Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Plant Cell Environ ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39253998

RESUMO

Asymmetric warming refers to the difference between the increase in daytime maximum temperature and the increase in nighttime minimum temperature and has been documented in temperate regions. However, its impacts on seedling growth have been largely ignored. In this study, seedlings of a widely distributed tree species, Acer mono Maxim., were exposed to both symmetric warming (SW) and asymmetric warming scenarios (day warming [DW], night warming [NW] and diurnal asymmetric warming [DAW]). Compared to control, all warming scenarios were found to enhance belowground biomass. DW promoted the seedling growth, while NW reduced the stem biomass. DAW did not impact the total biomass relative to the control. Compared to SW, DAW advanced phenology, increased indole-3-acetic acid content and chlorophyll content, which enhanced total biomass and stored more NSC in the root. Future DAW would be not beneficial to the growth of A. mono seedlings by comparing with the control. This research encourages further exploration of tree growth experiments under asymmetric warming conditions, as most studies tend to underestimate the warming effects on plant growth by focusing on SW. Incorporating the responses of seedling physiology and growth to non-uniform diurnal warming into earth system models is crucial for more accurately predicting carbon and energy balances in a warmer world.

2.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446390

RESUMO

Warming in the Antarctic Peninsula is one of the fastest on earth, and is predicted to become more asymmetric in the near future. Warming has already favored the growth and reproduction of Antarctic plant species, leading to a decrease in their freezing tolerance (deacclimation). Evidence regarding the effects of diurnal and nocturnal warming on freezing tolerance-related gene expression in D. antarctica is negligible. We hypothesized that freezing tolerance-related gene (such as CBF-regulon) expression is reduced mainly by nocturnal warming rather than diurnal temperature changes in D. antarctica. The present work aimed to determine the effects of diurnal and nocturnal warming on cold deacclimation and its associated gene expression in D. antarctica, under laboratory conditions. Fully cold-acclimated plants (8 °C/0 °C), with 16h/8h thermoperiod and photoperiod duration, were assigned to four treatments for 14 days: one control (8 °C/0 °C) and three with different warming conditions (diurnal (14 °C/0 °C), nocturnal (8 °C/6 °C), and diurnal-nocturnal (14 °C/6 °C). RNA-seq was performed and differential gene expression was analyzed. Nocturnal warming significantly down-regulated the CBF transcription factors expression and associated cold stress response genes and up-regulated photosynthetic and growth promotion genes. Consequently, nocturnal warming has a greater effect than diurnal warming on the cold deacclimation process in D. antarctica. The eco-physiological implications are discussed.


Assuntos
Aclimatação , Temperatura Baixa , Aclimatação/genética , Fatores de Transcrição/metabolismo , Fotossíntese/genética , Perfilação da Expressão Gênica
3.
J Environ Manage ; 347: 119131, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37783082

RESUMO

Global land surface air temperature data show that in the past 50 years, the rate of nighttime warming has been much faster than that of daytime, with the minimum daily temperature (Tmin) increasing about 40% faster than the maximum daily temperature (Tmax), resulting in a decreased diurnal temperature difference. The Qinghai-Tibet Plateau (QTP) is known as the "roof of the world", where temperatures have risen twice as fast as the global average warming rate in the last few decades. The factors affecting vegetation growth on the QTP are complex and still not fully understood to some extent. Previous studies paid less attention to the explanations of the complicated interactions and pathways between elements that influence vegetation growth, such as climate (especially asymmetric warming) and topography. In this study, we characterized the spatial and temporal trends of vegetation coverage and investigated the response of vegetation dynamics to asymmetric warming and topography in the QTP during 2001-2020 using trend analysis, partial correlation analysis, and partial least squares structural equation model (PLS-SEM) analysis. We found that from 2001 to 2020, the entire QTP demonstrated a greening trend in the growing season (April to October) at a rate of 0.0006/a (p < 0.05). The spatial distribution pattern of partial correlation between NDVI and Tmax differed from that of NDVI and Tmin. PLS-SEM results indicated that asymmetric warming (both Tmax and Tmin) had a consistent effect on vegetation development by directly promoting greening in the QTP, with NDVI values being more sensitive to Tmin, while topographic factors, especially elevation, mainly played an indirect role in influencing vegetation growth by affecting climate change. This study offers new insights into how vegetation responds to asymmetric warming and references for local ecological preservation.


Assuntos
Mudança Climática , Aquecimento Global , Tibet , Temperatura , Estações do Ano , Ecossistema
4.
Glob Chang Biol ; 27(20): 5198-5210, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34228871

RESUMO

Changes in ecological processes over time in ambient treatments are often larger than the responses to manipulative treatments in climate change experiments. However, the impacts of human-driven environmental changes on the stability of natural grasslands have been typically assessed by comparing differences between manipulative plots and reference plots. Little is known about whether or how ambient climate regulates the effects of manipulative treatments and their underlying mechanisms. We collected two datasets, one a 36-year long-term observational dataset from 1983 to 2018, and the other a 10-year manipulative asymmetric warming and grazing experiment using infrared heaters with moderate grazing from 2006 to 2015 in an alpine meadow on the Tibetan Plateau. The 36-year observational dataset shows that there was a nonlinear response of community stability to ambient temperature with a positive relationship between them due to an increase in ambient temperature in the first 25 years and then a decrease in ambient temperature thereafter. Warming and grazing decreased community stability with experiment duration through an increase in legume cover and a decrease in species asynchrony, which was due to the decreasing background temperature through time during the 10-year experiment period. Moreover, the temperature sensitivity of community stability was higher under the ambient treatment than under the manipulative treatments. Therefore, our results suggested that ambient climate may control the directional trend of community stability while manipulative treatments may determine the temperature sensitivity of the response of community stability to climate relative to the ambient treatment. Our study emphasizes the importance of the context dependency of the response of community stability to human-driven environmental changes.


Assuntos
Mudança Climática , Pradaria , Herbivoria , Temperatura
5.
Oecologia ; 193(1): 1-13, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32076818

RESUMO

Recent observational evidence suggests that nighttime temperatures are increasing faster than daytime temperatures, while in some regions precipitation events are becoming less frequent and more intense. The combined ecological impacts of these climatic changes on crassulacean acid metabolism (CAM) plants and their interactions with other functional groups (i.e., grass communities) remain poorly understood. Here we developed a growth chamber experiment to investigate how two CAM-grass communities in desert ecosystems of the southwestern United States and northern Mexico respond to asymmetric warming and increasing rainfall variability. Grasses generally showed competitive advantages over CAM plants with increasing rainfall variability under ambient temperature conditions. In contrast, asymmetric warming caused mortality of both grass species (Bouteloua eriopoda and Bouteloua curtipendula) in both rainfall treatments due to enhanced drought stress. Grass mortality indirectly favored CAM plants even though the biomass of both CAM species Cylindropuntia imbricata and Opuntia phaeacantha significantly decreased. The stem's volume-to-surface ratio of C. imbricata was significantly higher in mixture than in monoculture under ambient temperature (both P < 0.0014); however, the difference became insignificant under asymmetric warming (both P > 0.1625), suggesting that warming weakens the negative effects of interspecific competition on CAM plant growth. Our findings suggest that while the increase in intra-annual rainfall variability enhances grass productivity, asymmetric warming may lead to grass mortality, thereby indirectly favoring the expansion of co-existing CAM plants. This study provides novel experimental evidence showing how the ongoing changes in global warming and rainfall variability affect CAM-grass growth and interactions in dryland ecosystems.


Assuntos
Ecossistema , Plantas , Mudança Climática , México , Poaceae , Sudoeste dos Estados Unidos
6.
Sensors (Basel) ; 19(8)2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30999638

RESUMO

Temperatures from 1982 to 2015 have exhibited an asymmetric warming pattern between day and night throughout the Yellow River Basin. The response to this asymmetric warming can be linked to vegetation growth as quantified by the NDVI (Normalized Difference Vegetation Index). In this study, the time series trends of the maximum temperature (Tmax) and the minimum temperature (Tmin) and their spatial patterns in the growing season (April-October) of the Yellow River Basin from 1982 to 2015 were analyzed. We evaluated how vegetation NDVI had responded to daytime and night-time warming, based on NDVI and meteorological parameters (precipitation and temperature) over the period 1982-2015. We found: (1) a persistent increase in the growing season Tmax and Tmin in 1982-2015 as confirmed by using the Mann-Kendall (M-K) non-parametric test method (p < 0.01), where the rate of increase of Tmin was 1.25 times that of Tmax, and thus the diurnal warming was asymmetric during 1982-2015; (2) the partial correlation between Tmax and NDVI was significantly positive only for cultivated plants, shrubs, and desert, which means daytime warming may increase arid and semi-arid vegetation's growth and coverage, and cultivated plants' growth and yield. The partial correlation between Tmin and NDVI of all vegetation types except broadleaf forest is very significant (p < 0.01) and, therefore, it has more impacts vegetation across the whole basin. This study demonstrates a methodogy for studying regional responses of vegetation to climate extremes under global climate change.

7.
Glob Chang Biol ; 22(9): 3057-66, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27103613

RESUMO

Understanding vegetation responses to climate change on the Tibetan Plateau (TP) helps in elucidating the land-atmosphere energy exchange, which affects air mass movement over and around the TP. Although the TP is one of the world's most sensitive regions in terms of climatic warming, little is known about how the vegetation responds. Here, we focus on how spring phenology and summertime greenness respond to the asymmetric warming, that is, stronger warming during nighttime than during daytime. Using both in situ and satellite observations, we found that vegetation green-up date showed a stronger negative partial correlation with daily minimum temperature (Tmin ) than with maximum temperature (Tmax ) before the growing season ('preseason' henceforth). Summer vegetation greenness was strongly positively correlated with summer Tmin , but negatively with Tmax . A 1-K increase in preseason Tmin advanced green-up date by 4 days (P < 0.05) and in summer enhanced greenness by 3.6% relative to the mean greenness during 2000-2004 (P < 0.01). In contrast, increases in preseason Tmax did not advance green-up date (P > 0.10) and higher summer Tmax even reduced greenness by 2.6% K(-1) (P < 0.05). The stimulating effects of increasing Tmin were likely caused by reduced low temperature constraints, and the apparent negative effects of higher Tmax on greenness were probably due to the accompanying decline in water availability. The dominant enhancing effect of nighttime warming indicates that climatic warming will probably have stronger impact on TP ecosystems than on apparently similar Arctic ecosystems where vegetation is controlled mainly by Tmax . Our results are crucial for future improvements of dynamic vegetation models embedded in the Earth System Models which are being used to describe the behavior of the Asian monsoon. The results are significant because the state of the vegetation on the TP plays an important role in steering the monsoon.


Assuntos
Mudança Climática , Plantas , Temperatura , Regiões Árticas , Estações do Ano , Tibet
8.
Ann Bot ; 116(6): 899-906, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25921787

RESUMO

BACKGROUND AND AIMS: Asymmetric warming is one of the distinguishing features of global climate change, in which winter and night-time temperatures are predicted to increase more than summer and diurnal temperatures. Winter warming weakens vernalization and hence decreases the potential to flower for some perennial herbs, and night warming can reduce carbohydrate concentrations in storage organs. This study therefore hypothesized that asymmetric warming should act to reduce flower number and nectar production per flower in a perennial herb, Saussurea nigrescens, a key nectar plant for pollinators in Tibetan alpine meadows. METHODS: A long-term (6 years) warming experiment was conducted using open-top chambers placed in a natural meadow and manipulated to achieve asymmetric increases in temperature, as follows: a mean annual increase of 0·7 and 2·7 °C during the growing and non-growing seasons, respectively, combined with an increase of 1·6 and 2·8 °C in the daytime and night-time, respectively, from June to August. Measurements were taken of nectar volume and concentration (sucrose content), and also of leaf non-structural carbohydrate content and plant morphology. KEY RESULTS: Six years of experimental warming resulted in reductions in nectar volume per floret (64·7 % of control), floret number per capitulum (8·7 %) and capitulum number per plant (32·5 %), whereas nectar concentration remained unchanged. Depletion of leaf non-structural carbohydrates was significantly higher in the warmed than in the ambient condition. Overall plant density was also reduced by warming, which, when combined with reductions in flower development and nectar volumes, led to a reduction of ∼90 % in nectar production per unit area. CONCLUSIONS: The negative effect of asymmetric warming on nectar yields in S. nigrescens may be explained by a concomitant depletion of leaf non-structural carbohydrates. The results thus highlight a novel aspect of how climate change might affect plant-pollinator interactions and plant reproduction via induction of allocation shifts for plants growing in communities subject to asymmetric warming.


Assuntos
Asteraceae/metabolismo , Insetos/fisiologia , Néctar de Plantas/metabolismo , Animais , Asteraceae/crescimento & desenvolvimento , Mudança Climática , Flores/crescimento & desenvolvimento , Flores/metabolismo , Pradaria , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Polinização , Reprodução , Estações do Ano , Simbiose , Temperatura
9.
J Anim Ecol ; 83(4): 769-78, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24372332

RESUMO

An asymmetric increase in night-time temperatures (NTs) on hot days is one of the main features of global climate change. But the biological effects of an increased night-time temperature combined with high daytime temperature are unclear. We used six thermal regimens to simulate NTs on hot days and investigated the effects of night warming on life-history traits of the English grain aphid Sitobion avenae. Experimental temperatures fluctuated in continuous diurnal cycles, increasing from 27 °C to a maximum 35 °C and then declining to 27 °C gradually before further dropping to different minima (13, 16, 19, 21, 23 or 25 °C) representing NTs. When compared to expectations based on constant temperatures, night warming raised the optimum temperature for development by 3 °C, in contrast to results from experiments where temperature variability was altered symmetrically or in a parallel manner. Night warming also reduced aphid survival under heat from 75% to 37% and depressed adult performance by up to 50%. Overall, night warming exacerbated the detrimental effects of hot days on the intrinsic rate of population increase, which was predicted to drop by 30% when night-time minimum temperatures exceeded 20 °C. Our novel findings on development challenge the 'Kaufmann effect', suggesting this is inapplicable to night warming likely to be encountered in nature. Although many average temperature models predict increasing pest outbreaks, our results suggest that outbreaks of some species might decrease due to the effects of night warming on population dynamics.


Assuntos
Afídeos/fisiologia , Mudança Climática , Temperatura Alta , Animais , Afídeos/crescimento & desenvolvimento , Pequim , Ritmo Circadiano , Longevidade , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Reprodução
10.
Sci Total Environ ; 903: 166387, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633370

RESUMO

Our current understanding of the processes and mechanisms by which seasonal asymmetric warming affects seed reproduction in semiarid regions, which are essential in preserving the stability of both vegetation ecosystem structure and function, remains poorly understood. Here, we conducted a field warming experiment, including pre-growing season warming (W1), in-growing season warming (W2), and combined pre- and in-growing season warming (W3) treatments, to investigate the seed reproductive strategy of Caragana microphylla, an important sand-stabilizing shrub, from the perspective of reproductive phenology, reproductive effort, and reproductive success. Results show that the warming treatments advanced the initial stages of reproductive phenology, prolonged its duration, and decreased its synchrony (magnitude = W3 > W2 > W1). Additionally, flowering phenology was more sensitive to warming than podding phenology. The W1 treatment inclined seed reproduction towards the conservative strategy with low reproductive effort and success. The W3 treatment tended to increase seed reproductive effort and success. While the W2 treatment did not affect reproductive success, it did increase reproductive effort. Changes in reproductive phenology explained 20 % of the variation in reproductive effort and 38 % of the variation in reproductive success. However, these changes also directly hindered reproductive success (direct effect = -0.57) while indirectly promoting reproductive success (indirect effect = 0.27) by increasing reproductive efforts. Our results reveal that the seasonal asymmetry of warming altered the seed reproduction strategy of sand-stabilizing shrubs, with warmer winters and springs before the growing season decreasing seed fecundity.

11.
Biology (Basel) ; 12(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37237512

RESUMO

Climate warming has profoundly influenced community structure and ecosystem functions in the terrestrial biosphere. However, how asymmetric rising temperatures between daytime and nighttime affect soil microbial communities that predominantly regulate soil carbon (C) release remains unclear. As part of a decade-long warming manipulation experiment in a semi-arid grassland, we aimed to examine the effects of short- and long-term asymmetrically diurnal warming on soil microbial composition. Neither daytime nor nighttime warming affected soil microbial composition in the short term, whereas long-term daytime warming instead of nighttime warming decreased fungal abundance by 6.28% (p < 0.05) and the ratio of fungi to bacteria by 6.76% (p < 0.01), which could be caused by the elevated soil temperature, reduced soil moisture, and increased grass cover. In addition, soil respiration enhanced with the decreasing fungi-to-bacteria ratio, but was not correlated with microbial biomass C during the 10 years, indicating that microbial composition may be more important than biomass in modulating soil respiration. These observations highlight the crucial role of soil microbial composition in regulating grassland C release under long-term climate warming, which facilitates an accurate assessment of climate-C feedback in the terrestrial biosphere.

12.
Plants (Basel) ; 12(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36840154

RESUMO

The Antarctic Peninsula has rapidly warmed up in past decades, and global warming has exhibited an asymmetric trend; therefore, it is interesting to understand whether nocturnal or diurnal warming is the most relevant for plant cold deacclimation. This study aimed to evaluate the effect of diurnal and nocturnal warming on Antarctic vascular plant's freezing resistance under laboratory conditions. This was studied by measuring the lethal temperature for 50% of tissue (LT50), ice nucleation temperature (INT), and freezing point (FP) on Deschampsia antarctica and Colobanthus quitensis plants. Additionally, soluble carbohydrates content and dehydrin levels were analyzed during nocturnal and diurnal temperatures increase. Nocturnal warming led to a 7 °C increase in the LT50 of D. antarctica and reduced dehydrin-like peptide expression. Meanwhile, C. quitensis warmed plants reduce their LT50 to about 3.6 °C. Both species reduce their sucrose content by more than 28% in warming treatments. Therefore, nocturnal warming leads to cold deacclimation in both plant species, while C. quitensis plants are also cold-deacclimated upon warm days. This suggests that even when the remaining freezing resistance of both species allows them to tolerate summer freezing events, C. quitensis can reach its boundaries of freezing vulnerability in the near future if warming in the Antarctic Peninsula progress.

13.
Front Plant Sci ; 13: 1071858, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507380

RESUMO

The global surface temperature has witnessed a warming hiatus in the first decade of this century, but how this slowing down of warming will impact spring phenology over Pan-Third Pole remains unclear. Here, we combined multiple satellite-derived vegetation indices with eddy covariance datasets to evaluate the spatiotemporal changes in spring phenological changes over the Pan-Third Pole. We found that the spring phenology over Pan-Third Pole continues to advance at the rate of 4.8 days decade-1 during the warming hiatus period, which is contrasted to a non-significant change over the northern hemisphere. Such a significant and continued advance in spring phenology was mainly attributed to an increase in preseason minimum temperature and water availability. Moreover, there is an overall increasing importance of precipitation on changes in spring phenology during the last four decades. We further demonstrated that this increasingly negative correlation was also found across more than two-thirds of the dryland region, tentatively suggesting that spring phenological changes might shift from temperature to precipitation-controlled over the Pan-Third Pole in a warmer world.

14.
Sci Total Environ ; 822: 153386, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35093352

RESUMO

Over the past 50 years, global land surface air temperature has been rising at a much higher rate at night than during the day. Understanding plant responses to the asymmetric daytime and nighttime warming in the context of climate change has been a hot topic in global change biology and global ecology. It has been debatable whether the asymmetric warming has opposite effects on vegetation activity (e.g., phenology, productivity). Here we settle the debate by scrutinizing the underpinnings of different statistical methods and revealing how the misuse or improper use of these methods could mischaracterize the effects of asymmetric warming with in situ and satellite observations. The use of the ordinary least square (OLS) methods including both daytime (Tmax) and nighttime (Tmin) temperature in the multiple regression models could overlook the multicollinearity problem and yield the misinterpretations that Tmax and Tmin had opposite effects on spring phenology, autumn phenology, gross primary production (GPP), and normalized difference vegetation index (NDVI). However, when the OLS methods were applied with Tmax and Tmin included in separate models or alternatively the ridge regression (RR) method with properly selected ridge parameter was used, the effects of Tmax and Tmin on vegetation activity were generally in the same direction. The use of the RR method with improperly selected ridge parameter could also mischaracterize the effects of asymmetric warming. Our findings show that daytime and nighttime warming has no opposite effects on vegetation phenology and productivity in the northern hemisphere, and properly dealing with the multicollinearity problem is critical for understanding the effects of asymmetric warming on vegetation activity.


Assuntos
Mudança Climática , Ecossistema , Plantas , Estações do Ano , Temperatura
15.
Sci Total Environ ; 812: 152591, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34954180

RESUMO

Soil respiration (Rs) is an important carbon flux in the global carbon cycle, and understanding the influence of global warming on Rs is critical for precise prediction future climate change. Actually, global warming is expected to be seasonally asymmetric, however, it is still unclear on the response of Rs to asymmetrical warming of growing/non-growing season in alpine regions. In this study, an experiment with asymmetrical warming of growing/non-growing season (including three treatments, CK: control; GLNG: warming magnitude of growing season lower than non-growing season; GHNG: warming magnitude of growing season higher than non-growing season) was performed in an alpine meadow of the Northern Tibet since June 2015. The 'GLNG' and 'GHNG' treatments increased mean Rs by 71.22% (1.89 µmol CO2 m-2 s-1) and 34.32% (0.91 µmol CO2 m-2 s-1) during growing season in 2019, respectively. However, the 'GLNG' and 'GHNG' treatments did not significantly affect mean Rs during growing season in 2015, 2016, 2017 and 2018, respectively. The variation coefficient of growing season mean Rs was 32.95% under the CK treatment in 2015-2019. Therefore, warming may have a lagging effect on Rs. The warming scene with a greater warming during non-growing season may have a stronger effect on Rs than the warming scene with a greater warming during growing season. Inter-annual variation of Rs may be greater than the warming effect on Rs in alpine meadows.


Assuntos
Pradaria , Solo , Dióxido de Carbono , Respiração , Estações do Ano , Tibet
16.
Sci Total Environ ; 766: 144437, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33412432

RESUMO

Global-change-type drought, a combination of drought and warmer temperatures, is projected to have severe effects on vegetation growth and ecosystem functions. Spring phenology is an important biological indicator to understand the response of vegetation growth to climate change. However, the differences in the response of spring phenology to global-change-type drought among various vegetation types remain unclear. Here, we extracted the start of growing season (SOS) from NDVI (Normalized Difference Vegetation Index) data using Spline-midpoint, HANTS-Maximum, and Timesat-SG methods in the North China Plain over the period 1982-2015. Then, we investigated the effects of preseason drought on SOS (based on the Standardized Precipitation Evapotranspiration Index, SPEI), and compared responses of SOS to the minimum temperature (Tmin), maximum temperature (Tmax), and mean temperature (Tmean) in different biomes. Results showed a trend of advanced SOS in 81.7% of pixels in the North China Plain, with an average rate of -0.5 days/yr. Negative correlations were found between preseason SPEI and SOS in 72.1% of the study region, and the SOS of grassland showed the least resistance to drought. Interannual variations of SOS were triggered by Tmin more than by Tmax in the North China Plain. Multiple regression analysis exhibited that a 1 °C increase in Tmin would advance SOS by 10.5, 7.6, 2.9, 2.1 days for wheat, other crops, forests, and grasslands, indicating warming displayed greater effects on advancing the SOS of wheat. Considering the coupled effects of preseason drought and warming on spring phenology, future warming would trigger earlier spring green-up, while drought might slow the trend. Besides, nonlinear responses of SOS to preseason SPEI and Tmin along the humidity gradient were discovered. This research provides a new reference for the biome-specific and nonlinear responses in phenology models to promote the understanding of phenology changes, contributing to ecosystem management under future global-change-type drought.


Assuntos
Secas , Ecossistema , China , Mudança Climática , Estações do Ano , Temperatura
17.
Sci Total Environ ; 782: 146924, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33848864

RESUMO

Recent warming over the Tibetan Plateau (TP) is approximately twice the global-mean surface temperature increase and poses a threat to the healthy growth of forests. Although many studies have focused on whether recent climate warming has caused forest growth decline on the TP, it remains unclear how asymmetric warming, that is faster increasing nighttime temperature than daytime, impacts forest growth decline. We explored this question by using a ring-width index series from 1489 juniper trees (Juniperus prezwalskii and J. tibetica) at 50 sites on the TP. We calculated the percentage of trees with growth decline (PTD) to reconstruct historical forest growth decline and employed a piecewise structural equation meta-model (pSEM) and linear mixed model (LMM) to explore influencing factors. We found that the PTD has decreased since the late 19th century, with an abrupt decreasing trend since the 1980s. Results of the pSEM show that winter minimum temperature has a stronger indirect negative effect on the variation in PTD (ß = -0.24, p < 0.05) compared to that of the weak indirect positive effect of summer maximum temperature (ß = 0.16, p < 0.05). The results of LMM show that the variation in PTD is directly negatively (p < 0.001) affected by both winter minimum temperature and summer total precipitation, but the former has a greater independent contribution than the latter (with 17.7% vs 2.5% of variances independently explained, respectively). These results suggest that increased winter minimum temperature substantially mitigates the growth decline in juniper forests on the TP. As the minimum temperature generally occurs at night, we conclude that the asymmetric increase in nighttime temperature has decreased the incidence of juniper forest growth decline on the TP under climate warming. This alleviating effect of nighttime warming is likely due to reduced low-temperature constraints and reduced damage to tree growth.


Assuntos
Juniperus , Mudança Climática , Florestas , Incidência , Temperatura , Tibet , Árvores
18.
Biol Open ; 8(3)2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30837225

RESUMO

Organisms often experience adverse high temperatures during the daytime, but they may also recover or repair themselves during the night-time when temperatures are more moderate. Thermal effects of daily fluctuating temperatures may thus be divided into two opposite processes (i.e. negative effects of daytime heat stress and positive effects of night-time recovery). Despite recent progress on the consequences of increased daily temperature variability, the independent and combined effects of daytime and night-time temperatures on organism performance remain unclear. By independently manipulating daily maximum and minimum temperatures, we tested how changes in daytime heat stress and night-time recovery affect development, survival and heat tolerance of the lady beetle species Propylea japonica Thermal effects on development and survival differed between daytime and night-time. Daytime high temperatures had negative effects whereas night-time mild temperatures had positive effects. The extent of daytime heat stress and night-time recovery also affected development and critical thermal maximum, which indicates that there were both independent and combined effects of daytime and night-time temperatures on thermal performances. Our findings provide insight into the thermal effect of day-to-night temperature variability and have important implications for predicting the impacts of diel asymmetric warming under climate change.

19.
Front Plant Sci ; 10: 771, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275335

RESUMO

To develop efficient N management strategies for high wheat NUE and minimizing the environmental impact of N losses under asymmetric warming, 15N micro-plot experiments were conducted to investigate the effects of night-warming during winter (warming by 1.47-1.56°C from tillering to jointing), spring (warming by 1.68-1.82°C from jointing to booting), and winter + spring (warming by 1.53-1.64°C from tillering to booting) on root growth and distribution of winter wheat, the fates of 15N-labeled fertilizer, and their relationships in 2015-2017. The results showed that night-warming increased the recovery of basal 15N and top-dressed 15N, while reduced the residual and loss of basal 15N and top-dressed 15N. The losses decreases of top-dressed 15N were higher than those of basal 15N, indicating that night-warming reduced losses of fertilizer 15N mainly by reducing losses of top-dressed 15N. Moreover, pre-anthesis root dry matter accumulation rate in 0-60 cm soil layer were promoted, resulted in improved root biomass and root/shoot ratio, which favored increasing recovery of fertilizer 15N and reducing losses of fertilizer 15N. Furthermore, residual fertilizer 15N content in 0-100 cm soil layer was reduced, which was associated with improved root weight density in 0-60 cm soil layer, resulted in reduced leaching losses of fertilizer 15N. The path analysis showed that root dry matter distribution in 0-20 cm soil layer was the most important in contributing to reducing losses of total fertilizer 15N compared with other soil layers. Two years data showed that winter and spring night-warming gave better root growth and distribution in 0-20 cm soil layer, resulted in reduced the losses of fertilizer 15N and improved the recovery of fertilizer 15N, while maximizing grain yield of winter wheat, and winter + spring night-warming resulted in higher advantages than winter night-warming and spring night-warming.

20.
Ying Yong Sheng Tai Xue Bao ; 29(7): 2362-2372, 2018 Jul.
Artigo em Zh | MEDLINE | ID: mdl-30039676

RESUMO

The impact of global warming on the growth and development of natural vegetation is an important concern worldwide. Based on the data from the vegetation normalization index, daytime temperature (Tmax), nighttime temperature (Tmin), precipitation, and elevation from 1982 to 2015, we examined the day-night warming response of 42 types of natural vegetation in China. The results showed that both the temperature at day and night was significantly increased in the study area, with obvious asymmetry. The night warming was about 1.6 times as high as that at daytime. The Tmin was more conducive to vegetation growth than the Tmax. The proportion of vegetation types with positive relationship with Tmin was greater than the Tmax, with significant spatial difference. Subtropical vegetation accounted for 85.7% of vegetation with positive correlation with Tmax. The temperate alpine, mountainous, and desert vegetation responded more positively to Tmin. The increase of Tmin was not conducive to the growth and development of vegetation at high altitudes, while that of Tmax was the opposite. The correlations of vegetation growth with Tmax and Tmin were as follows: steppe > meadow > needleleaf forest > desert vegetation > broadleaf forest; meadow > desert vegetation > broadleaf forest > steppe > needleleaf forest.


Assuntos
Florestas , Aquecimento Global , Desenvolvimento Vegetal , China , Plantas , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA