Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Mod Pathol ; 37(4): 100439, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38286221

RESUMO

This work puts forth and demonstrates the utility of a reporting framework for collecting and evaluating annotations of medical images used for training and testing artificial intelligence (AI) models in assisting detection and diagnosis. AI has unique reporting requirements, as shown by the AI extensions to the Consolidated Standards of Reporting Trials (CONSORT) and Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) checklists and the proposed AI extensions to the Standards for Reporting Diagnostic Accuracy (STARD) and Transparent Reporting of a Multivariable Prediction model for Individual Prognosis or Diagnosis (TRIPOD) checklists. AI for detection and/or diagnostic image analysis requires complete, reproducible, and transparent reporting of the annotations and metadata used in training and testing data sets. In an earlier work by other researchers, an annotation workflow and quality checklist for computational pathology annotations were proposed. In this manuscript, we operationalize this workflow into an evaluable quality checklist that applies to any reader-interpreted medical images, and we demonstrate its use for an annotation effort in digital pathology. We refer to this quality framework as the Collection and Evaluation of Annotations for Reproducible Reporting of Artificial Intelligence (CLEARR-AI).


Assuntos
Inteligência Artificial , Lista de Checagem , Humanos , Prognóstico , Processamento de Imagem Assistida por Computador , Projetos de Pesquisa
2.
J Med Imaging (Bellingham) ; 11(2): 024013, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38666039

RESUMO

Purpose: To provide a simulation framework for routine neuroimaging test data, which allows for "stress testing" of deep segmentation networks against acquisition shifts that commonly occur in clinical practice for T2 weighted (T2w) fluid-attenuated inversion recovery magnetic resonance imaging protocols. Approach: The approach simulates "acquisition shift derivatives" of MR images based on MR signal equations. Experiments comprise the validation of the simulated images by real MR scans and example stress tests on state-of-the-art multiple sclerosis lesion segmentation networks to explore a generic model function to describe the F1 score in dependence of the contrast-affecting sequence parameters echo time (TE) and inversion time (TI). Results: The differences between real and simulated images range up to 19% in gray and white matter for extreme parameter settings. For the segmentation networks under test, the F1 score dependency on TE and TI can be well described by quadratic model functions (R2>0.9). The coefficients of the model functions indicate that changes of TE have more influence on the model performance than TI. Conclusions: We show that these deviations are in the range of values as may be caused by erroneous or individual differences in relaxation times as described by literature. The coefficients of the F1 model function allow for a quantitative comparison of the influences of TE and TI. Limitations arise mainly from tissues with a low baseline signal (like cerebrospinal fluid) and when the protocol contains contrast-affecting measures that cannot be modeled due to missing information in the DICOM header.

3.
J Pathol Inform ; 12: 45, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34881099

RESUMO

PURPOSE: Validating artificial intelligence algorithms for clinical use in medical images is a challenging endeavor due to a lack of standard reference data (ground truth). This topic typically occupies a small portion of the discussion in research papers since most of the efforts are focused on developing novel algorithms. In this work, we present a collaboration to create a validation dataset of pathologist annotations for algorithms that process whole slide images. We focus on data collection and evaluation of algorithm performance in the context of estimating the density of stromal tumor-infiltrating lymphocytes (sTILs) in breast cancer. METHODS: We digitized 64 glass slides of hematoxylin- and eosin-stained invasive ductal carcinoma core biopsies prepared at a single clinical site. A collaborating pathologist selected 10 regions of interest (ROIs) per slide for evaluation. We created training materials and workflows to crowdsource pathologist image annotations on two modes: an optical microscope and two digital platforms. The microscope platform allows the same ROIs to be evaluated in both modes. The workflows collect the ROI type, a decision on whether the ROI is appropriate for estimating the density of sTILs, and if appropriate, the sTIL density value for that ROI. RESULTS: In total, 19 pathologists made 1645 ROI evaluations during a data collection event and the following 2 weeks. The pilot study yielded an abundant number of cases with nominal sTIL infiltration. Furthermore, we found that the sTIL densities are correlated within a case, and there is notable pathologist variability. Consequently, we outline plans to improve our ROI and case sampling methods. We also outline statistical methods to account for ROI correlations within a case and pathologist variability when validating an algorithm. CONCLUSION: We have built workflows for efficient data collection and tested them in a pilot study. As we prepare for pivotal studies, we will investigate methods to use the dataset as an external validation tool for algorithms. We will also consider what it will take for the dataset to be fit for a regulatory purpose: study size, patient population, and pathologist training and qualifications. To this end, we will elicit feedback from the Food and Drug Administration via the Medical Device Development Tool program and from the broader digital pathology and AI community. Ultimately, we intend to share the dataset, statistical methods, and lessons learned.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA