabolismo
6.
J Cell Biochem ; 124(1): 118-126, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36436137

RESUMO

Alzheimer's disease (AD) is one of the most serious neurodegenerative diseases in the world and has a strong genetic predisposition. At present, there is still no effective method for the early diagnosis and prevention of AD. Accumulating evidence shows the association of several loci with AD risk, such as apolipoprotein E (APOE) and translocase of outer mitochondrial membrane 40 (TOMM40). However, for routine disease diagnosis in clinics, genotype detection methods based on gene sequencing technology are time-consuming and excessively costly. Thus, in this study, we developed a high-sensitivity, low-cost, and convenient single nucleotide polymorphism (SNP) detection assay method based on allele-specific quantitative polymerase chain reaction (AS-qPCR) technology, which can be used to determine the SNP genotype in APOE and TOMM40. A total of 40 patients were recruited from the outpatient department of the memory clinic of Dongzhimen Hospital, Beijing University of Chinese Medicine. The SNP detection assay method includes three steps. First, positive plasmids with different genotypes (TT/CC/TC) in APOE rs429358, rs7412, and TOMM40 rs11556505 were prepared. Second, 3'-T/3'-C primers were designed to amplify these positive plasmids for each SNP site. Finally, we calculated the log10 of the copy number ratio for each positive plasmid, and the genotype interpretation interval was established. Based on this method, we investigated whether the SNPs in 40 patients could be accurately calculated using AS-qPCR technology. The accuracy of SNP detection was verified by PCR-Pooling sequencing. The results showed that SNP genotypes assessed by AS-qPCR technology corresponded perfectly to the results obtained by conventional DNA sequencing. We have developed a genotype detection method for AD based on AS-qPCR, which can be performed easily, rapidly, accurately, and at low cost. The method will contribute to the early diagnosis of patients with late-onset Alzheimer's and the detection of large clinical samples in the future.


Assuntos
Doença de Alzheimer , Polimorfismo de Nucleotídeo Único , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Alelos , Predisposição Genética para Doença , Genótipo , Apolipoproteínas E/genética
7.
Age Ageing ; 52(1)2023 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-36729469

RESUMO

BACKGROUND: healthy dietary patterns have been associated with lower risk for age-related cognitive decline. However, little is known about the specific role of dietary fibre on cognitive decline in older adults. OBJECTIVE: this study aimed to examine the association between dietary fibre and cognitive decline in older adults and to assess the influence of genetic, lifestyle and clinical characteristics in this association. DESIGN AND PARTICIPANTS: the Invecchiare in Chianti, aging in the Chianti area study is a cohort study of community-dwelling older adults from Italy. Cognitive function, dietary and clinical data were collected at baseline and years 3, 6, 9 and 15. Our study comprised 848 participants aged ≥ 65 years (56% female) with 2,038 observations. MAIN OUTCOME AND MEASURES: cognitive decline was defined as a decrease ≥3 units in the Mini-Mental State Examination score during consecutive visits. Hazard ratios for cognitive decline were estimated using time-dependent Cox regression models. RESULTS: energy-adjusted fibre intake was not associated with cognitive decline during the 15-years follow-up (P > 0.05). However, fibre intake showed a significant interaction with Apolipoprotein E (APOE) haplotype for cognitive decline (P = 0.02). In participants with APOE-ɛ4 haplotype, an increase in 5 g/d of fibre intake was significantly associated with a 30% lower risk for cognitive decline. No association was observed in participants with APOE-ɛ2 and APOE-ɛ3 haplotypes. CONCLUSIONS AND RELEVANCE: dietary fibre intake was not associated with cognitive decline amongst older adults for 15 years of follow-up. Nonetheless, older subjects with APOE-ɛ4 haplotype may benefit from higher fibre intakes based on the reduced risk for cognitive decline in this high-risk group.


Assuntos
Disfunção Cognitiva , Vida Independente , Humanos , Feminino , Idoso , Masculino , Estudos de Coortes , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/genética , Apolipoproteínas E/genética , Envelhecimento , Apolipoproteína E4/genética
8.
Alzheimers Dement ; 19(12): 5407-5417, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37204338

RESUMO

INTRODUCTION: Apolipoprotein E (APOE) ε4 may interact with response to amyloid-targeting therapies. METHODS: Aggregate data from trials enrolling participants with amyloid-positive, early symptomatic Alzheimer's disease (AD) were analyzed for disease progression. RESULTS: Pooled analysis of potentially efficacious antibodies lecanemab, aducanumab, solanezumab, and donanemab shows slightly better efficacy in APOE ε4 carriers than in non-carriers. Carrier and non-carrier mean (95% confidence interval) differences from placebo using Clinical Dementia Rating Scale-Sum of Boxes (CDR-SB) were -0.30 (-0.478, -0.106) and -0.20 (-0.435, 0.042) and AD Assessment Scale-Cognitive subscale (ADAS-Cog) values were -1.01 (-1.577, -0.456) and -0.80 (-1.627, 0.018), respectively. Decline in the APOE ε4 non-carrier placebo group was equal to or greater than that in carriers across multiple scales. Probability of study success increases as the representation of the carrier population increases. DISCUSSION: We hypothesize that APOE ε4 carriers have same or better response than non-carriers to amyloid-targeting therapies and similar or less disease progression with placebo in amyloid-positive trials. HIGHLIGHTS: Amyloid-targeting therapies had slightly greater efficacy in apolipoprotein E (APOE) ε4 carriers. Clinical decline is the same/slightly faster in amyloid-positive APOE ε4 non-carriers. Prevalence of non-carriers in trial populations could impact outcomes.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Amiloide , Proteínas Amiloidogênicas , Progressão da Doença
9.
Int J Mol Sci ; 24(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37108120

RESUMO

Despite the availability and use of numerous cholesterol-lowering drugs, atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of mortality globally. Many researchers have focused their effort on identifying modified lipoproteins. However, lipid moieties such as lysophosphatidylcholine (LPC) and ceramide (CER) contribute to atherogenic events. LPC and CER both cause endothelial mitochondrial dysfunction, leading to fatty acid and triglyceride (TG) accumulation. In addition, they cause immune cells to differentiate into proinflammatory phenotypes. To uncover alternative therapeutic approaches other than cholesterol- and TG-lowering medications, we conducted untargeted lipidomic investigations to assess the alteration of lipid profiles in apolipoprotein E knockout (apoE-/-) mouse model, with or without feeding a high-fat diet (HFD). Results indicated that, in addition to hypercholesterolemia and hyperlipidemia, LPC levels were two to four times higher in apoE-/- mice compared to wild-type mice in C57BL/6 background, regardless of whether they were 8 or 16 weeks old. Sphingomyelin (SM) and CER were elevated three- to five-fold in apoE-/- mice both at the basal level and after 16 weeks when compared to wild-type mice. After HFD treatment, the difference in CER levels elevated more than ten-fold. Considering the atherogenic properties of LPC and CER, they may also contribute to the early onset of atherosclerosis in apoE-/- mice. In summary, the HFD-fed apoE-/- mouse shows elevated LPC and CER contents and is a suitable model for developing LPC- and CER-lowering therapies.


Assuntos
Aterosclerose , Lisofosfatidilcolinas , Camundongos , Animais , Camundongos Knockout , Ceramidas , Lipidômica , Camundongos Endogâmicos C57BL , Aterosclerose/genética , Triglicerídeos , Colesterol , Fatores de Risco , Apolipoproteínas E/genética , Apolipoproteínas
10.
Neurobiol Dis ; 172: 105824, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35878744

RESUMO

Alzheimer's disease (AD), the most common type of dementia in the elderly, is a chronic and progressive neurodegenerative disorder with no effective disease-modifying treatments to date. Studies have shown that an imbalance in brain metal ions, such as zinc, copper, and iron, is closely related to the onset and progression of AD. Many efforts have been made to understand metal-related mechanisms and therapeutic strategies for AD. Emerging evidence suggests that interactions of brain metal ions and apolipoprotein E (ApoE), which is the strongest genetic risk factor for late-onset AD, may be one of the mechanisms for neurodegeneration. Here, we summarize the key points regarding how metal ions and ApoE contribute to the pathogenesis of AD. We further describe the interactions between metal ions and ApoE in the brain and propose that their interactions play an important role in neuropathological alterations and cognitive decline in AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Doença de Alzheimer/patologia , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Humanos , Íons/uso terapêutico , Zinco
11.
Neurobiol Dis ; 164: 105631, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35041991

RESUMO

The APOE genotype is the most prominent genetic risk factor for the development of late-onset Alzheimer''s disease (LOAD); however, the underlying mechanisms remain unclear. In the present study, we found that the sialylation profiles of ApoE protein in the human brain are significantly different among the three isoforms, with ApoE2 exhibiting the most abundant sialic acid modification whereas ApoE4 had the least. We further observed that the sialic acid moiety in ApoE2 significantly affected the interaction between ApoE2 and Aß peptides. The removal of sialic acid in ApoE2 increased the ApoE2 binding affinity for the Aß17-24 region of Aß and promoted Aß fibrillation. These findings provide a plausible explanation for the well-documented differential roles of ApoE isoforms in Aß pathogenesis. Specifically, compared to the other two isotypes, the higher expression of sialic acid in ApoE2 may contribute to the less potent interaction between ApoE2 and Aß and ultimately the slower rate of brain Aß deposition, a mechanism thought to underlie ApoE2-mediated decreased risk for AD. Future studies are warranted to determine whether the differential sialylation in ApoE isoforms may also contribute to some of their other distinct properties, such as their divergent preferences in associations with lipids and lipoproteins, as well as their potential impact on neuroinflammation through modulation of microglial Siglec activity. Overall, our findings lead to the insight that the sialic acid structure is an important posttranslational modification (PTM) that alters ApoE protein functions with relevance for AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Apolipoproteínas E/metabolismo , Isoformas de Proteínas/metabolismo , Encéfalo/metabolismo , Humanos , Ácido N-Acetilneuramínico/metabolismo
12.
IUBMB Life ; 74(8): 826-841, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35836360

RESUMO

Cholesterol is a ubiquitous and essential component of cellular membranes, as it regulates membrane structure and fluidity. Furthermore, cholesterol serves as a precursor for steroid hormones, oxysterol, and bile acids, that are essential for maintaining many of the body's metabolic processes. The biosynthesis and excretion of cholesterol is tightly regulated in order to maintain homeostasis. Although virtually all cells have the capacity to make cholesterol, the liver and brain are the two main organs producing cholesterol in mammals. Once produced, cholesterol is transported in the form of lipoprotein particles to other cell types and tissues. Upon formation of the blood-brain barrier (BBB) during embryonic development, lipoproteins cannot move between the central nervous system (CNS) and the rest of the body. As such, cholesterol biosynthesis and metabolism in the CNS operate autonomously without input from the circulation system in normal physiological conditions. Nevertheless, similar regulatory mechanisms for maintaining cholesterol homeostasis are utilized in both the CNS and peripheral systems. Here, we discuss the functions and metabolism of cholesterol in the CNS. We further focus on how different CNS cell types contribute to cholesterol metabolism, and how ApoE, the major CNS apolipoprotein, is involved in normal and pathophysiological functions. Understanding these basic mechanisms will aid our ability to elucidate how CNS cholesterol dysmetabolism contributes to neurogenerative diseases.


Assuntos
Sistema Nervoso Central , Metabolismo dos Lipídeos , Animais , Transporte Biológico , Encéfalo , Sistema Nervoso Central/metabolismo , Colesterol/metabolismo , Mamíferos/metabolismo
13.
Am J Kidney Dis ; 80(4): 495-501, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35390426

RESUMO

RATIONALE & OBJECTIVE: Acute kidney injury (AKI) causes biochemical changes in the brain in animal models and is associated with adverse neurological complications in hospitalized patients. This study tested the association between AKI and incident dementia in a community-based cohort. STUDY DESIGN: Prospective cohort study. SETTING & PARTICIPANTS: Adult participants in the Atherosclerosis Risk in Communities (ARIC) study who experienced hospitalized AKI compared with participants hospitalized for other reasons (primary analysis, mean follow-up period 4.3 years) or participants without hospitalized AKI (secondary analysis). PREDICTORS: Incident AKI, defined by ICD codes from hospital records. OUTCOME: Incident dementia, diagnosed based on a combination of neurocognitive testing, informant interviews, ICD codes, and death certificates. ANALYTICAL APPROACH: In the primary analysis, we estimated the propensity for hospitalized AKI and matched these participants with those hospitalized for another reason to examine the association of AKI with subsequent onset of dementia (N = 1,708). In the secondary analysis, we estimated the association between time-varying hospitalized AKI and subsequent onset of dementia using multivariable Cox proportional hazards regression models, adjusted for age, sex, race/center, education, smoking status, body mass index, baseline estimated glomerular filtration rate, baseline urinary albumin-creatinine ratio, systolic blood pressure, coronary heart disease, diabetes, hypertension, apolipoprotein E (APOE) ε4 allele, and C-reactive protein. RESULTS: The mean age in the propensity-matched cohort was 76.1 ± 6.5 (SD) years, and 53.2% of the participants were women. People who were hospitalized with AKI had a higher risk of dementia (HR, 1.25 [95% CI, 1.02-1.52]; P = 0.03) compared with those without a hospitalization for AKI. The associations were slightly stronger in the time-varying analysis (HR, 1.69 [95% CI, 1.48-1.92]; P < 0.001). Other risk factors for dementia included older age, male sex, higher albuminuria, diabetes, current smoker status, and presence of the APOE risk alleles. LIMITATIONS: Observational study, with AKI identified through diagnosis codes. CONCLUSIONS: Participants who experienced a hospitalization for AKI were at increased risk of dementia.


Assuntos
Injúria Renal Aguda , Aterosclerose , Demência , Diabetes Mellitus , Injúria Renal Aguda/diagnóstico , Apolipoproteínas , Apolipoproteínas E , Aterosclerose/epidemiologia , Proteína C-Reativa , Creatinina , Demência/epidemiologia , Demência/etiologia , Feminino , Taxa de Filtração Glomerular/fisiologia , Humanos , Masculino , Estudos Prospectivos , Fatores de Risco
14.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077289

RESUMO

A preponderance of evidence obtained from genetically modified mice and human population studies reveals the association of apolipoprotein E (apoE) deficiency and polymorphisms with pathogenesis of numerous chronic diseases, including atherosclerosis, obesity/diabetes, and Alzheimer's disease. The human APOE gene is polymorphic with three major alleles, ε2, ε3 and ε4, encoding apoE2, apoE3, and apoE4, respectively. The APOE gene is expressed in many cell types, including hepatocytes, adipocytes, immune cells of the myeloid lineage, vascular smooth muscle cells, and in the brain. ApoE is present in subclasses of plasma lipoproteins, and it mediates the clearance of atherogenic lipoproteins from plasma circulation via its interaction with LDL receptor family proteins and heparan sulfate proteoglycans. Extracellular apoE also interacts with cell surface receptors and confers signaling events for cell regulation, while apoE expressed endogenously in various cell types regulates cell functions via autocrine and paracrine mechanisms. This review article focuses on lipoprotein transport-dependent and -independent mechanisms by which apoE deficiency or polymorphisms contribute to cardiovascular disease, metabolic disease, and neurological disorders.


Assuntos
Apolipoproteínas E/metabolismo , Aterosclerose , Doenças Cardiovasculares , Animais , Apolipoproteína E2/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Aterosclerose/genética , Doenças Cardiovasculares/metabolismo , Humanos , Camundongos , Receptores de LDL/genética
15.
J Biol Chem ; 295(22): 7697-7709, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32332094

RESUMO

Lysine N-pyrrolation converts lysine residues to Nϵ-pyrrole-l-lysine (pyrK) in a covalent modification reaction that significantly affects the chemical properties of proteins, causing them to mimic DNA. pyrK in proteins has been detected in vivo, indicating that pyrrolation occurs as an endogenous reaction. However, the source of pyrK remains unknown. In this study, on the basis of our observation in vitro that pyrK is present in oxidized low-density lipoprotein and in modified proteins with oxidized polyunsaturated fatty acids, we used LC-electrospray ionization-MS/MS coupled with a stable isotope dilution method to perform activity-guided separation of active molecules in oxidized lipids and identified glycolaldehyde (GA) as a pyrK source. The results from mechanistic experiments to study GA-mediated lysine N-pyrrolation suggested that the reactions might include GA oxidation, generating the dialdehyde glyoxal, followed by condensation reactions of lysine amino groups with GA and glyoxal. We also studied the functional significance of GA-mediated lysine N-pyrrolation in proteins and found that GA-modified proteins are recognized by apolipoprotein E, a binding target of pyrrolated proteins. Moreover, GA-modified proteins triggered an immune response to pyrrolated proteins, and monoclonal antibodies generated from mice immunized with GA-modified proteins specifically recognized pyrrolated proteins. These findings reveal that GA is an endogenous source of DNA-mimicking pyrrolated proteins and may provide mechanistic insights relevant for innate and autoimmune responses associated with glucose metabolism and oxidative stress.


Assuntos
Acetaldeído/análogos & derivados , Glucose/metabolismo , Lipoproteínas LDL/metabolismo , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Acetaldeído/metabolismo , Animais , Glucose/genética , Lipoproteínas LDL/genética , Masculino , Camundongos , Camundongos Knockout para ApoE
16.
J Biol Chem ; 295(33): 11866-11876, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32616652

RESUMO

Garcinoic acid (GA or δ-T3-13'COOH), is a natural vitamin E metabolite that has preliminarily been identified as a modulator of nuclear receptors involved in ß-amyloid (Aß) metabolism and progression of Alzheimer's disease (AD). In this study, we investigated GA's effects on Aß oligomer formation and deposition. Specifically, we compared them with those of other vitamin E analogs and the soy isoflavone genistein, a natural agonist of peroxisome proliferator-activated receptor γ (PPARγ) that has therapeutic potential for managing AD. GA significantly reduced Aß aggregation and accumulation in mouse cortical astrocytes. Similarly to genistein, GA up-regulated PPARγ expression and apolipoprotein E (ApoE) efflux in these cells with an efficacy that was comparable with that of its metabolic precursor δ-tocotrienol and higher than those of α-tocopherol metabolites. Unlike for genistein and the other vitamin E compounds, the GA-induced restoration of ApoE efflux was not affected by pharmacological inhibition of PPARγ activity, and specific activation of pregnane X receptor (PXR) was observed together with ApoE and multidrug resistance protein 1 (MDR1) membrane transporter up-regulation in both the mouse astrocytes and brain tissue. These effects of GA were associated with reduced Aß deposition in the brain of TgCRND8 mice, a transgenic AD model. In conclusion, GA holds potential for preventing Aß oligomerization and deposition in the brain. The mechanistic aspects of GA's properties appear to be distinct from those of other vitamin E metabolites and of genistein.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Benzopiranos/farmacologia , Encéfalo/efeitos dos fármacos , Agregação Patológica de Proteínas/prevenção & controle , Vitamina E/análogos & derivados , Peptídeos beta-Amiloides/ultraestrutura , Animais , Benzopiranos/farmacocinética , Encéfalo/metabolismo , Encéfalo/patologia , Masculino , Camundongos , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/patologia , Vitamina E/farmacocinética , Vitamina E/farmacologia
17.
J Clin Lab Anal ; 35(12): e24061, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34664321

RESUMO

BACKGROUND: Apolipoprotein E (ApoE) polymorphisms have been reported to be associated with nonalcoholic fatty liver disease (NAFLD), but the conclusions of studies are inconsistent in different regions. The present study aims to investigate the role of ApoE genotypes on NAFLD in southern China. METHODS: A total of 1064 subjects including 372 NAFLD patients and 692 controls who attended Meizhou People's Hospital located in southern China from March 1, 2016 to April 30, 2020 were enrolled in this study. The ApoE genotypes were detected and the laboratory parameters were examined. RESULTS: Significant differences were observed between NAFLD patients and controls in the prevalence of ε3/ε3 (p < 0.001) and ε3/ε4 (p = 0.004). NAFLD patients presented higher frequency of ε4 allele than controls (p = 0.013). Logistic regression analysis suggested that ε3/ε3 was an independent risk factor (OR: 1.435, 95% CI: 1.084-1.891, p = 0.010), while ε3/ε4 was an independent protective factor (OR: 0.578, 95% CI: 0.404-0.828, p = 0.003) for development of NAFLD. In addition, allele ε4 showed a protective effect on NAFLD with an adjusted OR of 0.588 (95% CI: 0.420-0.824, p = 0.002). CONCLUSION: Our results suggested that ApoE genotype was associated with the development of NAFLD in the population of southern China. Individuals carrying ε3/ε3 were at higher risk of NAFLD, while those carrying ε3/ε4 were at lower risk of NAFLD.


Assuntos
Apolipoproteínas E/genética , Hepatopatia Gordurosa não Alcoólica/genética , Polimorfismo Genético , Idoso , Apolipoproteínas E/sangue , Povo Asiático , Estudos de Casos e Controles , HDL-Colesterol/sangue , Feminino , Frequência do Gene , Predisposição Genética para Doença , Humanos , Lipídeos/sangue , Lipídeos/genética , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/sangue
18.
Int J Mol Sci ; 22(12)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198582

RESUMO

A large body of clinical and nonclinical evidence supports the role of neurotoxic soluble beta amyloid (amyloid, Aß) oligomers as upstream pathogenic drivers of Alzheimer's disease (AD). Recent late-stage trials in AD that have evaluated agents targeting distinct species of Aß provide compelling evidence that inhibition of Aß oligomer toxicity represents an effective approach to slow or stop disease progression: (1) only agents that target soluble Aß oligomers show clinical efficacy in AD patients; (2) clearance of amyloid plaque does not correlate with clinical improvements; (3) agents that predominantly target amyloid monomers or plaque failed to show clinical effects; and (4) in positive trials, efficacy is greater in carriers of the ε4 allele of apolipoprotein E (APOE4), who are known to have higher brain concentrations of Aß oligomers. These trials also show that inhibiting Aß neurotoxicity leads to a reduction in tau pathology, suggesting a pathogenic sequence of events where amyloid toxicity drives an increase in tau formation and deposition. The late-stage agents with positive clinical or biomarker data include four antibodies that engage Aß oligomers (aducanumab, lecanemab, gantenerumab, and donanemab) and ALZ-801, an oral agent that fully blocks the formation of Aß oligomers at the clinical dose.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/toxicidade , Progressão da Doença , Doença de Alzheimer/genética , Animais , Encéfalo/patologia , Humanos , Reprodutibilidade dos Testes , Solubilidade
19.
Psychogeriatrics ; 21(4): 659-667, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33851473

RESUMO

Phospholipid transfer protein (PLTP) is a complex glycosylated protein that mediates the transfer of phospholipids, unesterified cholesterol, diacylglycerides, specific apolipoproteins, and tocopherols between different classes of lipoproteins as well as between lipoproteins and cells. Many studies have associated PLTP with a variety of lipid metabolic diseases. However, recent studies have indicated that PLTP is highly expressed in the brain of vertebrate and may be related to many central nervous system diseases, such as Alzheimer's disease. Here, we review the data and report the role and mechanisms PLTP in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Proteínas de Transferência de Fosfolipídeos , Encéfalo/metabolismo , Colesterol , Humanos , Lipoproteínas , Proteínas de Transferência de Fosfolipídeos/metabolismo
20.
J Neurosci ; 39(37): 7408-7427, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31331998

RESUMO

In blood, apolipoprotein E (ApoE) is a component of circulating lipoproteins and mediates the clearance of these lipoproteins from blood by binding to ApoE receptors. Humans express three genetic ApoE variants, ApoE2, ApoE3, and ApoE4, which exhibit distinct ApoE receptor-binding properties and differentially affect Alzheimer's disease (AD), such that ApoE2 protects against, and ApoE4 predisposes to AD. In brain, ApoE-containing lipoproteins are secreted by activated astrocytes and microglia, but their functions and role in AD pathogenesis are largely unknown. Ample evidence suggests that ApoE4 induces microglial dysregulation and impedes Aß clearance in AD, but the direct neuronal effects of ApoE variants are poorly studied. Extending previous studies, we here demonstrate that the three ApoE variants differentially activate multiple neuronal signaling pathways and regulate synaptogenesis. Specifically, using human neurons (male embryonic stem cell-derived) cultured in the absence of glia to exclude indirect glial mechanisms, we show that ApoE broadly stimulates signal transduction cascades. Among others, such stimulation enhances APP synthesis and synapse formation with an ApoE4>ApoE3>ApoE2 potency rank order, paralleling the relative risk for AD conferred by these ApoE variants. Unlike the previously described induction of APP transcription, however, ApoE-induced synaptogenesis involves CREB activation rather than cFos activation. We thus propose that in brain, ApoE acts as a glia-secreted signal that activates neuronal signaling pathways. The parallel potency rank order of ApoE4>ApoE3>ApoE2 in AD risk and neuronal signaling suggests that ApoE4 may in an apparent paradox promote AD pathogenesis by causing a chronic increase in signaling, possibly via enhancing APP expression.SIGNIFICANCE STATEMENT Humans express three genetic variants of apolipoprotein E (ApoE), ApoE2, ApoE3, and ApoE4. ApoE4 constitutes the most important genetic risk factor for Alzheimer's disease (AD), whereas ApoE2 protects against AD. Significant evidence suggests that ApoE4 impairs microglial function and impedes astrocytic Aß clearance in brain, but the direct neuronal effects of ApoE are poorly understood, and the differences between ApoE variants in these effects are unclear. Here, we report that ApoE acts on neurons as a glia-secreted signaling molecule that, among others, enhances synapse formation. In activating neuronal signaling, the three ApoE variants exhibit a differential potency of ApoE4>ApoE3>ApoE2, which mirrors their relative effects on AD risk, suggesting that differential signaling by ApoE variants may contribute to AD pathogenesis.


Assuntos
Doença de Alzheimer/genética , Apolipoproteína E2/genética , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Células-Tronco Embrionárias/fisiologia , Predisposição Genética para Doença/genética , Doença de Alzheimer/metabolismo , Animais , Animais Recém-Nascidos , Apolipoproteína E2/biossíntese , Apolipoproteína E3/biossíntese , Apolipoproteína E4/biossíntese , Células Cultivadas , Método Duplo-Cego , Feminino , Variação Genética/fisiologia , Células HEK293 , Humanos , Masculino , Camundongos , Neurônios/fisiologia , Distribuição Aleatória , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA