Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(7): 1157-1171.e22, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35259335

RESUMO

Enterococci are a part of human microbiota and a leading cause of multidrug resistant infections. Here, we identify a family of Enterococcus pore-forming toxins (Epxs) in E. faecalis, E. faecium, and E. hirae strains isolated across the globe. Structural studies reveal that Epxs form a branch of ß-barrel pore-forming toxins with a ß-barrel protrusion (designated the top domain) sitting atop the cap domain. Through a genome-wide CRISPR-Cas9 screen, we identify human leukocyte antigen class I (HLA-I) complex as a receptor for two members (Epx2 and Epx3), which preferentially recognize human HLA-I and homologous MHC-I of equine, bovine, and porcine, but not murine, origin. Interferon exposure, which stimulates MHC-I expression, sensitizes human cells and intestinal organoids to Epx2 and Epx3 toxicity. Co-culture with Epx2-harboring E. faecium damages human peripheral blood mononuclear cells and intestinal organoids, and this toxicity is neutralized by an Epx2 antibody, demonstrating the toxin-mediated virulence of Epx-carrying Enterococcus.


Assuntos
Toxinas Bacterianas/metabolismo , Enterococcus , Leucócitos Mononucleares , Fatores de Virulência/metabolismo , Animais , Bovinos , Enterococcus/metabolismo , Enterococcus/patogenicidade , Cavalos , Camundongos , Testes de Sensibilidade Microbiana , Suínos
2.
Annu Rev Biochem ; 88: 811-837, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30388027

RESUMO

Botulinum neurotoxins (BoNTs) and tetanus neurotoxin (TeNT) are the most potent toxins known and cause botulism and tetanus, respectively. BoNTs are also widely utilized as therapeutic toxins. They contain three functional domains responsible for receptor-binding, membrane translocation, and proteolytic cleavage of host proteins required for synaptic vesicle exocytosis. These toxins also have distinct features: BoNTs exist within a progenitor toxin complex (PTC), which protects the toxin and facilitates its absorption in the gastrointestinal tract, whereas TeNT is uniquely transported retrogradely within motor neurons. Our increasing knowledge of these toxins has allowed the development of engineered toxins for medical uses. The discovery of new BoNTs and BoNT-like proteins provides additional tools to understand the evolution of the toxins and to engineer toxin-based therapeutics. This review summarizes the progress on our understanding of BoNTs and TeNT, focusing on the PTC, receptor recognition, new BoNT-like toxins, and therapeutic toxin engineering.


Assuntos
Toxinas Botulínicas/uso terapêutico , Metaloendopeptidases/uso terapêutico , Toxina Tetânica/uso terapêutico , Animais , Toxinas Botulínicas/metabolismo , Toxinas Botulínicas/toxicidade , Humanos , Metaloendopeptidases/metabolismo , Metaloendopeptidases/toxicidade , Conformação Proteica , Engenharia de Proteínas , Toxina Tetânica/metabolismo , Toxina Tetânica/toxicidade
3.
J Biol Chem ; 300(2): 105604, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159861

RESUMO

ADP-ribosylation is a post-translational modification involved in regulation of diverse cellular pathways. Interestingly, many pathogens have been identified to utilize ADP-ribosylation as a way for host manipulation. A recent study found that CteC, an effector from the bacterial pathogen Chromobacterium violaceum, hinders host ubiquitin (Ub) signaling pathways via installing mono-ADP-ribosylation on threonine 66 of Ub. However, the molecular basis of substrate recognition by CteC is not well understood. In this article, we probed the substrate specificity of this effector at protein and residue levels. We also determined the crystal structure of CteC in complex with NAD+, which revealed a canonical mono-ADP-ribosyltransferase fold with an additional insertion domain. The AlphaFold-predicted model differed significantly from the experimentally determined structure, even in regions not used in crystal packing. Biochemical and biophysical studies indicated unique features of the NAD+ binding pocket, while showing selectivity distinction between Ub and structurally close Ub-like modifiers and the role of the insertion domain in substrate recognition. Together, this study provides insights into the enzymatic specificities and the key structural features of a novel bacterial ADP-ribosyltransferase involved in host-pathogen interaction.


Assuntos
ADP Ribose Transferases , Proteínas de Bactérias , Modelos Moleculares , ADP Ribose Transferases/química , ADP Ribose Transferases/genética , ADP Ribose Transferases/metabolismo , ADP-Ribosilação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Chromobacterium/química , Chromobacterium/enzimologia , Chromobacterium/genética , Cristalografia por Raios X , NAD/química , NAD/metabolismo , Ligação Proteica , Domínios Proteicos , Estrutura Terciária de Proteína , Especificidade por Substrato , Ubiquitina/metabolismo
4.
J Biol Chem ; 300(1): 105505, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029963

RESUMO

Mutations in receptor guanylyl cyclase C (GC-C) cause severe gastrointestinal disease, including meconium ileus, early onset acute diarrhea, and pediatric inflammatory bowel disease that continues into adulthood. Agonists of GC-C are US Food and Drug Administration-approved drugs for the treatment of constipation and irritable bowel syndrome. Therapeutic strategies targeting GC-C are tested in preclinical mouse models, assuming that murine GC-C mimics human GC-C in its biochemical properties and downstream signaling events. Here, we reveal important differences in ligand-binding affinity and GC activity between mouse GC-C and human GC-C. We generated a series of chimeric constructs of various domains of human and mouse GC-C to show that the extracellular domain of mouse GC-C contributed to log-orders lower affinity of mouse GC-C for ligands than human GC-C. Further, the Vmax of the murine GC domain was lower than that of human GC-C, and allosteric regulation of the receptor by ATP binding to the intracellular kinase-homology domain also differed. These altered properties are reflected in the high concentrations of ligands required to elicit signaling responses in the mouse gut in preclinical models and the specificity of a GC inhibitor towards human GC-C. Therefore, our studies identify considerations in using the murine model to test molecules for therapeutic purposes that work as either agonists or antagonists of GC-C, and vaccines for the bacterial heat-stable enterotoxin that causes watery diarrhea in humans.


Assuntos
Receptores Acoplados a Guanilato Ciclase , Animais , Criança , Humanos , Camundongos , Diarreia , Enterotoxinas , Guanilato Ciclase/metabolismo , Ligantes , Receptores de Enterotoxina/genética , Receptores Acoplados a Guanilato Ciclase/antagonistas & inibidores , Receptores Acoplados a Guanilato Ciclase/genética , Receptores Acoplados a Guanilato Ciclase/metabolismo , Gastroenteropatias/tratamento farmacológico , Gastroenteropatias/metabolismo , Gastroenteropatias/patologia
5.
J Biol Chem ; 299(9): 105150, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37567473

RESUMO

Folding of the Repeats-in-toxin (RTX) domain of the bacterial adenylate cyclase toxin-hemolysin (CyaA) is critical to its toxin activities and the virulence of the whooping cough agent Bordetella pertussis. The RTX domain (RD) contains five RTX blocks (RTX-i to RTX-v) and their folding is driven by the binding of calcium. However, the detailed molecular mechanism via which the folding signal transmits within the five RTX blocks remains unknown. By combining single molecule optical tweezers, protein engineering, and toxin activity assays, here we demonstrate that the folding of the RD follows a strict hierarchy, with the folding starting from its C-terminal block RTX-v and proceeding towards the N-terminal RTX-i block sequentially. Our results reveal a strict series, templated folding mechanism, where the folding signal is transmitted along the RD in a series fashion from its C terminus continuously to the N terminus. Due to the series nature of this folding signal transmission pathway, the folding of RD can be disrupted at any given RTX block, rendering the RTX blocks located N-terminally to the disruption site and the acylation region of CyaA unfolded and abolishing CyaA's toxin activities. Our results reveal key mechanistic insights into the secretion and folding process of CyaA and may open up new potential avenues towards designing new therapeutics to abolish toxin activity of CyaA and combat B. pertussis.

6.
J Biol Chem ; 299(12): 105321, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37802313

RESUMO

Staphylococcus aureus (S. aureus) is a serious global pathogen that causes a diverse range of invasive diseases. S. aureus utilizes a family of pore-forming toxins, known as bi-component leukocidins, to evade the host immune response and promote infection. Among these is LukAB (leukocidin A/leukocidin B), a toxin that assembles into an octameric ß-barrel pore in the target cell membrane, resulting in host cell death. The established cellular receptor for LukAB is CD11b of the Mac-1 complex. Here, we show that hydrogen voltage-gated channel 1 is also required for the cytotoxicity of all major LukAB variants. We demonstrate that while each receptor is sufficient to recruit LukAB to the plasma membrane, both receptors are required for maximal lytic activity. Why LukAB requires two receptors, and how each of these receptors contributes to pore-formation remains unknown. To begin to resolve this, we performed an alanine scanning mutagenesis screen to identify mutations that allow LukAB to maintain cytotoxicity without CD11b. We discovered 30 mutations primarily localized in the stem domains of LukA and LukB that enable LukAB to exhibit full cytotoxicity in the absence of CD11b. Using crosslinking, electron microscopy, and hydroxyl radical protein footprinting, we show these mutations increase the solvent accessibility of the stem domain, priming LukAB for oligomerization. Together, our data support a model in which CD11b binding unlatches the membrane penetrating stem domains of LukAB, and this change in flexibility promotes toxin oligomerization.


Assuntos
Proteínas de Bactérias , Leucocidinas , Staphylococcus aureus , Toxinas Biológicas , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Leucocidinas/genética , Leucocidinas/metabolismo , Leucocidinas/toxicidade , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Toxinas Biológicas/metabolismo , Mutação , Ligação Proteica/genética , Domínios Proteicos , Linhagem Celular , Células CHO , Cricetulus , Animais
7.
J Biol Chem ; 299(9): 105147, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567478

RESUMO

The vertebrate host's immune system and resident commensal bacteria deploy a range of highly reactive small molecules that provide a barrier against infections by microbial pathogens. Gut pathogens, such as Vibrio cholerae, sense and respond to these stressors by modulating the expression of exotoxins that are crucial for colonization. Here, we employ mass spectrometry-based profiling, metabolomics, expression assays, and biophysical approaches to show that transcriptional activation of the hemolysin gene hlyA in V. cholerae is regulated by intracellular forms of sulfur with sulfur-sulfur bonds, termed reactive sulfur species (RSS). We first present a comprehensive sequence similarity network analysis of the arsenic repressor superfamily of transcriptional regulators, where RSS and hydrogen peroxide sensors segregate into distinct clusters of sequences. We show that HlyU, transcriptional activator of hlyA in V. cholerae, belongs to the RSS-sensing cluster and readily reacts with organic persulfides, showing no reactivity or DNA dissociation following treatment with glutathione disulfide or hydrogen peroxide. Surprisingly, in V. cholerae cell cultures, both sulfide and peroxide treatment downregulate HlyU-dependent transcriptional activation of hlyA. However, RSS metabolite profiling shows that both sulfide and peroxide treatment raise the endogenous inorganic sulfide and disulfide levels to a similar extent, accounting for this crosstalk, and confirming that V. cholerae attenuates HlyU-mediated activation of hlyA in a specific response to intracellular RSS. These findings provide new evidence that gut pathogens may harness RSS-sensing as an evolutionary adaptation that allows them to overcome the gut inflammatory response by modulating the expression of exotoxins.


Assuntos
Proteínas de Bactérias , Dissulfetos , Exotoxinas , Regulação Bacteriana da Expressão Gênica , Proteínas Hemolisinas , Espaço Intracelular , Compostos de Sulfidrila , Ativação Transcricional , Vibrio cholerae , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Exotoxinas/genética , Exotoxinas/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Ativação Transcricional/efeitos dos fármacos , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Dissulfetos/metabolismo , Dissulfetos/farmacologia , Compostos de Sulfidrila/metabolismo , Compostos de Sulfidrila/farmacologia , Espaço Intracelular/metabolismo , Espectrometria de Massas , Metabolômica , Dissulfeto de Glutationa/farmacologia , Microbioma Gastrointestinal/imunologia
8.
Mol Microbiol ; 119(6): 695-710, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37038088

RESUMO

Unlike other cholera-like toxins that contain separate binding/translocation and catalytic subunits, C3-like mono-ADP-ribosyltransferases consist of a single subunit that serves both functions. The manner whereby C3 toxins reach the host cell cytoplasm is poorly understood and was addressed in this study by monitoring the fate of fluorescently labeled C3larvinA. Following binding to the macrophage membrane in a discontinuous punctate pattern, the toxin was internalized, traversing the endocytic pathway to reach lysosomes. Strikingly, the lysosomes of C3larvinA-treated cells underwent massive swelling over the course of 1-4 h. Lysosomal swelling preceded the extensive rearrangement of the cellular F-actin caused by ADP-ribosylation of cytosolic Rho-GTPases. This suggested that lysosome swelling might be required for the escape of the toxin into the cytoplasm where the GTPases reside. Accordingly, preventing swelling by osmotic manipulation or by arresting macropinocytosis precluded the F-actin rearrangement. Toxin-induced swelling was associated with leakage of sulforhodamine B and dextran from the lysosomes, implying membrane rupture or activation of mechano-sensitive pores, enabling the toxin itself to reach the cytosol. Finally, comparison of the cellular traffic and actin remodeling activities of C3larvinA with that of two related toxins, C3larvintrunc and Plx2A, highlighted the importance of the N-terminal α1 -helix for lysosomal swelling and successful intoxication.


Assuntos
Toxinas Bacterianas , Toxinas Botulínicas , Citosol/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Botulínicas/metabolismo , Toxinas Botulínicas/farmacologia , Actinas/metabolismo , ADP Ribose Transferases/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Lisossomos/metabolismo
9.
EMBO J ; 39(11): e104129, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32350888

RESUMO

The bacterial type VI secretion system (T6SS) is a macromolecular machine that injects effectors into prokaryotic and eukaryotic cells. The mode of action of the T6SS is similar to contractile phages: the contraction of a sheath structure pushes a tube topped by a spike into target cells. Effectors are loaded onto the spike or confined into the tube. In enteroaggregative Escherichia coli, the Tle1 phospholipase binds the C-terminal extension of the VgrG trimeric spike. Here, we purify the VgrG-Tle1 complex and show that a VgrG trimer binds three Tle1 monomers and inhibits their activity. Using covalent cross-linking coupled to high-resolution mass spectrometry, we provide information on the sites of contact and further identify the requirement for a Tle1 N-terminal secretion sequence in complex formation. Finally, we report the 2.6-Å-resolution cryo-electron microscopy tri-dimensional structure of the (VgrG)3 -(Tle1)3 complex revealing how the effector binds its cargo, and how VgrG inhibits Tle1 phospholipase activity. The inhibition of Tle1 phospholipase activity once bound to VgrG suggests that Tle1 dissociation from VgrG is required upon delivery.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fosfolipases/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fosfolipases/genética , Sistemas de Secreção Tipo VI/genética
10.
J Cell Sci ; 135(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34878112

RESUMO

Metabolic studies and animal knockout models point to the critical role of polyunsaturated docosahexaenoic acid (22:6, DHA)-containing phospholipids (DHA-PLs) in physiology. Here, we investigated the impact of DHA-PLs on the dynamics of transendothelial cell macroapertures (TEMs) triggered by RhoA inhibition-associated cell spreading. Lipidomic analyses showed that human umbilical vein endothelial cells (HUVECs) subjected to a DHA diet undergo a 6-fold enrichment in DHA-PLs at the plasma membrane (PM) at the expense of monounsaturated oleic acid-containing PLs (OA-PLs). Consequently, DHA-PL enrichment at the PM induces a reduction in cell thickness and shifts cellular membranes towards a permissive mode of membrane fusion for transcellular tunnel initiation. We provide evidence that a global homeostatic control of membrane tension and cell cortex rigidity minimizes overall changes of TEM area through a decrease of TEM size and lifetime. Conversely, low DHA-PL levels at the PM lead to the opening of unstable and wider TEMs. Together, this provides evidence that variations of DHA-PL levels in membranes affect cell biomechanical properties.


Assuntos
Ácidos Docosa-Hexaenoicos , Fosfolipídeos , Animais , Membrana Celular/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Células Endoteliais/metabolismo , Humanos , Fusão de Membrana , Fosfolipídeos/metabolismo
11.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892174

RESUMO

Foodborne diseases can be attributed not only to contamination with bacterial or fungal pathogens but also their associated toxins. Thus, to maintain food safety, innovative decontamination techniques for toxins are required. We previously demonstrated that an atmospheric-pressure dielectric-barrier discharge (APDBD) plasma generated by a roller conveyer plasma device is effective at inactivating bacteria and fungi in foods. Here, we have further examined whether the roller conveyer plasma device can be used to degrade toxins produced by foodborne bacterial pathogens, including aflatoxin, Shiga toxins (Stx1 and Stx2), enterotoxin B and cereulide. Each toxin was spotted onto an aluminum plate, allowed to dry, and then treated with APDBD plasma applied by the roller conveyer plasma device for different time periods. Assessments were conducted using a competitive enzyme-linked immunosorbent assay (ELISA) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results demonstrate a significant time-dependent decrease in the levels of these toxins. ELISA showed that aflatoxin B1 concentrations were reduced from 308.6 µg/mL to 74.4 µg/mL within 1 min. For Shiga toxins, Stx1 decreased from 913.8 µg/mL to 65.1 µg/mL, and Stx2 from 2309.0 µg/mL to 187.6 µg/mL within the same time frame (1 min). Enterotoxin B levels dropped from 62.67 µg/mL to 1.74 µg/mL at 15 min, and 1.43 µg/mL at 30 min, but did not display a significant decrease within 5 min. LC-MS/MS analysis verified that cereulide was reduced to below the detection limit following 30 min of APDBD plasma treatment. Taken together, these findings highlight that a range of foodborne toxins can be degraded by a relatively short exposure to plasma generated by an APDBD using a roller conveyer device. This technology offers promising advancements in food safety, providing a novel method to alleviate toxin contamination in the food processing industry.


Assuntos
Pressão Atmosférica , Espectrometria de Massas em Tandem , Enterotoxinas , Depsipeptídeos/química , Microbiologia de Alimentos/métodos , Cromatografia Líquida/métodos , Doenças Transmitidas por Alimentos/prevenção & controle , Doenças Transmitidas por Alimentos/microbiologia , Ensaio de Imunoadsorção Enzimática , Contaminação de Alimentos/análise , Gases em Plasma/química , Aflatoxina B1
12.
J Biol Chem ; 298(10): 102441, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36055404

RESUMO

Vibrio cholerae cytolysin (VCC) is a potent membrane-damaging ß-barrel pore-forming toxin. Upon binding to the target membranes, VCC monomers first assemble into oligomeric prepore intermediates and subsequently transform into transmembrane ß-barrel pores. VCC harbors a designated pore-forming motif, which, during oligomeric pore formation, inserts into the membrane and generates a transmembrane ß-barrel scaffold. It remains an enigma how the molecular architecture of the pore-forming motif regulates the VCC pore-formation mechanism. Here, we show that a specific pore-forming motif residue, E289, plays crucial regulatory roles in the pore-formation mechanism of VCC. We find that the mutation of E289A drastically compromises pore-forming activity, without affecting the structural integrity and membrane-binding potential of the toxin monomers. Although our single-particle cryo-EM analysis reveals WT-like oligomeric ß-barrel pore formation by E289A-VCC in the membrane, we demonstrate that the mutant shows severely delayed kinetics in terms of pore-forming ability that can be rescued with elevated temperature conditions. We find that the pore-formation efficacy of E289A-VCC appears to be more profoundly dependent on temperature than that of the WT toxin. Our results suggest that the E289A mutation traps membrane-bound toxin molecules in the prepore-like intermediate state that is hindered from converting into the functional ß-barrel pores by a large energy barrier, thus highlighting the importance of this residue for the pore-formation mechanism of VCC.


Assuntos
Proteínas de Bactérias , Citotoxinas , Proteínas Citotóxicas Formadoras de Poros , Vibrio cholerae , Fatores de Virulência , Membrana Celular/metabolismo , Citotoxinas/química , Citotoxinas/genética , Vibrio cholerae/patogenicidade , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Fatores de Virulência/química , Fatores de Virulência/genética , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Motivos de Aminoácidos , Mutação , Ácido Glutâmico/química , Ácido Glutâmico/genética
13.
J Cell Sci ; 134(5)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33106317

RESUMO

Autophagy plays an essential role in the defense against many microbial pathogens as a regulator of both innate and adaptive immunity. Some pathogens have evolved sophisticated mechanisms that promote their ability to evade or subvert host autophagy. Here, we describe a novel mechanism of autophagy modulation mediated by the recently discovered Vibrio cholerae cytotoxin, motility-associated killing factor A (MakA). pH-dependent endocytosis of MakA by host cells resulted in the formation of a cholesterol-rich endolysosomal membrane aggregate in the perinuclear region. Aggregate formation induced the noncanonical autophagy pathway driving unconventional LC3 (herein referring to MAP1LC3B) lipidation on endolysosomal membranes. Subsequent sequestration of the ATG12-ATG5-ATG16L1 E3-like enzyme complex, required for LC3 lipidation at the membranous aggregate, resulted in an inhibition of both canonical autophagy and autophagy-related processes, including the unconventional secretion of interleukin-1ß (IL-1ß). These findings identify a novel mechanism of host autophagy modulation and immune modulation employed by V. cholerae during bacterial infection.


Assuntos
Proteínas Associadas aos Microtúbulos , Vibrio cholerae , Autofagia , Proteínas Relacionadas à Autofagia/genética , Citotoxinas , Vitamina B 12/análogos & derivados
14.
Appl Environ Microbiol ; 89(3): e0162222, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36847510

RESUMO

IPD072Aa from Pseudomonas chlororaphis is a new insecticidal protein that has been shown to have high activity against western corn rootworm (WCR). IPD072 has no sequence signatures or predicted structural motifs with any known protein revealing little insight into its mode of action using bioinformatic tools. As many bacterially derived insecticidal proteins are known to act through mechanisms that lead to death of midgut cells, we evaluated whether IPD072Aa also acts by targeting the cells of WCR midgut. IPD072Aa exhibits specific binding to brush border membrane vesicles (BBMVs) prepared from WCR guts. The binding was found to occur at binding sites that are different than those recognized by Cry3A or Cry34Ab1/Cry35Ab1, proteins expressed by current maize traits that target WCR. Using fluorescence confocal microscopy, immuno-detection of IPD072Aa in longitudinal sections from whole WCR larvae that were fed IPD072Aa revealed the association of the protein with the cells that line the gut. High-resolution scanning electron microscopy of similar whole larval sections revealed the disruption of the gut lining resulting from cell death caused by IPD072Aa exposure. These data show that the insecticidal activity of IPD072Aa results from specific targeting and killing of rootworm midgut cells. IMPORTANCE Transgenic traits targeting WCR based on insecticidal proteins from Bacillus thuringiensis have proven effective in protecting maize yield in North America. High adoption has led to WCR populations that are resistant to the trait proteins. Four proteins have been developed into commercial traits, but they represent only two modes of action due to cross-resistance among three. New proteins suited for trait development are needed. IPD072Aa, identified from the bacterium Pseudomonas chlororaphis, was shown to be effective in protecting transgenic maize against WCR. To be useful, IPD072Aa must work through binding to different receptors than those utilized by current traits to reduce risk of cross-resistance and understanding its mechanism of toxicity could aid in countering resistance development. Our results show that IPD072Aa binds to receptors in WCR gut that are different than those utilized by current commercial traits and its targeted killing of midgut cells results in larval death.


Assuntos
Bacillus thuringiensis , Besouros , Inseticidas , Pseudomonas chlororaphis , Animais , Zea mays/metabolismo , Pseudomonas chlororaphis/metabolismo , Endotoxinas/farmacologia , Larva , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Inseticidas/metabolismo , Proteínas de Bactérias/metabolismo , Células Epiteliais , Plantas Geneticamente Modificadas/metabolismo , Controle Biológico de Vetores/métodos
15.
Angew Chem Int Ed Engl ; 62(21): e202301566, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36853913

RESUMO

Nanodiscs are a compelling nanomedicine platform due to their ultrasmall size and distinct disc shape. Current nanodisc formulations are made primarily with synthetic lipid bilayers and proteins. Here, we report a cellular nanodisc made with human red blood cell (RBC) membrane (denoted "RBC-ND") and show its effective neutralization against bacterial toxins. In vitro, RBC-ND neutralizes the hemolytic activity and cytotoxicity caused by purified α-toxin or complex whole secreted proteins (wSP) from methicillin-resistant Staphylococcus aureus bacteria. In vivo, RBC-ND confers significant survival benefits for mice intoxicated with α-toxin or wSP in both therapeutic and prevention regimens. Moreover, RBC-ND shows good biocompatibility and biosafety in vivo. Overall, RBC-ND distinguishes itself by inheriting the biological functions of the source cell membrane for bioactivity. The design strategy of RBC-ND can be generalized to other types of cell membranes for broad applications.


Assuntos
Toxinas Bacterianas , Staphylococcus aureus Resistente à Meticilina , Humanos , Animais , Camundongos , Eritrócitos , Membrana Eritrocítica , Bicamadas Lipídicas
16.
J Biol Chem ; 297(5): 101347, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34715130

RESUMO

The cellular specificity, potency, and modular nature of bacterial protein toxins enable their application for targeted cytosolic delivery of therapeutic cargo. Efficient endosomal escape is a critical step in the design of bacterial toxin-inspired drug delivery (BTIDD) vehicles to avoid lysosomal degradation and promote optimal cargo delivery. The cytotoxic necrotizing factor (CNF) family of modular toxins represents a useful model for investigating cargo-delivery mechanisms due to the availability of many homologs with high sequence identity, their flexibility in swapping domains, and their differential activity profiles. Previously, we found that CNFy is more sensitive to endosomal acidification inhibitors than CNF1 and CNF2. Here, we report that CNF3 is even less sensitive than CNF1/2. We identified two amino acid residues within the putative translocation domain (E374 and E412 in CNFy, Q373 and S411 in CNF3) that differentiate between these two toxins. Swapping these corresponding residues in each toxin changed the sensitivity to endosomal acidification and efficiency of cargo-delivery to be more similar to the other toxin. Results suggested that trafficking to the more acidic late endosome is required for cargo delivery by CNFy but not CNF3. This model was supported by results from toxin treatment of cells in the presence of NH4Cl, which blocks endosomal acidification, and of small-molecule inhibitors EGA, which blocks trafficking to late endosomes, and ABMA, which blocks endosomal escape and trafficking to the lysosomal degradative pathway. These findings suggest that it is possible to fine-tune endosomal escape and cytosolic cargo delivery efficiency in designing BTIDD platforms.


Assuntos
Toxinas Bacterianas , Endossomos/metabolismo , Proteínas de Escherichia coli , Lisossomos/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Endossomos/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Células HEK293 , Humanos , Lisossomos/genética , Domínios Proteicos , Transporte Proteico
17.
Glycobiology ; 32(12): 1116-1136, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-35926090

RESUMO

Glycans that are abundantly displayed on vertebrate cell surface and secreted molecules are often capped with terminal sialic acids (Sias). These diverse 9-carbon-backbone monosaccharides are involved in numerous intrinsic biological processes. They also interact with commensals and pathogens, while undergoing dynamic changes in time and space, often influenced by environmental conditions. However, most of this sialoglycan complexity and variation remains poorly characterized by conventional techniques, which often tend to destroy or overlook crucial aspects of Sia diversity and/or fail to elucidate native structures in biological systems, i.e. in the intact sialome. To date, in situ detection and analysis of sialoglycans has largely relied on the use of plant lectins, sialidases, or antibodies, whose preferences (with certain exceptions) are limited and/or uncertain. We took advantage of naturally evolved microbial molecules (bacterial adhesins, toxin subunits, and viral hemagglutinin-esterases) that recognize sialoglycans with defined specificity to delineate 9 classes of sialoglycan recognizing probes (SGRPs: SGRP1-SGRP9) that can be used to explore mammalian sialome changes in a simple and systematic manner, using techniques common in most laboratories. SGRP candidates with specificity defined by sialoglycan microarray studies were engineered as tagged probes, each with a corresponding nonbinding mutant probe as a simple and reliable negative control. The optimized panel of SGRPs can be used in methods commonly available in most bioscience labs, such as ELISA, western blot, flow cytometry, and histochemistry. To demonstrate the utility of this approach, we provide examples of sialoglycome differences in tissues from C57BL/6 wild-type mice and human-like Cmah-/- mice.


Assuntos
Hemaglutininas Virais , Ácidos Siálicos , Humanos , Camundongos , Animais , Camundongos Endogâmicos C57BL , Ácidos Siálicos/química , Mamíferos/metabolismo , Polissacarídeos
18.
Glycobiology ; 32(12): 1101-1115, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36048714

RESUMO

Vertebrate sialic acids (Sias) display much diversity in modifications, linkages, and underlying glycans. Slide microarrays allow high-throughput explorations of sialoglycan-protein interactions. A microarray presenting ~150 structurally defined sialyltrisaccharides with various Sias linkages and modifications still poses challenges in planning, data sorting, visualization, and analysis. To address these issues, we devised a simple 9-digit code for sialyltrisaccharides with terminal Sias and underlying two monosaccharides assigned from the nonreducing end, with 3 digits assigning a monosaccharide, its modifications, and linkage. Calculations based on the encoding system reveal >113,000 likely linear sialyltrisaccharides in nature. Notably, a biantennary N-glycan with 2 terminal sialyltrisaccharides could thus have >1010 potential combinations and a triantennary N-glycan with 3 terminal sequences, >1015 potential combinations. While all possibilities likely do not exist in nature, sialoglycans encode enormous diversity. While glycomic approaches are used to probe such diverse sialomes, naturally occurring bacterial AB5 toxin B subunits are simpler tools to track the dynamic sialome in biological systems. Sialoglycan microarray was utilized to compare sialoglycan-recognizing bacterial toxin B subunits. Unlike the poor correlation between B subunits and species phylogeny, there is stronger correlation with Sia-epitope preferences. Further supporting this pattern, we report a B subunit (YenB) from Yersinia enterocolitica (broad host range) recognizing almost all sialoglycans in the microarray, including 4-O-acetylated-Sias not recognized by a Yersinia pestis orthologue (YpeB). Differential Sia-binding patterns were also observed with phylogenetically related B subunits from Escherichia coli (SubB), Salmonella Typhi (PltB), Salmonella Typhimurium (ArtB), extra-intestinal E.coli (EcPltB), Vibrio cholera (CtxB), and cholera family homologue of E. coli (EcxB).


Assuntos
Toxinas Bacterianas , Escherichia coli , Salmonella typhi/química , Ácidos Siálicos , Toxinas Bacterianas/química , Polissacarídeos , Toxina da Cólera
19.
Microbiology (Reading) ; 168(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35333704

RESUMO

Pore-forming toxins (PFTs) are widely distributed in both Gram-negative and Gram-positive bacteria. PFTs can act as virulence factors that bacteria utilise in dissemination and host colonisation or, alternatively, they can be employed to compete with rival microbes in polymicrobial niches. PFTs transition from a soluble form to become membrane-embedded by undergoing large conformational changes. Once inserted, they perforate the membrane, causing uncontrolled efflux of ions and/or nutrients and dissipating the protonmotive force (PMF). In some instances, target cells intoxicated by PFTs display additional effects as part of the cellular response to pore formation. Significant progress has been made in the mechanistic description of pore formation for the different PFTs families, but in several cases a complete understanding of pore structure remains lacking. PFTs have evolved recognition mechanisms to bind specific receptors that define their host tropism, although this can be remarkably diverse even within the same family. Here we summarise the salient features of PFTs and highlight where additional research is necessary to fully understand the mechanism of pore formation by members of this diverse group of protein toxins.


Assuntos
Toxinas Bacterianas , Bactérias/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Membrana Celular/metabolismo , Humanos , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Fatores de Virulência/análise
20.
Cell Microbiol ; 23(8): e13326, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33720490

RESUMO

Photorhabdus luminescens Tc toxins are large tripartite ABC-type toxin complexes, composed of TcA, TcB and TcC proteins. Tc toxins are widespread and have shown a tropism for a variety of targets including insect, mammalian and human cells. However, their receptors and the specific mechanisms of uptake into target cells remain unknown. Here, we show that the TcA protein TcdA1 interacts with N-glycans, particularly Lewis X/Y antigens. This is confirmed using N-acetylglucosamine transferase I (Mgat1 gene product)-deficient Chinese hamster ovary (CHO) Lec1 cells, which are highly resistant to intoxication by the Tc toxin complex most likely due to the absence of complex N-glycans. Restoring Mgat1 gene activity, and hence complex N-glycan biosynthesis, recapitulated the sensitivity of these cells to the toxin. Exogenous addition of Lewis X trisaccharide partially inhibits intoxication in wild-type cells. Additionally, sialic acid also largely reduced binding of the Tc toxin. Moreover, proteolytic activation of TcdA1 alters glycan-binding and uptake into target cells. The data suggest that TcdA1-binding is most likely multivalent, and carbohydrates probably work cooperatively to facilitate binding and intoxication.


Assuntos
Toxinas Bacterianas , Photorhabdus , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Polissacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA