Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Metab Brain Dis ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136806

RESUMO

Global cerebral ischemia is one of the major causes of memory and cognitive impairment. Hyperactivation of acetylcholine esterase (AChE), oxidative stress, and inflammation are reported to cause memory and cognitive impairment in global cerebral ischemia. Morin, a flavonoid, is reported to have neuroprotective properties through its antioxidant and anti-inflammatory in multiple neurological diseases. However, its neuroprotective effects and memory and cognition enhancement have not yet been investigated. In the present study, we have determined the memory and cognition, and neuroprotective activity of Morin in bilateral common carotid artery occlusion and reperfusion (BCCAO/R) in Wistar rats. We found that Morin treatment significantly improved motor performance like grip strength and rotarod. Further, Morin improved memory and cognition in BCCAO rats by decreasing the AchE enzyme activity and enhancing the acetylcholine (Ach) levels. Additionally, Morin exhibited neuroprotection by ameliorating oxidative stress, neuroinflammation, and apoptosis in BCCAO rats. These findings confirm that Morin could enhance memory and cognition by ameliorating AchE activity, oxidative stress, neuroinflammation, and apoptosis in global cerebral ischemia. Therefore, Morin could be a promising neuroprotective and memory enhancer against global cerebral ischemic injury.

2.
Biochem Biophys Res Commun ; 674: 97-101, 2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37419037

RESUMO

Stroke is a serious cerebrovascular disease that causes post-stress depression and death. Stress and inflammation have pivotal roles in the induction of the disease. Several drugs and agents have been used for the treatment of disease, but their uses are faced with limitations owing to their side effects. Natural agents are more efficient for the treatment of stroke due to lower toxicity and their pharmaceutical properties. Sake yeast or Japanese rice wine is an antioxidant compound that could be used to treat stroke and post-stress depression. This study evaluates the effects of sake yeast on depressive-like behaviors, oxidative stress and inflammatory parameters in a rat model of global cerebral ischemia/reperfusion. Rats were divided into four groups, including 1) control: without bilateral common carotid artery occlusion (BCCAO) and sake supplement, 2) Ischemia group: rats induced with BCCAO and lack of therapeutic supplement, and 3 and 4) Ischemia + sake groups: rats induced with BCCAO and treated with 25 and 50 mg/kg sake yeast, respectively. Depressive-like behaviors antioxidant enzymes activities were assessed. The induction of stroke increased oxidant status, inflammatory parameters, and depressive-like behaviors, while the administration of sake could decrease inflammation, depressive-like behaviors, and oxidant status and increase antioxidant enzymes. The yeast could be used as a supplement in combination with other drugs to treat stroke.


Assuntos
Isquemia Encefálica , Doenças das Artérias Carótidas , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Ratos , Animais , Saccharomyces cerevisiae , Bebidas Alcoólicas , Ratos Wistar , Antioxidantes/uso terapêutico , Antioxidantes/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Fermentação , Isquemia Encefálica/tratamento farmacológico , Estresse Oxidativo , Acidente Vascular Cerebral/tratamento farmacológico , Infarto Cerebral , Inflamação/tratamento farmacológico , Reperfusão , Oxidantes/farmacologia
3.
Acta Pharmacol Sin ; 41(5): 588-598, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31913348

RESUMO

Vascular dementia (VD) is the second most common dementia disease after Alzheimer's diseases (AD) in the world. Donepezil is used to treat mild to moderate AD, and it has been shown to treat cognitive impairment and memory deficits caused by VD. However, the action mechanism of donepezil against VD has not been clarified. In this study, a bilateral common carotid artery occlusion (BCCAO) model was established in rats to simulate the pathology of VD. Two weeks after the surgery, the rats were administered donepezil (10 mg · kg-1 · d-1, ig) for 3 weeks, and then subjected to behavioral tests. We showed that donepezil treatment significantly improved the performance of BCCAO rats in Morris Water Mazes test and Step-down test. Furthermore, we showed that donepezil treatment significantly attenuated neurodegeneration and restored the synapse dendritic spines density in cortex and hippocampus. We revealed that donepezil treatment significantly increased BDNF expression in cortex and hippocampus. Interestingly, donepezil treatment significantly decreased nuclear translocation of HDAC6 and the binding between HDAC6 and BDNF promoter IV in cortex, but not in the hippocampus. The attenuated neurodegeneration by donepezil in cortex and hippocampus might due to the reduced ROS levels and increased phosphorylation of AMPK, whereas increased phosphorylation of AKT was only detected in cortex. In conclusion, our results demonstrate that donepezil attenuates neurodegeneration in cortex and hippocampus via increasing BDNF expression; the regulation of donepezil on HDAC6 occurred in cortex, but not in the hippocampus. This study further clarifies the pharmacological mechanism of donepezil, while also emphasizes the promising epigenetic regulation of HDAC6.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Demência Vascular/tratamento farmacológico , Donepezila/farmacologia , Desacetilase 6 de Histona/antagonistas & inibidores , Administração Oral , Animais , Demência Vascular/metabolismo , Demência Vascular/cirurgia , Donepezila/administração & dosagem , Desacetilase 6 de Histona/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
4.
Xenobiotica ; 50(8): 957-966, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31870211

RESUMO

1. Withanolide A (WA), a major constituent phytochemical of the Ayurvedic herb Withania somnifera reportedly combats neurodegeneration in Alzheimer's disease and Parkinson's disease. But no study has yet reported the ability of WA in crossing the blood-brain barrier (BBB). The present study analyses the brain penetration ability of WA after intra-nasal administration and assesses its neuroprotective ability in cerebral ischemia-reperfusion injury in adult mice model.2. Brain penetration of WA after intranasal administration in cortex and cerebellum was assessed using HPLC-UV. Three different doses (1 mg/kg, 5 mg/kg and 10 mg/kg) of the phytochemical were used to study the neuroprotective ability of WA by evaluating the brain damage, changes in cerebral neurotransmitter levels and brain tissue morphology.3. Intranasal administration of the phytochemical facilitates its penetration in the cortex and cerebellum. Post-treatment with WA significantly reduced cerebral infarction, restored BBB disruption and cerebral oedema. The WA post-treatment also lowered the ischemia-induced elevated neurotransmitter and biochemical levels in brain compartments. The highest dose (10 mg/kg) of WA also markedly reduced the morphological damages, apoptotic and necrotic cell death in brain tissue occurring due to cerebral ischemia pathophysiology.4. Intra-nasal administration enables brain penetration of WA and allows the phytochemical to exert neuroprotective ability in the global cerebral ischemia model.


Assuntos
Fármacos Neuroprotetores/farmacologia , Vitanolídeos/farmacologia , Administração Intranasal , Animais , Encéfalo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Modelos Animais de Doenças , Camundongos , Neuroproteção , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Vitanolídeos/administração & dosagem , Vitanolídeos/uso terapêutico
5.
Brain Inj ; 34(5): 685-693, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32064956

RESUMO

Primary Objective: Limited available therapeutics for ischemic stroke necessitate dire need of designing novel strategies for combating ischemic pathophysiological cascade among which neuroprotective strategies emerge as positive approaches. The neuropeptide prolactin is a pleiotropic hormone that affects various physiological conditions and reportedly combats neurotoxicity, neuronal stress and provides neuroprotection to hippocampal neurons in vitro.Research Design: The study explores the ability of prolactin in conferring neuroprotection in global cerebral ischemia in vivo and attempts to optimize the dose of prolactin which will be effective for the same.Methods and Procedure: Global cerebral ischemia was induced in male rats by bilateral common carotid occlusion (BCCAO) and different physiological and biochemical parameters were evaluated. Also, cerebral infarction and percentage of brain edema were measured.Results: The results revealed that prolactin significantly reduces cerebral infarct, brain water content and restores the physiological conditions like blood pressure, heart rate and cerebral blood flow. Also, prolactin markedly reduces the increased levels of the neurotransmitters (É£-aminobutyric acid and glutamate), cerebral calcium and nitrate in different brain compartments of ischemic rats.Conclusion: Prolactin is able to ameliorate ischemia-reperfusion injury in rat brain and might be a potent candidate for further neuro-therapeutics development.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/tratamento farmacológico , Masculino , Neuroproteção , Fármacos Neuroprotetores/uso terapêutico , Prolactina , Ratos
6.
Int J Neurosci ; 130(10): 983-998, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31951767

RESUMO

OBJECTIVE: The present study was undertaken to investigate the possible role of histidine-histamine pathway in the neuroprotective effects produced by L-carnosine hand in hand with ischemic postconditioning in the animal model of cerebral ischemia. METHODS: Cerebral ischemia was induced in swiss albino mice by performing BCCAO surgery. Morris water-maze test was utilized to assess the learning ability and memory of the animals. The whole brain acetylcholinesterase (AChE) activity, TBARS, GSH levels and MPO activity were evaluated as the biochemical parameters. For histopathological evaluation of the cerebral infarct size, TTC staining was employed. RESULTS: Administration of L-carnosine (500 mg/kg, i.p.) successfully attenuated the manifestations of cerebral ischemia. Higher levels of AChE, TBARS, and MPO were observed in BCCAO treated animals, which were successfully attenuated by treatment with L-carnosine and ischemic postconditioning. Whereas administration of L-carnosine and ischemic postconditioning significantly increased the level of GSH in BCCAO treated animals. Moreover, treatment with ranitidine, an H2 blocker (30 NMol, i.c.v) antagonized the neuroprotective actions of L-carnosine evidenced by decrease in MWM performance, increase in the level of AChE and oxidative stress, while decrease in GSH level in brain. The cerebral infarct size was found to be more in BCCAO inflicted animals, which was improved by the administration of L-carnosine, while the cerebral infarct size worsened by treatment with ranitidine (3 nmol, i.c.v.). CONCLUSION: It is concluded that L-carnosine exerts neuroprotective effect via involvement of histidine-histamine pathway since the beneficial effects of L-carnosine were abolished by the H2-blocker.


Assuntos
Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Carnosina/farmacologia , Histamina/metabolismo , Histidina/metabolismo , Pós-Condicionamento Isquêmico , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Isquemia Encefálica/tratamento farmacológico , Carnosina/administração & dosagem , Antagonistas dos Receptores H2 da Histamina/farmacologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Fármacos Neuroprotetores/administração & dosagem
7.
IUBMB Life ; 70(1): 60-70, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29247598

RESUMO

The aim of this study was to examine the comprehensive neuroprotective mechanism of ligustrazine, which is extracted from Ligusticum Chuanxiong Hort., against vascular dementia (VD) in rats and apoptosis in oxygen and glucose deprivation (OGD) PC12 cells. Rats were subjected to bilateral common carotid artery occlusion (BCCAO) surgery and administered ligustrazine intragastrically for 6 weeks. At the end of the experiments, the hippocampal biomarkers brain-derived neurotrophic factor (BDNF), monocyte chemotactic protein 1 (MCP-1), and homocysteine (Hcy) were examined. In experiments in vitro, OGD PC12 cells were treated with ligustrazine for 0.5, 1, 3, 6, 12, or 24 h. The cell-released biomarkers BDNF, MCP-1, and Hcy were examined. Microscopy, acridine orange-ethidium bromide (AO/EB) staining, and flow cytometry assays were performed to investigate apoptosis. Cleaved caspase-3, Bcl-2 associated X protein (Bax), and B cell lymphoma 2 (Bcl-2) expression was examined using Western blot assays. The results showed that biomarkers, including MCP-1 and Hcy, were significantly increased in both the in vivo and in vitro models, while the BDNF level was significantly decreased compared with the sham or vehicle models. Microscopy, AO/EB staining, and flow cytometry analysis showed that severe cell damage occurred in OGD PC12 cells, and apoptosis played a major role in this environment. Further Western blot studies showed that the apoptosis-related Bax/Bcl-2 protein ratio and cleaved caspase-3 were significantly increased in the experiment. However, ligustrazine profoundly suppressed the imbalance of these biomarkers, reduced cell damage, decreased the Bax/Bcl-2, and downregulated cleaved caspase-3. Pro- and anti-apoptotic biomarkers of multiple pathways including BDNF, MCP-1, and Hcy played a joint role in triggering the activation of the mitochondria-related Bax/Bcl-2 and caspase-3 apoptosis pathway in VD. Ligustrazine attenuated VD by comprehensively regulating BDNF, MCP-1, and Hcy and inactivating the Bax/Bcl-2 and caspase-3 apoptosis pathway. Our data provide novel insight into ligustrazine, which is a promising neuroprotective agent for VD disease treatment strategies. © IUBMB Life, 70(1):60-70, 2018.


Assuntos
Apoptose/efeitos dos fármacos , Caspase 3/genética , Demência Vascular/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Pirazinas/farmacologia , Proteína X Associada a bcl-2/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Artéria Carótida Primitiva/cirurgia , Caspase 3/metabolismo , Hipóxia Celular , Sobrevivência Celular/efeitos dos fármacos , Transtornos Cerebrovasculares , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Demência Vascular/genética , Demência Vascular/metabolismo , Demência Vascular/patologia , Regulação da Expressão Gênica , Glucose/deficiência , Glucose/farmacologia , Homocisteína/metabolismo , Ligusticum/química , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/isolamento & purificação , Células PC12 , Extratos Vegetais/química , Proteínas Proto-Oncogênicas c-bcl-2/agonistas , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pirazinas/isolamento & purificação , Ratos , Ratos Wistar , Transdução de Sinais , Proteína X Associada a bcl-2/antagonistas & inibidores , Proteína X Associada a bcl-2/metabolismo
8.
J Asian Nat Prod Res ; 20(12): 1167-1181, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28971689

RESUMO

Scutellarin (1) possesses protective effects against neuronal injury, while 6-O-methyl-scutellarein (3), as the main metabolite of scutellarin in vivo, has not been reported about its protective effects previously. The present study mainly investigated whether the neural injury caused by ischemia/reperfusion would be influenced by different doses of 6-O-methyl-scutellarein (3). The results of behavioral, neurological, and histological examinations indicated that 6-O-methyl-scutellarein (3) could improve neuronal injury, and exhibit significant difference among the various doses. More importantly, 6-O-methyl-scutellarein (3) had better protective effects than scutellarin in rat cerebral ischemia.


Assuntos
Isquemia Encefálica/patologia , Flavonas/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Relação Dose-Resposta a Droga , Esquema de Medicação , Flavonas/administração & dosagem , Masculino , Aprendizagem em Labirinto , Estrutura Molecular , Distribuição Aleatória , Ratos , Traumatismo por Reperfusão/patologia
9.
Microcirculation ; 24(6)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28261893

RESUMO

OBJECTIVE: The cerebral ischemia leads to brain dysfunction with neuron degeneration and responses from astrocytes and vessels. The aim of this study was to study the changes of astrocyte and microvessel in modified BCCAO mice. METHODS: Adult transgenic Tie2-GFP mice were subjected to modified BCCAO operation and cranial window implantation. CBF and neurological injury were examined after ischemia. Astrocytes and vessels were investigated by two-photon laser-scanning microscope and confocal laser-scanning microscope in vivo. RESULTS: The CBF decreased to approximately 40% of the baseline in the ischemic mice (P<.05). The neuron damage was explicit after the cerebral ischemia (P<.05), while no significant impairment of the motor and cognitive function was detected (P>.05). The density of astrocyte and volume of the astrocyte soma was increased significantly after ischemia (P<.01). Meanwhile, the mean distance between the penetrating artery and the nearest astrocyte soma decreased significantly (P<.01). Besides, the increased diameter of capillary and change of vessel arrangement were observed. CONCLUSION: The cerebral ischemia was successfully induced by this modified BCCAO model. Astrocyte activation and the capillary remodeling, including dilution of capillary and tortuosity, were observed in this model.


Assuntos
Arteriopatias Oclusivas/patologia , Astrócitos/metabolismo , Capilares/metabolismo , Artéria Carótida Primitiva/patologia , Animais , Arteriopatias Oclusivas/fisiopatologia , Isquemia Encefálica , Artéria Carótida Primitiva/fisiopatologia , Circulação Cerebrovascular , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Receptor TIE-2/genética
10.
Nanomedicine ; 13(8): 2439-2450, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28822845

RESUMO

Cerebral ischemia-reperfusion is a classic example of reactive oxygen species (ROS) mediated acute damage to brain. Post-ischemic reperfusion induced oxygen free radicals production causes damage to brain cell mitochondria. Antioxidants like quercetin (Qc) have potentials to manage oxidative stress related pathophysiology. However low oral bioavailability and poor cell membrane permeability restrict its therapeutic efficacy. To overcome these hurdles mitochondria specific delivery of Qc nanocapsules was designed to efficiently counteract cerebral ischemia-reperfusion induced cell death and neurodegeneration in young and aged rats. The orally deliverable quercetin loaded polymeric nanocapsules (N1QC) were made mitochondria specific by using triphenylphosphonium cation as one of the matrix components. N1QC demonstrated higher brain uptake and remarkable mitochondrial localization post cerebral ischemia-reperfusion. This unique controlled mitochondrial delivery of quercetin ameliorated histopathological severity by preserving mitochondrial structural and functional integrity through sequestering ROS thus modulating mitochondrial ROS mediated apoptotic cell death in young and aged rats.


Assuntos
Antioxidantes/administração & dosagem , Isquemia Encefálica/tratamento farmacológico , Nanocápsulas/química , Fármacos Neuroprotetores/administração & dosagem , Compostos Organofosforados/química , Quercetina/administração & dosagem , Compostos de Terfenil/química , Animais , Antioxidantes/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Quercetina/uso terapêutico , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
11.
Neurobiol Dis ; 95: 179-93, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27431094

RESUMO

Chronic cerebral hypoperfusion (CCH) manifests Alzheimer's Disease (AD) neuropathology, marked by increased amyloid beta (Aß). Besides, hypoxia stimulates Heparin-binding EGF-like growth factor (HB-EGF) mRNA expression in the hippocampus. However, involvement of HB-EGF in CCH-induced Aß pathology remains unidentified. Here, using Bilateral Common Carotid Artery Occlusion mouse model, we explored the mechanism of HB-EGF regulated Aß induction in CCH. We found that HB-EGF inhibition suppressed, while exogenous-HB-EGF triggered hippocampal Aß, proving HB-EGF-dependent Aß increase. We also detected that HB-EGF affected the expression of primary Aß transporters, receptor for advanced glycation end-products (RAGE) and lipoprotein receptor-related protein-1 (LRP-1), indicating impaired Aß clearance across the blood-brain barrier (BBB). An HB-EGF-dependent loss in BBB integrity supported impaired Aß clearance. The effect of HB-EGF on Amyloid Precursor Protein pathway was relatively insignificant, suggesting a lesser effect on Aß generation. Delving into BBB disruption mechanism demonstrated HB-EGF-mediated stimulation of Matrix metalloprotease-9 (MMP9), which affected BBB via HB-EGF-ectodomain shedding and epidermal growth factor receptor activation. Examining the intersection of HB-EGF-regulated pathway and hypoxia revealed HB-EGF-dependent increase in transcription factor, Hypoxia-inducible factor-1alpha (HIF1α). Further, via binding to hypoxia-responsive elements in MMP9 gene, HIF1α stimulated MMP9 expression, and therefore appeared as a prominent intermediary in HB-EGF-induced BBB damage. Overall, our study reveals the essential role of HB-EGF in triggering CCH-mediated Aß accumulation. The proposed mechanism involves an HB-EGF-dependent HIF1α increase, generating MMP9 that stimulates soluble-HB-EGF/EGFR-induced BBB disintegration. Consequently, CCH-mediated hippocampal RAGE and LRP-1 deregulation together with BBB damage impair Aß transport and clearance where HB-EGF plays a pivotal role.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Barreira Hematoencefálica/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Transporte Biológico/fisiologia , Isquemia Encefálica/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/fisiologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Masculino , Camundongos , Perfusão , Receptor para Produtos Finais de Glicação Avançada/metabolismo
12.
In Vivo ; 38(1): 184-189, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38148065

RESUMO

BACKGROUND/AIM: Neurogenesis is an important process in the recovery from neurological damage caused by ischemic lesions. Endogenous neurogenesis is insufficient to restore neuronal damage following cerebral ischemia. Dexmedetomidine (DEX) exerts neuroprotective effects against cerebral ischemia and ischemia/reperfusion injury. DEX promotes neurogenesis, including neuronal proliferation and maturation in the hippocampus. In a previous study, we showed that early neurogenesis increased 3 days after bilateral common carotid artery occlusion (BCCAO). In this study, we investigated the effect of DEX on neurogenesis 3 days after BCCAO. MATERIALS AND METHODS: Male Sprague-Dawley (SD) rats (7-8 weeks old) were used as a BCCAO model. Right and left common carotid arteries of the rats were occluded using 4-0 silk sutures. Two hours after surgery, an intracranial DEX injection was administered to rats that underwent surgery using a stereotaxic injector. Brains were obtained from control and BCCAO rats 3 days after surgery. Immunohistochemistry was performed on the cortex and dentate gyrus of the hippocampus using a NeuN antibody. Western blot was performed with HIF1α and brain-derived neurotrophic factor (BDNF) antibodies. RESULTS: The number of mature neurons decreased 3 days after BCCAO, but DEX treatment alleviated neural loss in the parietal cortex and hippocampus. Up-regulation of BDNF was also observed after dexmedetomidine treatment. CONCLUSION: Stereotaxic injection of dexmedetomidine alleviates neural loss following BCCAO by up-regulating BDNF expression.


Assuntos
Isquemia Encefálica , Dexmedetomidina , Ratos , Masculino , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Ratos Sprague-Dawley , Regulação para Cima , Dexmedetomidina/farmacologia , Dexmedetomidina/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/etiologia , Isquemia Encefálica/metabolismo , Hipocampo/metabolismo , Artéria Carótida Primitiva/metabolismo
13.
In Silico Pharmacol ; 12(2): 62, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035100

RESUMO

The present study investigated the neuroprotective properties of whole plants of Grewia bilamellata Gagnep. extract (GBEE) against cerebral ischemia by harnessing both In vivo studies in a rat model and In silico studies focusing on nitric oxide synthase (NOS) inhibition. High-resolution liquid chromatography‒mass spectrometry (HR LC‒MS) analysis identified 32 phytochemicals in the GBEE, 15 of which adhered to Lipinski's rule of five. These compounds exhibited diverse physicochemical properties and high binding affinity to NOS, with cleomiscosin D showing the greatest potential. In vivo, GBEE had significant neuroprotective effects on bilateral common carotid artery occlusion/reperfusion (BCCAO/R) in rats, especially at doses of 200 mg/kg and 400 mg/kg body weight. GBEE treatment improved brain function, as evidenced by EEG normalization, substantial reductions in cerebral infarction size, mitigated neuronal loss, and the restoration of regular histological arrangement in the CA1 hippocampal area of the brain. Furthermore, GBEE enhanced antioxidant defenses by augmenting the activity of catalase (CAT) and superoxide dismutase (SOD), reducing malondialdehyde (MDA) levels, and restoring reduced glutathione (GSH) levels. These effects were accompanied by a decrease in nitric oxide (NO) levels, indicative of attenuated oxidative and nitrosative stress. Collectively, our findings suggest that GBEE is a promising natural therapeutic agent that may prevent or alleviate ischemic brain injury through a multifaceted mechanism involving NOS inhibition and attenuation of the oxidative stress response. This study highlights the therapeutic potential of GBEE and warrants further research into its mechanism of action and possible clinical applications.

14.
3 Biotech ; 14(1): 9, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38074289

RESUMO

Global cerebral ischemia is commonly associated with neurological deficits, including cognitive and memory impairments. The present study aims to investigate the neuroprotective, cognitive, and memory enhancement effects of Tangeretin, a flavonoid against global cerebral ischemia in rats. Bilateral common carotid artery occlusion (BCCAO) and reperfusion injury method was used to induce global cerebral ischemia in rats. Motor, cognitive, and memory functions were evaluated using rotarod, grip strength, Y-maze, and Morris water maze. Further, acetylcholine esterase (AchE) enzyme activity, acetylcholine (Ach), oxidative stress markers (ROS, SOD, MDA, and CAT), inflammation (IL-6 and TNF-α), and apoptotic markers (cytochrome C, caspase 9, and caspase 3) in BCCAO rats were measured following Tangeretin (5,10, and 20 mg/kg, oral) treatment. Our findings show that Tangeretin treatment significantly improved cognition and memory by enhancing Ach levels through the amelioration of AchE enzyme activity in BCCAO rats. Moreover, Tangeretin exhibited neuroprotective effects through the mitigation of oxidative stress, inflammation, and apoptosis in the BCCAO rats. In summary, the current findings suggested that Tangeretin exhibited neuroprotection, cognitive and memory enhancement against global cerebral ischemia.

15.
Toxicol Appl Pharmacol ; 272(1): 49-60, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23732081

RESUMO

Since the inflammatory response and oxidative stress are involved in the stroke cascade, we evaluated here the effects of Phycocyanobilin (PCB, the C-Phycocyanin linked tetrapyrrole) on PC12 cell survival, the gene expression and the oxidative status of hypoperfused rat brain. After the permanent bilateral common carotid arteries occlusion (BCCAo), the animals were treated with saline or PCB, taking samples 24h post-surgery. Global gene expression was analyzed with GeneChip Rat Gene ST 1.1 from Affymetrix; the expression of particular genes was assessed by the Fast SYBR Green RT-PCR Master Mix and Bioplex methods; and redox markers (MDA, PP, CAT, SOD) were evaluated spectrophotometrically. The PCB treatment prevented the H2O2 and glutamate induced PC12 cell injury assessed by the MTT assay, and modulated 190 genes (93 up- and 97 down-regulated) associated to several immunological and inflammatory processes in BCCAo rats. Furthermore, PCB positively modulated 19 genes mostly related to a detrimental pro-inflammatory environment and counteracted the oxidative imbalance in the treated BCCAo animals. Our results support the view of an effective influence of PCB on major inflammatory mediators in acute cerebral hypoperfusion. These results suggest that PCB has a potential to be a treatment for ischemic stroke for which further studies are needed.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Transtornos Cerebrovasculares/tratamento farmacológico , Genes MHC da Classe II/efeitos dos fármacos , Inflamação/genética , Estresse Oxidativo/efeitos dos fármacos , Ficobilinas/farmacologia , Ficocianina/farmacologia , Animais , Biomarcadores/metabolismo , Química Encefálica/efeitos dos fármacos , Química Encefálica/genética , Transtornos Cerebrovasculares/fisiopatologia , Corantes , Citocinas/biossíntese , Ácido Glutâmico/metabolismo , Peróxido de Hidrogênio/farmacologia , Masculino , Análise em Microsséries , Oxirredução , Células PC12 , Ficobilinas/isolamento & purificação , Ficocianina/isolamento & purificação , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Spirulina/química , Sais de Tetrazólio , Tiazóis , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
In Vivo ; 37(2): 655-660, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36881053

RESUMO

BACKGROUND/AIM: Chronic cerebral hypoperfusion causes neuronal damage involving cognitive impairment and development of dementia. Permanent bilateral common carotid artery occlusion (BCCAO) in rat models is used to study chronic cerebral hypoperfusion. Pax6 is used as an early neurogenesis marker which affects the maturation of neuronal cells. However, the expression of PAX 6 after BCCAO is not well understood. In this study, we investigated the expression of PAX6 in the neurogenic zones after BCCAO to evaluate the effects of Pax6 on chronic hypoperfusion. MATERIALS AND METHODS: Chronic hypoperfusion was induced by BCCAO. Common carotid artery was laid parallel to the vagus nerve and separated from it. Both arteries were occluded using 4-0 silk sutures. Rats who underwent bi-common carotid artery occlusion formed in the BCCAO group, while unoperated rats served as the control group. Brain samples were obtained on days 3 and 14 after BCCAO and subjected to immunohisto-chemistry with NeuN and western blotting for Pax6 and HIF1α. RESULTS: Compared to the control, the expression of Pax6 increased three days after surgery but did not differ on day 14, while that of NeuN showed the opposite trend. The expression of HIF1α increased three days after surgery. CONCLUSION: Bilateral common carotid artery occlusion induced early neurogenesis at three days after BCCAO but this result was not maintained at fourteen days after BCCAO.


Assuntos
Isquemia Encefálica , Doenças das Artérias Carótidas , Trombose , Animais , Ratos , Doenças das Artérias Carótidas/genética , Western Blotting , Encéfalo , Artéria Carótida Primitiva
17.
Mol Neurobiol ; 60(6): 3158-3174, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36808604

RESUMO

Declining cerebral blood flow leads to chronic cerebral hypoperfusion which can induce neurodegenerative disorders, such as vascular dementia. The reduced energy supply of the brain impairs mitochondrial functions that could trigger further damaging cellular processes. We carried out stepwise bilateral common carotid occlusions on rats and investigated long-term mitochondrial, mitochondria-associated membrane (MAM), and cerebrospinal fluid (CSF) proteome changes. Samples were studied by gel-based and mass spectrometry-based proteomic analyses. We found 19, 35, and 12 significantly altered proteins in the mitochondria, MAM, and CSF, respectively. Most of the changed proteins were involved in protein turnover and import in all three sample types. We confirmed decreased levels of proteins involved in protein folding and amino acid catabolism, such as P4hb and Hibadh in the mitochondria by western blot. We detected reduced levels of several components of protein synthesis and degradation in the CSF as well as in the subcellular fractions, implying that hypoperfusion-induced altered protein turnover of brain tissue can be detected in the CSF by proteomic analysis.


Assuntos
Isquemia Encefálica , Proteômica , Ratos , Animais , Proteostase , Mitocôndrias/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo
18.
Phytomedicine ; 112: 154683, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36738479

RESUMO

BACKGROUND: Vascular dementia (VaD) is the second most common type of dementia after Alzheimer's disease. Currently, no FDA-approved drugs are available for the treatment of VaD. Artemisia annua Linné (AA) is known to have antioxidant properties, but its effects and mechanisms of action on cognitive impairment are still unknown. PURPOSE: In this study, the improvement in cognitive impairment by AA in terms of protection against oxidative stress, neuroinflammation, and preservation of the integrity of the neurovascular unit (NVU) was assessed in an animal model of VaD with bilateral common carotid artery occlusion (BCCAO). METHODS: Eight-week-old male Wistar rats were allowed to adapt for four weeks, and BCCAO was induced at 12 weeks of age. The rats were randomly assigned into four groups, with seven rats in each group: sham group without BCCAO, VaD group that received oral administration of distilled water after BCCAO surgery, and two AA groups that received oral administration of 150 mg/kg or 750 mg/kg AA after BCCAO surgery for 8 weeks. Nine weeks after BCCAO surgery, the cognitive function of the rats was evaluated and accumulated oxidative stress was assessed by immunohistochemistry, immunofluorescence, and western blotting. Damage to the components of the NVU was evaluated, and sirtuin (Sirt) 1 and 2 expression and nuclear factor-erythrocyte 2-associated factor 2 (Nrf2)/Kelch-like ECH-associated protein1 (Keap1) activation were investigated to assess the reduction in cell signaling and antioxidant pathways. RESULTS: BCCAO-induced cerebral perfusion decreased memory function and induced neuroinflammation and oxidative stress. But AA treatment mitigated cognitive impairment and reduced neuroinflammation and oxidative stress caused by chronic cerebral hypoperfusion. AA extracts activated the Nrf2/Keap1/activating antioxidant response elements pathway and maintained Sirt 1 and 2, subsequently leading to the maintenance of neurons, improved construct of microvessels, increased platelet-derived growth factor receptor beta, and platelet-endothelial cell adhesion molecule-1 associated with the blood-brain barrier integrity. CONCLUSION: AA is effective in alleviating BCCAO-induced cognitive decline and its administration may be a useful therapeutic approach for VaD.


Assuntos
Artemisia annua , Isquemia Encefálica , Disfunção Cognitiva , Demência Vascular , Ratos , Masculino , Animais , Demência Vascular/tratamento farmacológico , Demência Vascular/etiologia , Ratos Wistar , Antioxidantes/metabolismo , Doenças Neuroinflamatórias , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Modelos Animais de Doenças , Hipocampo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Isquemia Encefálica/tratamento farmacológico
19.
Front Behav Neurosci ; 17: 1239024, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37700911

RESUMO

Background: Ascending clinical evidence supports that electroacupuncture (EA) is effective in treating post-ischemic depression (PID), but little is known about how it works at the cellular level. Astrocytes are exquisitely sensitive to their extracellular environment, and under stressful conditions, they may experience aberrant structural remodeling that can potentially cause neuroplastic disturbances and contribute to subsequent changes in mood or behavior. Objectives: This study aimed to investigate the effect of EA on behavioral deficits associated with PID in mice and verify the hypothesis that astrocytic morphology may be involved in this impact. Methods: We established a PID animal model induced by transient bilateral common carotid artery occlusion (BCCAO, 20 min) and chronic restraint stress (CRS, 21 days). EA treatment (GV20 + ST36) was performed for 3 weeks, from Monday to Friday each week. Depressive- and anxiety-like behaviors and sociability were evaluated using SPT, FST, EPM, and SIT. Immunohistochemistry combined with Sholl and cell morphological analysis was utilized to assess the process morphology of GFAP+ astrocytes in mood-related regions. The potential relationship between morphological changes in astrocytes and behavioral output was detected by correlation analysis. Results: Behavioral assays demonstrated that EA treatment induced an overall reduction in behavioral deficits, as measured by the behavioral Z-score. Sholl and morphological analyses revealed that EA prevented the decline in cell complexity of astrocytes in the prefrontal cortex (PFC) and the CA1 region of the hippocampus, where astrocytes displayed evident deramification and atrophy of the branches. Eventually, the correlation analysis showed there was a relationship between behavioral emotionality and morphological changes. Conclusion: Our findings imply that EA prevents both behavioral deficits and structural abnormalities in astrocytes in the PID model. The strong correlation between behavioral Z-scores and the observed morphological changes confirms the notion that the weakening of astrocytic processes may play a crucial role in depressive symptoms, and astrocytes could be a potential target of EA in the treatment of PID.

20.
Curr Neurovasc Res ; 20(1): 85-100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998131

RESUMO

AIM: The study investigates the effect of Valsartan, an Angiotensin II type 1 receptor blocker (ARB), on the blunted neuroprotective response of ischemic post-conditioning (iPoCo) in rats subjected to High Fat Diet (HFD). BACKGROUND: The neuroprotective response of iPoCo is blunted in conditions of vascular endothelial dysfunction (ED) associated with hypercholesterolemia, diabetes, hypertension, etc. Objectives: The study was undertaken to investigate the effect of Valsartan, an ARB, on the blunted neuroprotective response of iPoCo in rats subjected to HFD. METHODS: Wistar rats were subjected to HFD for 56 days. The cerebral ischemic injury was induced by bilateral common carotid artery occlusion (BCCAO) for 12 min followed by reperfusion of 24 hrs. iPoCo was induced by three preceding cycles of ischemia and reperfusion lasting 1 min each given immediately after BCCAO at the onset of prolonged reperfusion. The extent of the injury was assessed in terms of memory impairment using the Morris Water Maze test (MWM), sensorimotor disturbance using the neurological severity score (NSS), and cerebral infarct size using triphenyl tetrazolium chloride staining. Series of biochemical estimations including brain thiobarbituric acid reactive species (TBARS); reduced glutathione (GSH); myeloperoxidase (MPO); tumor necrosis factor-α (TNF-α); Nrf-2 and serum cholesterol, serum nitrite levels were performed. RESULTS: BCCAO produced significant cerebral injury indicated by increased cerebral infarct size, memory impairment, increased NSS, and various biochemical alterations (increased cholesterol, TBARS, MPO, TNF-α, Nrf-2, and decreased nitrite and GSH levels). Significant neutrophil infiltration was also observed. iPoCo attenuated BCCAO-induced injury with respect to the above parameters in normal rats. The protective response of iPoCo was lost in HFD-treated rats. Treatment of Valsartan attenuated cerebral injury, potentiated the neuroprotective response of iPoCo in normal rats, and also restored the blunted neuroprotective effect of iPoCo in HFD-treated rats along with enhanced Nrf-2 levels. CONCLUSION: Valsartan exerted a neuroprotective effect by virtue of its multiple actions with a crucial role of Nrf2 activation.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Valsartana , Dieta Hiperlipídica/efeitos adversos , Antagonistas de Receptores de Angiotensina , Nitritos , Substâncias Reativas com Ácido Tiobarbitúrico , Fator de Necrose Tumoral alfa , Ratos Wistar , Inibidores da Enzima Conversora de Angiotensina , Infarto Cerebral , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Transtornos da Memória , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/patologia , Colesterol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA