Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Lasers Med Sci ; 39(1): 65, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368311

RESUMO

To investigate the effects of photodynamic therapy (PDT) mediated by hematoporphyrin derivatives (HPD) on the proliferation of small cell lung cancer H446 cells and bronchial epithelial BEAS-2B cells. H446 cells and BEAS-2B cells were cultured in vitro with different concentrations of HPD(0, 5, 10, 12, 15, 20 µg/mL) for 4 h, and then irradiated with 630 nm laser with different energy densities (0, 25, 50, 75, 100 mW/cm2). Cell viability of H446 cells and BEAS-2B cells were detected by CCK8 assay. The cell apoptosis was observed with Annexin V-FTTC/PI double staining and Hoechst 33258. The RT-PCR examination was applied to detect the transcriptional changes of the mRNA of Bax、Bcl-2, and Caspase-9. The results of CCK8 showed that when the HPD was 15 µg/mL and the laser power density reached 50 mW/cm2, the cell viability was significantly decreased compared with the black control group. Hoechst 33258 staining showed that with the increase of HPD concentration, the cell density was reduced, and apoptotic cells increased. Flow cytometry assay revealed that the apoptotic rates of the HPD-PDT group of H446 cells and BEAS-2B cells were significantly different from those of the blank control group. The RT-PCR examination showed that the expression levels of Bax and Caspase-9 mRNA in the HPD-PDT group were up-regulated, while the expression levels of Bcl-2 mRNA were down-regulated significantly. HPD-PDT can inhibit H446 cells and BEAS-2B cells growth. The mechanism may be related to up-regulating the expression levels of Bax and Caspase-9 mRNA and down-regulating the expression levels of Bcl-2 mRNA.


Assuntos
Neoplasias Pulmonares , Fotoquimioterapia , Carcinoma de Pequenas Células do Pulmão , Humanos , Derivado da Hematoporfirina/farmacologia , Caspase 9/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Bisbenzimidazol/farmacologia , Fotoquimioterapia/métodos , Células Epiteliais/metabolismo , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/genética
2.
Luminescence ; 38(2): 159-165, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36601685

RESUMO

Hydrazine (N2 H4 ) is a highly toxic and harmful chemical reagent. Fluorescent probes are simple and efficient tools for sensitive monitoring of N2 H4 enrichment in the environment, humans, animals, and plants. In this work, a ratiometric fluorescent probe (FP-1) containing coumarin was used for hydrazine detection. The proposed FP-1 probe had a linear detection range of 0-250 µM and a limit of detection (LOD) of 0.059 µM (1.89 ppb). A large red Stokes shift was observed in fluorescence and UV-vis absorption spectra due to the hydrolysis of ester bonds between FP-1 and hydrazine. The hydrazine detection mechanism of FP-1 was also investigated using density functional theory (DFT) calculations. Finally, FP-1 could sensitively and selectively monitor hydrazine in actual water samples and BEAS-2B cells. Therefore, it has great application potential in environmental monitoring and disease diagnosis.


Assuntos
Corantes Fluorescentes , Água , Humanos , Corantes Fluorescentes/química , Fluoresceína , Espectrometria de Fluorescência , Hidrazinas/química , Cumarínicos/química
3.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569330

RESUMO

Cells produce free radicals and antioxidants when exposed to toxic compounds during cellular metabolism. However, free radicals are deleterious to lipids, proteins, and nucleic acids. Antioxidants neutralize and eliminate free radicals from cells, preventing cell damage. Therefore, the study aims to determine whether the antioxidants butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) will ameliorate the maximum dose of acrylamide and alpha (α)-solanine synergistic toxic effects in exposed BEAS-2B cells. These toxic compounds are consumed worldwide by eating potato products. BEAS-2B cells were simultaneously treated with BHA 10 µM and BHT 20 µM and incubated in a 5% CO2 humidified incubator for 24 h, followed by individual or combined treatment with acrylamide (3.5 mM) and α-solanine (44 mM) for 48 h, including the controls. Cell morphology, DNA, RNA, and protein were analyzed. The antioxidants did not prevent acrylamide and α-solanine synergistic effects in exposed BEAS-2B cells. However, cell morphology was altered; polymerase chain reaction (PCR) showed reduced RNA constituents but not DNA. In addition, the toxic compounds synergistically inhibited AKT/PKB expression and its downstream genes. The study showed BHA and BHT are not protective against the synergetic toxic effects of acrylamide and α-solanine in exposed BEAS-2B cells.


Assuntos
Antioxidantes , Solanina , Antioxidantes/farmacologia , Hidroxitolueno Butilado , Hidroxianisol Butilado/farmacologia , Acrilamida/toxicidade , Proteínas , DNA , RNA
4.
Pharm Biol ; 61(1): 1332-1342, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37655452

RESUMO

CONTEXT: Loke zupa decoction (Lok) is a well-established classic Chinese folk remedy for asthma. OBJECTIVE: We sought to investigate the effect and mechanism of Lok on asthma airway remodelling and provide novel insights for the prevention and treatment of asthma. MATERIALS AND METHODS: For in vitro experiments, BEAS-2B cells were assigned into six groups: Control, TGF-ß1 (10 µM), TGF-ß1 + Lok-20, TGF-ß1 + Lok-40, TGF-ß1 + Lok-80 µg/mL and TGF-ß1 + SB431542 (5 µM). CCK8 and wound healing assays were performed. For in vivo experiments, 60 female BALB/c mice were randomly divided into 5 groups: Control, model, Lok-4.55, Lok-9.1, and DEX group. Lok was administrated by gavage during the challenge stage for 8 consecutive weeks (4.55 and 9.1 g/kg/day). We investigated airway inflammation and airway remodelling in the lungs and verified the activation status of EMT-related markers and the PI3K-Akt/HIF-1α signalling pathway. RESULTS: In vitro, Lok efficiently inhibited TGF-ß1-induced BEAS-2B cell proliferation ability (cell viability 165% vs. 105%) and migration (migration areas 85% vs. 35%) without affecting their normal growth (IC50 274.2 µg/mL at 48 h). In vivo, Lok effectively protected mice from asthma, as evidenced by decreased histological damage and level of cytokines in BALF (IL-4, IL-13 and TGF-ß1) by 17%-77%. Mechanistic research revealed that Lok reduced the levels of EMT-related molecules and significantly downregulated the PI3K-Akt/HIF-1α signalling pathway. DISCUSSION AND CONCLUSIONS: Our findings provide novel insights into the protective effect of Lok on asthma and the underlying mechanisms, providing a theoretical basis and potential treatment possibilities for this patient population.


Assuntos
Remodelação das Vias Aéreas , Asma , Medicamentos de Ervas Chinesas , Transição Epitelial-Mesenquimal , Animais , Feminino , Camundongos , Asma/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Fator de Crescimento Transformador beta1 , Medicamentos de Ervas Chinesas/uso terapêutico , Camundongos Endogâmicos BALB C
5.
Toxicol Appl Pharmacol ; 436: 115849, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34974052

RESUMO

Nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a Group 1 human carcinogen, as classified by the International Agency for Research of Cancer (IARC), and plays a significant role in lung carcinogenesis. However, its carcinogenic mechanism has not yet been fully elucidated. In this study, we performed colony formation assays, soft-agar assays, and tumor growth in nude mice to show that 100 mg/L NNK facilitates the malignant transformation of human bronchial epithelial Beas-2B cells. Transcriptome sequencing showed that insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), a post-transcriptional regulator, was differentially expressed in NNK-induced malignant transformed Beas-2B cells (2B-NNK cells). Small interfering RNA (SiRNA) was used to downregulate the expression of the IGF2BP1 gene. The reduction in protein expression, cell proliferation rate, and colony-forming ability and the increase in the apoptosis rate of Beas-2B cells transfected with the SiRNA indicated a role for IGF2BP1 in NNK-induced malignant transformation. IGF2BP1 is an N6-methyladenosine (m6A) regulatory factor, but it is not known whether its association with m6A mediates the malignant transformation of cells. Therefore, we measured the overall levels of m6A in Beas-2B cells. We found that the overall m6A level was lower in 2B-NNK cells, and knocking down IGF2BP1, the overall level of m6A was restored. Hence, we concluded that IGF2BP1 is involved in the NNK-induced malignant transformation of Beas-2B cells, possibly via m6A modification. This study therefore contributes novel insights into the environmental pathogenesis of lung cancer and the gene regulatory mechanisms of chemical carcinogenesis.


Assuntos
Brônquios/efeitos dos fármacos , Butanonas/farmacologia , Transformação Celular Neoplásica/genética , Células Epiteliais/efeitos dos fármacos , Metiltransferases/metabolismo , Nicotiana/efeitos adversos , Nitrosaminas/farmacologia , Proteínas de Ligação a RNA/genética , Adulto , Idoso , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Carcinógenos/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Transformação Celular Neoplásica/induzido quimicamente , Regulação para Baixo/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Pulmão/efeitos dos fármacos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Transfecção/métodos
6.
Inflamm Res ; 71(5-6): 565-576, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35488927

RESUMO

BACKGROUND AND OBJECTIVE: Chronic obstructive pulmonary disease (COPD) is a chronic airway disease with airflow limitation and abnormal inflammatory response. It has been verified that SOX9 plays a key role in lung function of various lung diseases and SOX9 is closely associated with COPD. Additionally, literature has reported that STIM1 is involved in lung injury and is highly expressed in neutrophils from COPD patients. This study aimed to characterize the biological roles of SOX9 and STIM1 in the pathogenesis of COPD and to elucidate the regulatory mechanism. METHODS: Human bronchial epithelial cells (BEAS-2B) were treated with CSE to construct in vitro COPD model. The levels of SOX9 and STIM1 in CSE-treated BEAS-2B cells were detected by western blot and RT-qPCR assay. Then, JASPAR datasets were utilized to analyze SOX9 binding sites in the promoter region of STIM1. Besides, luciferase reporter assay and ChIP assay were employed to validate the binding sites in STIM1 promoter region to SOX9. In addition, viability and apoptosis of BEAS-2B cells were assessed by utilizing MTT assay and TUNEL staining. ELISA kits and corresponding commercial kits were applied to measure the levels of TNF-α, IL-6, IL-1ß, SOD, GSH-Px and MDA. RESULTS: CSE treatment dose- and time-dependently reduced SOX9 expression in BEAS-2B cells. SOX9 overexpression enhanced the viability and suppressed the apoptosis of CSE-treated BEAS-2B cells as well as attenuated CSE-induced inflammation and oxidative stress. Then, it was validated that SOX9 bound to the promoter region of STIM1. Moreover, SOX9 overexpression-mediated impacts on cell viability, cell apoptosis, inflammation and oxidative stress in CSE-treated BEAS-2B cells were partially abolished by upregulation of STIM1. CONCLUSION: To sum up, results here suggested that overexpression of SOX9 could mitigate inflammatory injury in CSE-treated bronchial epithelial cells by suppressing STIM1.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Células Epiteliais/metabolismo , Humanos , Inflamação/metabolismo , Proteínas de Neoplasias , Fatores de Transcrição SOX9/genética , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Nicotiana/metabolismo
7.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36142309

RESUMO

During the decommissioning of nuclear facilities, the tritiated materials must be removed. These operations generate tritiated steel and cement particles that could be accidentally inhaled by workers. Thus, the consequences of human exposure by inhalation to these particles in terms of radiotoxicology were investigated. Their cyto-genotoxicity was studied using two human lung models: the BEAS-2B cell line and the 3D MucilAirTM model. Exposures of the BEAS-2B cell line to particles (2 and 24 h) did not induce significant cytotoxicity. Nevertheless, DNA damage occurred upon exposure to tritiated and non-tritiated particles, as observed by alkaline comet assay. Tritiated particles only induced cytostasis; however, both induced a significant increase in centromere negative micronuclei. Particles were also assessed for their effects on epithelial integrity and metabolic activity using the MucilAirTM model in a 14-day kinetic mode. No effect was noted. Tritium transfer through the epithelium was observed without intracellular accumulation. Overall, tritiated and non-tritiated stainless steel and cement particles were associated with moderate toxicity. However, these particles induce DNA lesions and chromosome breakage to which tritium seems to contribute. These data should help in a better management of the risk related to the inhalation of these types of particles.


Assuntos
Dano ao DNA , Aço Inoxidável , Ensaio Cometa , Humanos , Pulmão/metabolismo , Aço Inoxidável/toxicidade , Trítio/farmacologia
8.
Molecules ; 27(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35956820

RESUMO

Five new triterpenoids, oenotheralanosterols C-G (1-5), with seven known triterpenoidcompounds, namely 2α,3α,19α-trihydroxy-24-norurs4,12-dien-28-oic acid (6), 3ß,23-dihydroxy-1-oxo-olean-12-en-28-oic acid (7), remangilone C (8), knoxivalic acid A (9), termichebulolide (10), rosasecotriterpene A (11), androsanortriterpene C (12), were extracted and separated from the dichloromethane part of Oenothera biennis L. The anti-pulmonary fibrosis activities of all the compounds against TGF-ß1-induced damage tonormal human lung epithelial (BEAS-2B) cells were investigated in vitro. The results showed that compounds 1-2, 6, 8, and 11 exhibited significant anti-pulmonary fibrosis activities, with EC50 values ranging from 4.7 µM to 9.9 µM.


Assuntos
Oenothera biennis , Triterpenos , Fibrose , Humanos , Estrutura Molecular , Extratos Vegetais/farmacologia , Triterpenos/farmacologia
9.
Exp Lung Res ; 47(2): 98-109, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33336605

RESUMO

Purpose of the study: Macrolide therapy is effective in reducing chronic obstructive pulmonary disease (COPD) exacerbations. Our recent study has shown the effectiveness of taking azithromycin in COPD patients, not only ex-smokers but also current smokers. Beyond their anti-microbial effects, macrolides have anti-inflammatory and immunomodulatory properties. The aim of this study was to determine if pretreatment with azithromycin modulates cigarette smoke-induced inflammation in airway epithelial cells. We hypothesized that pretreatment with azithromycin decreases exacerbation frequency by modulating inflammation in human airway epithelial cells exposed to cigarette smoke. Materials and methods: BEAS-2B bronchial epithelial cells were incubated with 5% cigarette smoke extract (CSE) for 3 h, 6 h, and 24 h. Then, airway epithelial cells were pretreated with azithromycin and exposed to 5% CSE. In each stage, the expression and release of IL-6 and IL-8 mRNA were analyzed by quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Results: There was a significant increase of IL-6 and IL-8 mRNA, as well as an increase in extracellular IL-8 protein following exposure to 5% CSE. When cells were pretreated with azithromycin and exposed to 5% CSE for 3 h, there was a significant dose-dependent decrease in the expression of IL-6 mRNA. A final concentration of 9 µg/mL of azithromycin was sufficient to decrease IL-6, IL-8 mRNA, and extracellular IL-8 levels. Conclusion: Pretreatment with azithromycin decreased the expression of IL-6 and IL-8 mRNA and the release of IL-8 in bronchial epithelial cells exposed to cigarette smoke. These results demonstrate the direct effect of azithromycin on inflammatory mediators in bronchial epithelial cells exposed to cigarette smoke.


Assuntos
Azitromicina , Doença Pulmonar Obstrutiva Crônica , Azitromicina/farmacologia , Brônquios , Células Epiteliais , Humanos , Mediadores da Inflamação , Fumaça/efeitos adversos , Fumar
10.
J Appl Toxicol ; 41(8): 1262-1274, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33269480

RESUMO

In order to reduce exposure to toxic chemicals, the European REACH regulation (1907/2006) recommends substituting toxic molecules with compounds that are less harmful to human health and the environment. Toluene is one of the most frequently used solvents in industries despite its toxicity. The objective of this study is to better understand and compare the toxicity of toluene and its homologues in a bronchial cell model. Thus, human bronchial BEAS-2B cells were exposed to steams of toluene, m-xylene, mesitylene (1,3,5-trimethylbenzene), and benzene (20 and 100 ppm). Exposure was carried out using an air-liquid interface (ALI) system (Vitrocell) during 1 h/day for 1, 3, or 5 days. Cytotoxicity, xenobiotic metabolism enzyme gene expression, and inflammatory response were evaluated following cell exposures. BEAS-2B cell exposure to toluene and its homologues revealed the involvement of major (CYP2E1) and minor metabolic pathways (CYP1A1). A late induction of genes (EPHX1, DHDH, ALDH2, and ALDH3B1) was measured from Day 3 and can be linked to the formation of metabolites. An increase in the secretion level of inflammatory markers (TNF-α, IL-6, IL-8, MCP-1, and GM-CSF) was also observed. In parallel, regulation between inflammatory mediators and the expression of transmembrane glycoprotein mucin MUC1 was also studied. This in vitro approach with ALI system points out the relevance of conducting repeated exposures to detect potential late effects. The difference recorded after cell exposure to toluene and its homologues highlights the importance of substitution principle.


Assuntos
Derivados de Benzeno/toxicidade , Benzeno/toxicidade , Brônquios/efeitos dos fármacos , Tolueno/toxicidade , Xilenos/toxicidade , Benzeno/administração & dosagem , Derivados de Benzeno/administração & dosagem , Western Blotting , Brônquios/citologia , Linhagem Celular , Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Mucosa Respiratória/citologia , Mucosa Respiratória/efeitos dos fármacos , Tolueno/administração & dosagem , Xilenos/administração & dosagem
11.
Ecotoxicol Environ Saf ; 224: 112703, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34479021

RESUMO

Particulate matter 2.5 (PM2.5) has adverse biological effects on major living organs in the body, including lungs. The complex composition of PM2.5, including carbon black and heavy metals, cause toxic effects to the lung. Nonetheless, there exists considerable knowledge gaps regarding the impact of carbon black (CB) on environmental health and safety (EHS). Thus far, the synergistic effects of CB have not gained much attention in past decades. Here, we showed that combined exposure of CB and Cadmium (Cd) enhance the cytotoxicity by altering the state of cell membrane. Specially, CB caused cell membrane collapse and increased the permeability of cells, and remarkedly enhanced the metal Cd toxicity. Furthermore, upon pre-treatment sublethal-dose CB, the increased intracellular Cd brought about a significantly amount of lactate dehydrogenase (LDH) and high expression of metallothionein-1 (MT-1) in human lung epithelial cell line (BEAS-2B) cells, and ultimately resulted an increased cellular toxicity. The lung of mice exposed CBs and Cd presented remarkably inflammation than Cd alone. Mechanistic exploration deciphered that CB pre-treatment triggered cell damage via apoptosis due to Cd exposure. Collectively, our findings reveal a novel path for understanding the impact of CB on EHS with its synergistic effects, through which nanomaterials might exert detrimental effects on organisms.


Assuntos
Lesão Pulmonar , Fuligem , Animais , Apoptose , Cádmio/toxicidade , Carbono , Pulmão , Camundongos , Fuligem/toxicidade
12.
Arch Pharm (Weinheim) ; 354(8): e2100076, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33872394

RESUMO

New benzimidazole derivatives were synthesized and their structures were characterized by spectroscopic and microanalysis techniques. The cytotoxic properties of ten benzimidazole derivatives, five of which were synthesized in our previous studies, were determined against the lung cancer cell line, A549, and the healthy lung epithelial cell line, BEAS-2B. Among the ten compounds tested, based on the 72-h incubation results, compound 12 was the most cytotoxic against the A549 cell line, whereas against the BEAS-2B cell line, it was as cytotoxic as cisplatin. The IC50 values of compound 12 were 3.98 and 2.94 µg/ml for A549 and BEAS-2B cells, respectively. The cisplatin values were 6.75 and 2.75 µg/ml for A549 and BEAS-2B cells, respectively. Compounds 10, 8, 7, and 13 showed toxic effects against A549 cells, but were less toxic against BEAS-2B cells than cisplatin. The antimicrobial activity of these compounds against pathogenic bacteria and yeasts was also evaluated based on their minimum inhibitory concentration (MIC) values. The compounds, except 12 and 13, generally showed higher antimicrobial activity against yeasts, compared with bacteria. Compound 12 showed better activity against Pseudomonas aeruginosa and Staphylococcus aureus than against Escherichia coli. Compounds 7, 8, and 11 were the most effective ones against the microorganisms, and yeasts were highly sensitive to these compounds with MIC values of 25-100 µg/ml.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Células A549 , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Benzimidazóis/síntese química , Benzimidazóis/química , Linhagem Celular , Cisplatino/farmacologia , Células Epiteliais/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Pulmão/citologia , Pulmão/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
13.
Molecules ; 26(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34684903

RESUMO

A new HPLC method for the simultaneous quantitative analysis of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) was developed and validated. ATP, ADP, and AMP were extracted from human bronchial epithelial cells with a rapid extraction procedure and separated with a C18 column (3 × 150 mm, 2.7 µm) using isocratic elution with a mobile phase consisting of 50 mM of potassium hydrogen phosphate (pH 6.80). The absorbance was monitored at 254 nm. The calibration curves were linear in 0.2 to 10 µM, selective, precise, and accurate. This method allowed us to quantify the nucleotides from two cell models: differentiated NHBE primary cells grown at the air-liquid interface (ALI) and BEAS-2B cell line. Our study highlighted the development of a sensitive, simple, and green analytical method that is faster and less expensive than other existing methods to measure ATP, ADP, and AMP and can be carried out on 2D and 3D cell models.


Assuntos
Nucleotídeos de Adenina/metabolismo , Brônquios/metabolismo , Células Epiteliais/metabolismo , Linhagem Celular , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Indicadores e Reagentes/metabolismo
14.
Cell Physiol Biochem ; 54(2): 230-251, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32153152

RESUMO

BACKGROUND/AIMS: Adverse effects of cigarette smoke on health are widely known. Heating rather than combusting tobacco is one of strategies to reduce the formation of toxicants. The sensitive nature of mitochondrial dynamics makes the mitochondria an early indicator of cellular stress. For this reason, we studied the morphology and dynamics of the mitochondrial network in human bronchial epithelial cells (BEAS-2B) exposed to total particulate matter (TPM) generated from 3R4F reference cigarette smoke and from aerosol from a new candidate modified risk tobacco product, the Tobacco Heating System (THS 2.2). METHODS: Cells were subjected to short (1 week) and chronic (12 weeks) exposure to a low (7.5 µg/mL) concentration of 3R4F TPM and low (7.5 µg/mL), medium (37.5 µg/mL), and high (150 µg/mL) concentrations of TPM from THS 2.2. Confocal microscopy was applied to assess cellular and mitochondrial morphology. Cytosolic Ca2+ levels, mitochondrial membrane potential and mitochondrial mass were measured with appropriate fluorescent probes on laser scanning cytometer. The levels of proteins regulating mitochondrial dynamics and biogenesis were determined by Western blot. RESULTS: In BEAS-2B cells exposed for one week to the low concentration of 3R4F TPM and the high concentration of THS 2.2 TPM we observed clear changes in cell morphology, mitochondrial network fragmentation, altered levels of mitochondrial fusion and fission proteins and decreased biogenesis markers. Also cellular proliferation was slowed down. Upon chronic exposure (12 weeks) many parameters were affected in the opposite way comparing to short exposure. We observed strong increase of NRF2 protein level, reorganization of mitochondrial network and activation of the mitochondrial biogenesis process. CONCLUSION: Comparison of the effects of TPMs from 3R4F and from THS 2.2 revealed, that similar extent of alterations in mitochondrial dynamics and biogenesis is observed at 7.5 µg/mL of 3R4F TPM and 150 µg/mL of THS 2.2 TPM. 7 days exposure to the investigated components of cigarette smoke evoke mitochondrial stress, while upon chronic, 12 weeks exposure the hallmarks of cellular adaptation to the stressor were visible. The results also suggest that mitochondrial stress signaling is involved in the process of cellular adaptation under conditions of chronic stress caused by 3R4F and high concentration of THS 2.2.


Assuntos
Aerossóis/química , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Material Particulado/toxicidade , Cálcio/metabolismo , Linhagem Celular , Corantes Fluorescentes/química , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia Confocal , Mitocôndrias/efeitos dos fármacos , Material Particulado/química , Fumaça/efeitos adversos , Fatores de Tempo , Produtos do Tabaco/análise
15.
Mol Cell Probes ; 50: 101499, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31883454

RESUMO

Apoptosis of bronchial epithelial cells contributes to lung diseases, including asthma. Although miR-20a-5p is reportedly downregulated in the bronchial epithelia of asthmatic patients, its function and mechanism still need to be explored. Here, we explored how miR-20a-5p affects human bronchial epithelial cells stimulated with transforming growth factor (TGF)-ß1. Using qRT-PCR, we observed downregulated miR-20a-5p levels in these cells. After transfecting miR-20a-5p mimics or inhibitors into human bronchial epithelium BEAS-2B cells, a Cell Counting Kit-8 assay and flow cytometry analysis showed that the mimics mitigated suppression of cell viability and acceleration of apoptosis that was triggered by TGF-ß1, whereas the inhibitors exerted the opposite effects. TGF-ß1 induced a decrease in expression of Bcl-2 and an increase in expression of Bax, both of which were inhibited by miR-20a-5p mimics and further enhanced by miR-20a-5p inhibitors. Further study verified that miR-20a-5p targeted the signal transducer and activator of transcription 3 (STAT3) and the STAT3 level was inversely related to the miR-20a-5p level. Furthermore, STAT3 overexpression partly counteracted the miR-20a-5p-induced anti-apoptotic effect in TGF-ß1-treated BEAS-2B cells. In summary, this study suggested that miR-20a-5p restrained apoptosis in TGF-ß1-stimulated BEAS-2B cells by targeting STAT3. MiR-20a-5p thus may be a novel therapeutic target for asthma treatment.


Assuntos
Apoptose , Brônquios/citologia , Células Epiteliais/metabolismo , MicroRNAs/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Regiões 3' não Traduzidas/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Sequência de Bases , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Células Epiteliais/efeitos dos fármacos , Humanos , MicroRNAs/genética , Fator de Transcrição STAT3/genética
16.
Ecotoxicol Environ Saf ; 203: 110956, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32678753

RESUMO

BACKGROUND: Atmospheric pollutants could induced over-expression of Muc5ac, which is a major pathological feature in acute exacerbation of Chronic Obstructive Pulmonary Disease (COPD) and fatal asthma. Notch signaling pathway could promote mucus cell proliferation and mucus secretion. However, the effects of Notch signaling pathway on the airway mucus secretion induced by PM2.5 remain unknown. In this study, we investigated the role of the Notch signaling pathway on Muc5ac by atmospheric PM2.5 in Beas-2B cell. METHODS: The mRNA and protein levels of the Notch1-4, downstream target gene Hes1 and Muc5ac in the Notch signaling pathway were detected by qPCR and western after Beas-2B cells were exposed to PM2.5 of different concentrations for 12h, 24h, and 48h. RESULTS: The longer the exposure time and the higher the concentration of PM2.5, the lower the survival rate of Beas-2B cells. The expressions of Hes1 and Muc5ac in mRNA and protein were significantly increased after PM2.5 exposure. Correlation analysis indicated that there was a positive correlation between the expression of Muc5ac and Hes1 in mRNA and protein. CONCLUSION: Atmospheric PM2.5 can induce the express of Muc5ac, the Notch signaling pathway may be involved in the regulation of Muc5ac by Hes1.


Assuntos
Poluentes Atmosféricos/toxicidade , Células Epiteliais/efeitos dos fármacos , Mucina-5AC/biossíntese , Material Particulado/toxicidade , Receptores Notch/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Transdução de Sinais
17.
Medicina (Kaunas) ; 57(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383878

RESUMO

Background and objectives: The carcinogenicity of coal tar pitch (CTP) to occupational workers has been confirmed by the International Agency for Research on Cancer, especially for lung cancer. Herein, we explored the dynamic changes of epigenetic modifications in the malignant transformation process of CTP-induced BEAS-2B cells and also provided clues for screening early biomarkers of CTP-associated occupational lung cancer. Methods: BEAS-2B cells treated with 3.0 µg/mL CTP extract (CTPE) were cultured to the 30th passage to set up a malignant transformation model, which was confirmed by platelet clone formation assay and xenograft assay. DNA methylation levels were determined by ultraviolet-high performance liquid chromatography. mRNA levels in cells and protein levels in supernatants were respectively detected by Real-Time PCR and enzyme-linked immunosorbent assay. Results: The number of clones and the ability of tumor formation in nude mice of CTPE-exposed BEAS-2B cells at 30th passage were significantly increased compared to vehicle control. Moreover, genomic DNA methylation level was down-regulated. The mRNA levels of DNMT1, DNMT3a and HDAC1 as well as the expression of DNMT1 protein were up-regulated since the 10th passage. From the 20th passage, the transcriptional levels of DNMT3b, let-7a and the expression of DNMT3a, DNMT3b, and HDAC1 proteins were detected to be higher than vehicle control, while the level of miR-21 increased only at the 30th passage. Conclusion: Data in this study indicated that the changes of epigenetic molecules including DNMT1, DNMT3a, DNMT3b, HDAC1, and let-7a occurred at the early stages of BEAS-2B cell malignant transformation after CTPE exposure, which provided critical information for screening early biomarkers of CTP-associated occupational lung cancer.


Assuntos
Alcatrão , Animais , Biomarcadores , Linhagem Celular , Alcatrão/toxicidade , Epigênese Genética , Células Epiteliais , Camundongos , Camundongos Nus , Extratos Vegetais
18.
Toxicol Appl Pharmacol ; 374: 1-10, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31005557

RESUMO

Multi-walled carbon nanotubes (MWCNTs) have been developed with numerous beneficial applications. However, rodent models demonstrate that exposure to MWCNTs via respiratory pathways results in pulmonary fibrosis. Therefore, they could elicit a potential risk of pulmonary fibrosis in humans due to occupational or consumer exposure. Sirtuin 6 (SIRT6), a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, has been proved to prevent fibrosis in the liver, renal and myocardial tissues. In this present study, we aimed to explore the role of SIRT6 in MWCNTs-induced epithelial-mesenchymal transition (EMT), one of the major contributor of lung fibrogenesis in human bronchial epithelial BEAS-2B cells. We found that the protein level of SIRT6 was elevated after exposure to MWCNTs in BEAS-2B cells. Overexpression of SIRT6 significantly inhibited MWCNTs-induced EMT and EMT-like cell behaviors in BEAS-2B cells. Moreover, wild-type SIRT6 was found to decrease MWCNTs-induced phosphorylation of Smad2, but not mutant SIRT6 (H133Y) without histone deacetylase activity. In conclusion, our study demonstrated that SIRT6 inhibited MWCNTs-induced EMT in BEAS-2B cells through TGF-ß1/Smad2 signaling pathway, which depended on its deacetylase activity, and provided evidences that targeting SIRT6 could be a potential novel therapeutic strategy for MWCNTs-induced pulmonary fibrosis.


Assuntos
Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Nanotubos de Carbono , Sirtuínas/metabolismo , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Brônquios/citologia , Linhagem Celular , Sobrevivência Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Transdução de Sinais , Sirtuínas/genética , Proteína Smad2/genética , Fator de Crescimento Transformador beta1/genética
19.
Exp Lung Res ; 45(8): 255-266, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31517562

RESUMO

Background and purpose of the study:Pseudomonas aeruginosa commonly colonizes the airway of patients with chronic obstructive pulmonary disease (COPD) and exacerbates their symptoms. P. aeruginosa carries flagellin that stimulates toll-like receptor (TLR)-5; however, the role of flagellin in the pathogenesis of COPD remains unclear. The aim of the study was to evaluate the mechanisms of the flagellin-induced innate immune response in bronchial epithelial cells, and to assess the effects of anti-inflammatory agents for treatment. Materials and methods: We stimulated BEAS-2B cells with P. aeruginosa-derived flagellin, and assessed mRNA expression and protein secretion of interleukin (IL)-6 and IL-8. We also used mitogen-activated protein kinases (MAPK) inhibitors to assess the signaling pathways involved in flagellin stimulation, and investigated the effect of clinically available anti-inflammatory agents against flagellin-induced inflammation. Results: Flagellin promoted protein and mRNA expression of IL-6 and IL-8 in BEAS-2B cells and induced phosphorylation of p38, ERK, and JNK; p38 phosphorylation-induced IL-6 production, while IL-8 production resulted from p38 and ERK phosphorylation. Fluticasone propionate (FP) and dexamethasone (DEX) suppressed IL-6 and IL-8 production in BEAS-2B cells, but clarithromycin (CAM) failed to do so. Conclusions:P. aeruginosa-derived flagellin-induced IL-6 and IL-8 production in bronchial epithelial cells, which partially explains the mechanisms of progression and exacerbation of COPD. Corticosteroids are the most effective treatment for the suppression of flagellin-induced IL-6 and IL-8 production in the bronchial epithelial cells.


Assuntos
Brônquios/imunologia , Células Epiteliais/imunologia , Flagelina/imunologia , Interleucina-6/imunologia , Interleucina-8/imunologia , Pseudomonas aeruginosa/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Anti-Inflamatórios/farmacologia , Brônquios/efeitos dos fármacos , Brônquios/microbiologia , Linhagem Celular , Progressão da Doença , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/microbiologia , Fosforilação/efeitos dos fármacos , Fosforilação/imunologia , Pseudomonas aeruginosa/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/microbiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Receptor 5 Toll-Like/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia
20.
Environ Res ; 171: 510-522, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30743243

RESUMO

A particular attention has been devoted to the type of toxicological responses induced by particulate matter (PM), since their knowledge is greatly complicated by the fact that it is a heterogeneous and often poorly described pollutant. However, despite intensive research effort, there is still a lack of knowledge about the specific chemical fraction of PM, which could be mainly responsible of its adverse health effects. We sought also to better investigate the toxicological effects of organic extractable matter (OEM) in normal human bronchial epithelial lung BEAS-2B cells. The wide variety of chemicals, including PAH and other related-chemicals, found in OEM, has been rather associated with early oxidative events, as supported by the early activation of the sensible NRF-2 signaling pathway. For the most harmful conditions, the activation of this signaling pathway could not totally counteract the ROS overproduction, thereby leading to critical oxidative damage to macromolecules (lipid peroxidation, oxidative DNA adducts). While NRF-2 is an anti-inflammatory, OEM exposure did not trigger any significant change in the secretion of inflammatory cytokines (i.e., TNFα, IL-1ß, IL-6, IL-8, MCP-1, and IFNγ). According to the high concentrations of PAH and other related organic chemicals found in this OEM, CYP1A1 and 1B1 genes exhibited high transcription levels in BEAS-2B cells, thereby supporting both the activation of the critical AhR signaling pathway and the formation of highly reactive ultimate metabolites. As a consequence, genotoxic events occurred in BEAS-2B cells exposed to this OEM together with cell survival events, with possible harmful cell cycle deregulation. However, more studies are required to implement these observations and to contribute to better decipher the critical role of the organic fraction of air pollution-derived PM2.5 in the activation of some sensitive signaling pathways closely associated with G1/S and intra-S checkpoint blockage, on the one hand, and cell survival, on the other hand.


Assuntos
Poluentes Atmosféricos/toxicidade , Ciclo Celular/efeitos dos fármacos , Material Particulado/toxicidade , Linhagem Celular , Dano ao DNA , Células Epiteliais , Humanos , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA