Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(2): 1265-1273, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38157474

RESUMO

Wildfires or prescribed fires release pyrogenic dissolved organic matter (pyDOM) into the environment, which can photochemically produce singlet oxygen (1O2) in sun-lit surface waters. 1O2 quantum yields (ΦΔ) are well-studied for non-pyrogenic DOM, but little is understood about the 1O2 generation from pyDOM, especially the ΦΔ values from real wildfire samples and their wavelength dependence. In this study, time-resolved 1O2 phosphorescence was used to determine the wavelength-dependent ΦΔ values for pyDOM generated from wildfire char and a series of lab-prepared chars produced by combusting oak and pine wood. Wildfire and most lab-prepared pyDOM generally had similar ΦΔ values (2.1-2.7%) at 365 nm compared to the reference Suwannee River Natural Organic Matter (SRNOM) isolate (2.4%). Interestingly, pyDOM from the highest combustion temperature char was found to possess extremely low ΦΔ values compared to SRNOM and other pyDOM at all excitation wavelengths. In addition, it was revealed that the predicted steady-state concentration of 1O2 from pyDOM was similar to that from SRNOM, indicating that the addition of pyDOM from wood chars may not strongly impact surface water photochemistry.


Assuntos
Oxigênio Singlete , Incêndios Florestais , Matéria Orgânica Dissolvida , Água , Rios
2.
Environ Sci Technol ; 55(23): 16204-16214, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34553927

RESUMO

Photochemically produced reactive intermediates (PPRIs) by natural photosensitizers such as chromophoric dissolved organic matter (CDOM) play numerous key roles in aquatic biogeochemical processes. PPRI productions rely on both the intensity and the spectrum of incident sunlight. While the impacts of sunlight intensity on PPRI productions are well-studied, there remains insufficient understanding of the spectrum-dependence of PPRI productions. Here we designed a high sample throughput reactor equipped with monochromatic LED lights for systematic assessments of wavelength-dependent productions of four important PPRI species, i.e., triplet-state excited CDOM (3CDOM*), singlet oxygen (1O2), hydrogen peroxide (H2O2), and hydroxyl radical (•OH), in CDOM solutions. The quantum yields of PPRIs followed the order: 3CDOM* > 1O2 ≫ H2O2 > •OH. Moreover, PPRI quantum yields decreased with the light wavelength increasing from 375 to 490 nm and sharply decreased to zero above 490 nm, while the shapes of quantum yield spectra differed among PPRI species. Simulations on PPRI productions under varying season, latitude, altitude, and cloud cover conditions show that the sunlight spectrum plays a role as equally important as intensity in determining PPRI productions and PPRI-mediated transformations of aquatic nutrients and micropollutants. Therefore, incorporating the spectrum dependence of PPRI productions will advance our understandings of PPRI-driven biogeochemical processes and pollutant dynamics under varying spatial-temporal and climatic conditions. Regarding this, the high sample throughput LED reactor sheds light on a new approach for the facile characterization of PPRI quantum yield spectrum.


Assuntos
Matéria Orgânica Dissolvida , Peróxido de Hidrogênio , Radical Hidroxila , Oxigênio Singlete , Luz Solar
3.
Sci Total Environ ; 919: 170848, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340835

RESUMO

Furaltadone (FTD) is an antibiotic belonging to the nitrofurans group. It has been broadly used in livestock and aquaculture for therapeutic purposes, as well as for stimulating promotion. Although the European Union has imposed restrictions on the use of FTD since 1995 due to concerns regarding its toxicity, in many cases FTD has been excessively and/or illegally applied in productive animals in developing countries, because of its high efficacy and low-cost. Unlike other nitrofuran compounds, the hydrolytic and photolytic behavior of FTD in natural aquatic systems has not been thoroughly investigated. To this end, hydrolysis in different pH values and photolysis in aquatic environment, including lake, river and sea water have been both examined. Hydrolysis was found to have an insignificant impact on degradation of FTD in the aquatic environment relevant pH values, whereas indirect photolysis proved to be the main route of its elimination. The identification of tentative photoproducts (PPs) was performed using ultra high performance liquid chromatography coupled to hybrid LTQ/Orbitrap high resolution mass spectrometry. A possible pathway for photolytic transformation of FTD was proposed. Additionally, in silico simulations were used to evaluate the toxicity such as the mutagenicity of FTD and PPs. Complementary to the low-cost and time-limited simulations, an in vitro method (Vibrio Fischeri bioluminescence) was also used to assess ecotoxicity.


Assuntos
Demência Frontotemporal , Nitrofuranos , Oxazolidinonas , Poluentes Químicos da Água , Animais , Espectrometria de Massas , Nitrofuranos/análise , Nitrofuranos/química , Água/química , Fotólise , Poluentes Químicos da Água/análise , Cinética
4.
Water Res ; 213: 118095, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35203017

RESUMO

Reactive intermediates formed upon irradiation of chromophoric dissolved organic matter (CDOM) contribute to the degradation of various organic contaminants in surface waters. Besides well-studied "short-lived" photooxidants, such as triplet state CDOM (3CDOM*) or singlet oxygen, CDOM-derived "long-lived" photooxidants (LLPO) have been suggested as key players in the transformation of electron-rich contaminants. LLPO were hypothesized to mainly consist of phenoxyl radicals derived from phenolic moieties in the CDOM. To test this hypothesis and to better characterize LLPO, the transformation kinetics of selected target compounds (phenols and anilines) induced by a suite of electron-poor model phenoxyl radicals was studied in aerated aqueous solution at pH 8. The phenoxyl radicals were generated by photosensitized oxidation of the parent phenols using aromatic ketones as photosensitizers. Under steady-state irradiation, the presence of any of the electron-poor phenols lead to an enhanced abatement of the phenolic target compounds (at an initial concentration of 1.0 × 10-7 M) compared to solutions containing the photosensitizer but no electron-poor phenol. A trend of increasing reactivity with increasing one-electron reduction potential of the electron-poor phenoxyl radical (range: 0.85‒1.12 V vs. standard hydrogen electrode) was observed. Using the excited triplet state of 2-acetonaphthone as a selective oxidant for phenols, it was observed that the reactivity correlated with the concentration of electron-poor phenoxide present in solution. The rates of transformation of anilines induced by the 4-cyanophenoxyl radical were an order of magnitude smaller than for the phenolic target compounds. This was interpreted as a reduction of the radical intermediates back to the parent compound by the superoxide radical anion. Laser flash photolysis measurements confirmed the formation of the 4-cyanophenoxyl radical in solutions containing 2-acetonaphthone and 4-cyanophenol, and yielded values of (2.6 - 5.3) × 108 M-1 s-1 for the second-order rate constant for the reaction of this radical with 2,4,6-trimethylphenol. These and further results indicate that electron-poor model phenoxyl radicals generated through photosensitized oxidation are useful models to understand the photoreactivity of LLPO as part of the CDOM.

5.
Water Res ; 190: 116707, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33373945

RESUMO

Dissolved organic matter (DOM) plays a crucial role in the photochemical transformation of organic contaminants in natural aquatic systems. The present study focuses on the characterization of a specific effect previously observed for electron-rich phenols, consisting in an acceleration of the DOM-photosensitized transformation of target compounds at low concentrations (< 1 µM). This effect was hypothesized to be caused by DOM-derived "long-lived" photooxidants (LLPO). Pseudo-first-order rate constants for the transformation of several phenols, anilines, sulfonamide antibiotics and phenylureas photosensitized by Suwannee River fulvic acid were determined under steady-state irradiation using the UVA and visible wavelengths from a medium-pressure mercury lamp. A significant enhancement (by a factor of 2.4 - 16) of the first-order transformation rate constant of various electron-rich target compounds was observed for an initial concentration of 0.1 µM compared to 5 µM . This effect points to a relevant reactivity of these compounds with LLPO. For phenols and anilines the enhancement effect occurred only above certain standard one-electron oxidation potentials. From these data series the standard one-electron reduction potential of LLPO was estimated to be in the range of 1.0 - 1.3 V versus the standard hydrogen electrode. LLPO are proposed to mainly consist of phenoxyl radicals formed by photooxidation of electron-poor phenolic moieties of the DOM. The plausibility of this hypothesis was successfully tested by studying the photosensitized transformation kinetics of 3,4-dimethoxyphenol in aqueous solutions containing a model photosensitizer (2-acetonaphthone) and a model electron-poor phenol (4-cyanophenol) as DOM surrogates.


Assuntos
Poluentes Químicos da Água , Compostos de Anilina , Cinética , Oxirredução , Rios , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA