Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Development ; 147(14)2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32586978

RESUMO

We define a quantitative relationship between the affinity with which the intestine-specific GATA factor ELT-2 binds to cis-acting regulatory motifs and the resulting transcription of asp-1, a target gene representative of genes involved in Caenorhabditis elegans intestine differentiation. By establishing an experimental system that allows unknown parameters (e.g. the influence of chromatin) to effectively cancel out, we show that levels of asp-1 transcripts increase monotonically with increasing binding affinity of ELT-2 to variant promoter TGATAA sites. The shape of the response curve reveals that the product of the unbound ELT-2 concentration in vivo [i.e. (ELT-2free) or ELT-2 'activity'] and the largest ELT-XXTGATAAXX association constant (Kmax) lies between five and ten. We suggest that this (unitless) product [Kmax×(ELT-2free) or the equivalent product for any other transcription factor] provides an important quantitative descriptor of transcription-factor/regulatory-motif interaction in development, evolution and genetic disease. A more complicated model than simple binding affinity is necessary to explain the fact that ELT-2 appears to discriminate in vivo against equal-affinity binding sites that contain AGATAA instead of TGATAA.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Fatores de Transcrição GATA/metabolismo , Mucosa Intestinal/metabolismo , Regiões Promotoras Genéticas/genética , Animais , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/metabolismo , Sequência de Bases , Sítios de Ligação , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Ensaio de Desvio de Mobilidade Eletroforética , Cinética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Ligação Proteica , Transcrição Gênica
2.
Biochim Biophys Acta ; 1843(8): 1674-86, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24184206

RESUMO

The SecA2 proteins are a special class of transport-associated ATPases that are related to the SecA component of the general Sec system, and are found in an increasingly large number of Gram-positive bacterial species. The SecA2 substrates are typically linked to the cell wall, but may be lipid-linked, peptidoglycan-linked, or non-covalently associated S-layer proteins. These substrates can have a significant impact on virulence of pathogenic organisms, but may also aid colonization by commensals. The SecA2 orthologues range from being highly similar to their SecA paralogues, to being distinctly different in apparent structure and function. Two broad classes of SecA2 are evident. One transports multiple substrates, and may interact with the general Sec system, or with an as yet unidentified transmembrane channel. The second type transports a single substrate, and is a component of the accessory Sec system, which includes the SecY paralogue SecY2 along with the accessory Sec proteins Asp1-3. Recent studies indicate that the latter three proteins may have a unique role in coordinating post-translational modification of the substrate with transport by SecA2. Comparative functional and phylogenetic analyses suggest that each SecA2 may be uniquely adapted for a specific type of substrate. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Parede Celular/metabolismo , Glicoproteínas de Membrana/química , Proteínas de Membrana Transportadoras/química , Transporte Proteico/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/química , Bactérias Gram-Positivas/química , Bactérias Gram-Positivas/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo , Filogenia , Canais de Translocação SEC , Proteínas SecA
3.
mBio ; 13(3): e0103422, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35536002

RESUMO

Inositol pyrophosphates (IPPs) are signaling molecules that regulate cellular phosphate homeostasis in diverse eukaryal taxa. In fission yeast, mutations that increase 1,5-IP8 derepress the PHO regulon while mutations that ablate IP8 synthesis are PHO hyper-repressive. Fission yeast Asp1, the principal agent of 1,5-IP8 dynamics, is a bifunctional enzyme composed of an N-terminal IPP kinase domain and a C-terminal IPP pyrophosphatase domain. Here we conducted a biochemical characterization and mutational analysis of the autonomous Asp1 kinase domain (aa 1-385). Reaction of Asp1 kinase with IP6 and ATP resulted in both IP6 phosphorylation to 1-IP7 and hydrolysis of the ATP γ-phosphate, with near-equal partitioning between productive 1-IP7 synthesis and unproductive ATP hydrolysis under optimal kinase conditions. By contrast, reaction of Asp1 kinase with 5-IP7 is 22-fold faster than with IP6 and is strongly biased in favor of IP8 synthesis versus ATP hydrolysis. Alanine scanning identified essential constituents of the active site. We deployed the Ala mutants to show that derepression of pho1 expression correlated with Asp1's kinase activity. In the case of full-length Asp1, the activity of the C-terminal pyrophosphatase domain stifled net phosphorylation of the 1-position during reaction of Asp1 with ATP and either IP6 or 5-IP7. We report that inorganic phosphate is a concentration-dependent enabler of net IP8 synthesis by full-length Asp1 in vitro, by virtue of its antagonism of IP8 turnover. IMPORTANCE Expression of the fission yeast phosphate regulon is sensitive to the intracellular level of the inositol pyrophosphate (IPP) signaling molecule 1,5-IP8. IP8 dynamics are determined by Asp1, a bifunctional enzyme comprising N-terminal IPP 1-kinase and C-terminal IPP 1-pyrophosphatase domains that catalyze IP8 synthesis and catabolism, respectively. Here, we interrogated the activities and specificities of the Asp1 kinase domain and full length Asp1. We find that reaction of Asp1 kinase with 5-IP7 is 22-fold faster than with IP6 and is strongly biased in favor of IP8 synthesis versus the significant unproductive ATP hydrolysis seen during its reaction with IP6. We report that full-length Asp1 catalyzes futile cycles of 1-phosphate phosphorylation by its kinase component and 1-pyrophosphate hydrolysis by its pyrophosphatase component that result in unproductive net consumption of the ATP substrate. Net synthesis of 1,5-IP8 is enabled by physiological concentrations of inorganic phosphate that selectively antagonize IP8 turnover.


Assuntos
Fosfatase Ácida , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Fosfatase Ácida/química , Fosfatase Ácida/metabolismo , Trifosfato de Adenosina/metabolismo , Difosfatos/metabolismo , Expressão Gênica , Fosfatos de Inositol/metabolismo , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Pirofosfatases/genética , Pirofosfatases/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
4.
mBio ; 13(6): e0308722, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36468882

RESUMO

Expression of the fission yeast Schizosaccharomyces pombe phosphate regulon is sensitive to the intracellular level of the inositol pyrophosphate signaling molecule 1,5-IP8. IP8 dynamics are determined by Asp1, a bifunctional enzyme consisting of an N-terminal kinase domain and a C-terminal pyrophosphatase domain that catalyze IP8 synthesis and catabolism, respectively. Here, we report structures of the Asp1 kinase domain, crystallized with two protomers in the asymmetric unit, one of which was complexed with ligands (ADPNP, ADP, or ATP; Mg2+ or Mn2+; IP6, 5-IP7, or 1,5-IP8) and the other which was ligand-free. The ligand-free enzyme adopts an "open" conformation that allows ingress of substrates and egress of products. ADPNP, ADP, and ATP and associated metal ions occupy a deep phospho-donor pocket in the active site. IP6 or 5-IP7 engagement above the nucleotide favors adoption of a "closed" conformation, in which surface protein segments undergo movement and a disordered-to-ordered transition to form an inositol polyphosphate-binding site. In a structure mimetic of the kinase Michaelis complex, the anionic 5-IP7 phosphates are encaged by an ensemble of nine cationic amino acids: Lys43, Arg223, Lys224, Lys260, Arg274, Arg285, Lys290, Arg293, and Lys341. Alanine mutagenesis of amino acids that contact the adenosine nucleoside of the ATP donor underscored the contributions of Asp258 interaction with the ribose 3'-OH and of Glu248 with adenine-N6. Changing Glu248 to Gln elicited a gain of function whereby the kinase became adept at using GTP as phosphate donor. Wild-type Asp1 kinase can utilize N6-benzyl-ATP as phosphate donor. IMPORTANCE The inositol pyrophosphate signaling molecule 1,5-IP8 modulates fission yeast phosphate homeostasis via its action as an agonist of RNA 3'-processing and transcription termination. Cellular IP8 levels are determined by Asp1, a bifunctional enzyme composed of an N-terminal kinase and a C-terminal pyrophosphatase domain. Here, we present a series of crystal structures of the Asp1 kinase domain, in a ligand-free state and in complexes with nucleotides ADPNP, ADP, and ATP, divalent cations magnesium and manganese, and inositol polyphosphates IP6, 5-IP7, and 1,5-IP8. Substrate binding elicits a switch from open to closed conformations, entailing a disordered-to-ordered transition and a rearrangement or movement of two peptide segments that form a binding site for the phospho-acceptor. Our structures, along with structure-guided mutagenesis, fortify understanding of the mechanism and substrate specificity of Asp1 kinase, and they extend and complement structural and functional studies of the orthologous human kinase PPIP5K2.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Humanos , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Difosfatos/metabolismo , Fosfatos de Inositol/metabolismo , Enzimas Multifuncionais/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Pirofosfatases/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
5.
Int J Biol Macromol ; 217: 583-591, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35850267

RESUMO

The eastern Apis cerana (Ac) and the western Apis mellifera (Am) are two closely related and most economically valuable honeybee species managed extensively worldwide. However, how worker bees of Ac and Am are adapted to their colony organization remains to be uncovered. Here, we found that the expression level of gene encoding antennae-specific proteins 1 (ASP1, a key regulator in recognizing queen mandibular pheromone) was positively correlated with the colony sizes in both bee species, and the expression level in Am was higher than that in Ac, suggesting that ASP1 may play an important role in maintaining colony homeostasis. Using competitive binding assay, molecular docking, and site-directed mutagenesis, we then confirmed the good binding affinities of both Ac-ASP1 and Am-ASP1 to methyl p-hydroxy benzoate (HOB), and Val115 was the key amino acid. However, the affinity of Am-ASP1 was stronger than that of Ac-ASP1. EAG analysis further demonstrated that antennae of Am worker bees had faster depolarization and repolarization in response to HOB stimulation. Taken together, these findings indicate that the differences in expression levels and binding dynamics allow ASP1 recognizing HOB to potentially serve as a specific regulator of colony organization in Ac and Am.


Assuntos
Proteínas de Transporte/metabolismo , Hidroxibenzoatos/metabolismo , Proteínas de Insetos/metabolismo , Feromônios , Olfato , Animais , Abelhas/genética , Simulação de Acoplamento Molecular , Feromônios/metabolismo
6.
J Fungi (Basel) ; 8(9)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36135658

RESUMO

Inositol pyrophosphates (IPPs) comprise a specific class of signaling molecules that regulate central biological processes in eukaryotes. The conserved Vip1/PPIP5K family controls intracellular IP8 levels, the highest phosphorylated form of IPPs present in yeasts, as it has both inositol kinase and pyrophosphatase activities. Previous studies have shown that the fission yeast S. pombe Vip1/PPIP5K family member Asp1 impacts chromosome transmission fidelity via the modulation of spindle function. We now demonstrate that an IP8 analogue is targeted by endogenous Asp1 and that cellular IP8 is subject to cell cycle control. Mitotic entry requires Asp1 kinase function and IP8 levels are increased at the G2/M transition. In addition, the kinetochore, the conductor of chromosome segregation that is assembled on chromosomes is modulated by IP8. Members of the yeast CCAN kinetochore-subcomplex such as Mal2/CENP-O localize to the kinetochore depending on the intracellular IP8-level: higher than wild-type IP8 levels reduce Mal2 kinetochore targeting, while a reduction in IP8 has the opposite effect. As our perturbations of the inositol polyphosphate and IPP pathways demonstrate that kinetochore architecture depends solely on IP8 and not on other IPPs, we conclude that chromosome transmission fidelity is controlled by IP8 via an interplay between entry into mitosis, kinetochore architecture, and spindle dynamics.

7.
J Fungi (Basel) ; 7(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34436165

RESUMO

Inorganic polyphosphate (polyP) which is ubiquitously present in both prokaryotic and eukaryotic cells, consists of up to hundreds of orthophosphate residues linked by phosphoanhydride bonds. The biological role of this polymer is manifold and diverse and in fungi ranges from cell cycle control, phosphate homeostasis and virulence to post-translational protein modification. Control of polyP metabolism has been studied extensively in the budding yeast Saccharomyces cerevisiae. In this yeast, a specific class of inositol pyrophosphates (IPPs), named IP7, made by the IP6K family member Kcs1 regulate polyP synthesis by associating with the SPX domains of the vacuolar transporter chaperone (VTC) complex. To assess if this type of regulation was evolutionarily conserved, we determined the elements regulating polyP generation in the distantly related fission yeast Schizosaccharomyces pombe. Here, the VTC machinery is also essential for polyP generation. However, and in contrast to S. cerevisiae, a different IPP class generated by the bifunctional PPIP5K family member Asp1 control polyP metabolism. The analysis of Asp1 variant S. pombe strains revealed that cellular polyP levels directly correlate with Asp1-made IP8 levels, demonstrating a dose-dependent regulation. Thus, while the mechanism of polyP synthesis in yeasts is conserved, the IPP player regulating polyP metabolism is diverse.

8.
Mol Plant ; 13(6): 879-893, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32298785

RESUMO

In response to far-red light (FR), FAR-RED ELONGATED HYPOCOTYL 1 (FHY1) transports the photoactivated phytochrome A (phyA), the primary FR photoreceptor, into the nucleus, where it initiates FR signaling in plants. Light promotes the 26S proteasome-mediated degradation of FHY1, which desensitizes FR signaling, but the underlying regulatory mechanism remains largely unknown. Here, we show that reversible SUMOylation of FHY1 tightly regulates this process. Lysine K32 (K32) and K103 are major SUMOylation sites of FHY1. We found that FR exposure promotes the SUMOylation of FHY1, which accelerates its degradation. Furthermore, we discovered that ARABIDOPSIS SUMO PROTEASE 1 (ASP1) interacts with FHY1 in the nucleus under FR and facilitates its deSUMOylation. FHY1 was strongly SUMOylated and its protein level was decreased in the asp1-1 loss-of-function mutant compared with that in the wild type under FR. Consistently, asp1-1 seedlings exhibited a decreased sensitivity to FR, suggesting that ASP1 plays an important role in the maintenance of proper FHY1 levels under FR. Genetic analysis further revealed that ASP1 regulates FR signaling through an FHY1- and phyA-dependent pathway. Interestingly, We found that continuous FR inhibits ASP1 accumulation, perhaps contributing to the desensitization of FR signaling. Taken together, these results indicate that FR-induced SUMOylation and ASP1-dependent deSUMOylation of FHY1 represent a key regulatory mechanism that fine-tunes FR signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Fitocromo A/metabolismo , Fitocromo/metabolismo , Transdução de Sinais , Sumoilação , Luz , Modelos Biológicos , Ligação Proteica , Estabilidade Proteica/efeitos da radiação , Proteólise/efeitos da radiação , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Especificidade por Substrato
9.
Vaccine ; 33(16): 1974-80, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25736195

RESUMO

The Onchocerca volvulus activation-associated secreted protein-1 (Ov-ASP-1) has good adjuvanticity for a variety of antigens and vaccines, probably due to its ability activate antigen-processing cells (APCs). However, the functional domain of Ov-ASP-1 as an adjuvant is not clearly defined. Based on the structural prediction of this protein family, we constructed a 16-kDa recombinant protein of Ov-ASP-1 that contains only the core pathogenesis-related-1 (PR-1) domain (residues 10-153), designated ASPPR. We found that ASPPR exhibits adjuvanticity similar to that of the full-length Ov-ASP-1 (residues 10-220) for various antigens, including ovalbumin (OVA), HBsAg protein antigen, and the HIV peptide 5 (Pep5) antigen, but it is more suitable for vaccine design in ASPPR-antigen fusion proteins, and more stable in PBS than Ov-ASP-1 stored at -70 °C. These results suggest that ASPPR might be the functional region of Ov-ASP-1 as an adjuvant, and therefore could be developed as an adjuvant for human use.


Assuntos
Adjuvantes Imunológicos , Proteínas de Helminto/imunologia , Onchocerca volvulus/imunologia , Domínios e Motivos de Interação entre Proteínas/imunologia , Animais , Anticorpos Anti-Helmínticos/sangue , Anticorpos Anti-Helmínticos/imunologia , Feminino , HIV-1/imunologia , Proteínas de Helminto/química , Anticorpos Anti-Hepatite B/imunologia , Antígenos de Superfície da Hepatite B/imunologia , Humanos , Imunidade Celular , Imunidade Humoral , Imunização , Interferon gama/sangue , Interleucina-4/sangue , Camundongos , Ovalbumina/imunologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-24316526

RESUMO

Human serum albumin (HSA) is the most abundant protein in plasma. Cys34, the only free Cys residue, is the predominant plasma thiol and a relevant sacrificial antioxidant. Both in vivo circulating HSA and pharmaceutical preparations are heterogeneous with respect to the oxidation state of Cys34. In this work, we developed an external pH gradient chromatofocusing procedure that allows the analysis of the oxidation status of HSA in human plasma and biopharmaceutical products based on the different apparent isoelectric points and chemical properties of the redox isoforms. Specifically, reduced-mercury blocked HSA (HSA-SHg(+)), HSA with Cys34 oxidized to sulfenic acid (HSA-SOH) and HSA oxidized to sulfinate anion (HSA-SO2(-)) can be separated with resolutions of 1.4 and 3.1 (first and last pair) and hence quantified and purified. In addition, an N-terminally degraded isoform (HSA3-585) in different redox states can be resolved as well. Confirmation of the identity of the chromatofocusing isolated isoforms was achieved by high resolution whole protein MS. It is proposed that the chromatofocusing procedure can be used to produce more exact and complete descriptions of the redox status of HSA in vivo and in vitro. Finally, the scalability capabilities of the chromatofocusing procedure allow for the preparation of highly pure standards of several redox isoforms of HSA.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Albumina Sérica/química , Albumina Sérica/isolamento & purificação , Idoso , Humanos , Concentração de Íons de Hidrogênio , Ponto Isoelétrico , Masculino , Pessoa de Meia-Idade , Isoformas de Proteínas/análise , Isoformas de Proteínas/química , Isoformas de Proteínas/isolamento & purificação , Albumina Sérica/análise
11.
Rev. MVZ Córdoba ; 14(2): 1667-1676, mayo-ago. 2009.
Artigo em Espanhol | LILACS | ID: lil-621899

RESUMO

Objetivo. Construir un plásmido recombinante que exprese la proteína ASP1r de Ancylostoma caninum y evaluar su capacidad inmunogénica en un modelo murino. Materiales y métodos. Se realizó extracción de ARN de parásitos adultos de Ancylostoma caninum, se amplificó por RT –PCR el gen de la proteína ASP1. Este gen fue insertado en el vector pcDNA3. El inserto fue digerido con Bamh1 y EcoR1 y clonado direccionalmente. Posteriormente, se llevó a cabo transformación y selección de las células de E. coli DH5a competentes con el producto de la ligación. Se realizó un tamizaje por PCR confirmando la presencia del gen ASP1. El vector pcDNA3-ASP1 fue administrado vía intraglandular en la parotida e intramuscular enratones Balb/c. En estos animales se les realizó determinación de anticuerpos en suero y saliva mediante las técnicas de ELISA e inmunohistoquímica. Resultados. Se determinó que el plásmido pcDNA3-ASP1 fue incorporado y expresado células E. coli DH5a. Este plásmido recombinante indujo la producción de anticuerpos Anti-ASP1 específicos en ratones Balb/c. Conclusiones. Se logró demostrar que la utilización de pcDNA3-ASP1 no produjo reacciones desfavorables en ratones Balb/c, además indujo respuesta humoral contra la proteína pcDNA3- ASP1 de excreción/secreción de Ancylostoma caninum en ratones.


Assuntos
Cães , Ancylostoma , Clonagem de Organismos , DNA , Cães , Imuno-Histoquímica , Proteínas , Vacinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA