Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Diabetologia ; 67(3): 547-560, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38206362

RESUMO

AIMS/HYPOTHESIS: All forms of diabetes result from insufficient functional beta cell mass. Due to the relatively limited expression of several antioxidant enzymes, beta cells are highly vulnerable to pathological levels of reactive oxygen species (ROS), which can lead to the reduction of functional beta cell mass. During early postnatal ages, both human and rodent beta cells go through a burst of proliferation that quickly declines with age. The exact mechanisms that account for neonatal beta cell proliferation are understudied but mitochondrial release of moderated ROS levels has been suggested as one of the main drivers. We previously showed that, apart from its conventional role in protecting beta cells from oxidative stress, the nuclear factor erythroid 2-related factor 2 (NRF2) is also essential for beta cell proliferation. We therefore hypothesised that NRF2, which is activated by ROS, plays an essential role in beta cell proliferation at early postnatal ages. METHODS: Beta cell NRF2 levels and beta cell proliferation were measured in pancreatic sections from non-diabetic human cadaveric donors at different postnatal ages, childhood and adulthood. Pancreatic sections from 1-, 7-, 14- and 28-day-old beta cell-specific Nrf2 (also known as Nfe2l2)-knockout mice (ßNrf2KO) or control (Nrf2lox/lox) mice were assessed for beta cell NRF2 levels, beta cell proliferation, beta cell oxidative stress, beta cell death, nuclear beta cell pancreatic duodenal homeobox protein 1 (PDX1) levels and beta cell mass. Seven-day-old ßNrf2KO and Nrf2lox/lox mice were injected daily with N-acetylcysteine (NAC) or saline (154 mmol/l NaCl) to explore the potential contribution of oxidative stress to the phenotypes seen in ßNrf2KO mice at early postnatal ages. RNA-seq was performed on 7-day-old ßNrf2KO and Nrf2lox/lox mice to investigate the mechanisms by which NRF2 stimulates beta cell proliferation at early postnatal ages. Mitochondrial biogenesis and function were determined using dispersed islets from 7-day-old ßNrf2KO and Nrf2lox/lox mice by measuring MitoTracker intensity, mtDNA/gDNA ratio and ATP/ADP ratio. To study the effect of neonatal beta cell-specific Nrf2 deletion on glucose homeostasis in adulthood, blood glucose, plasma insulin and insulin secretion were determined and a GTT was performed on 3-month-old ßNrf2KO and Nrf2lox/lox mice fed on regular diet (RD) or high-fat diet (HFD). RESULTS: The expression of the master antioxidant regulator NRF2 was increased at early postnatal ages in both human (1 day to 19 months old, 31%) and mouse (7 days old, 57%) beta cells, and gradually declined with age (8% in adult humans, 3.77% in adult mice). A significant correlation (R2=0.568; p=0.001) was found between beta cell proliferation and NRF2 levels in human beta cells. Seven-day-old ßNrf2KO mice showed reduced beta cell proliferation (by 65%), beta cell nuclear PDX1 levels (by 23%) and beta cell mass (by 67%), and increased beta cell oxidative stress (threefold) and beta cell death compared with Nrf2lox/lox control mice. NAC injections increased beta cell proliferation in 7-day-old ßNrf2KO mice (3.4-fold) compared with saline-injected ßNrf2KO mice. Interestingly, RNA-seq of islets isolated from 7-day-old ßNrf2KO mice revealed reduced expression of mitochondrial RNA genes and genes involved in the electron transport chain. Islets isolated from 7-day old ßNrf2KO mice presented reduced MitoTracker intensity (by 47%), mtDNA/gDNA ratio (by 75%) and ATP/ADP ratio (by 68%) compared with islets from Nrf2lox/lox littermates. Lastly, HFD-fed 3-month-old ßNrf2KO male mice displayed a significant reduction in beta cell mass (by 35%), a mild increase in non-fasting blood glucose (1.2-fold), decreased plasma insulin (by 14%), and reduced glucose tolerance (1.3-fold) compared with HFD-fed Nrf2lox/lox mice. CONCLUSIONS/INTERPRETATION: Our study highlights NRF2 as an essential transcription factor for maintaining neonatal redox balance, mitochondrial biogenesis and function and beta cell growth, and for preserving functional beta cell mass in adulthood under metabolic stress. DATA AVAILABILITY: Sequencing data are available in the NCBI Gene Expression Omnibus, accession number GSE242718 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE242718 ).


Assuntos
Células Secretoras de Insulina , Insulinas , Masculino , Humanos , Camundongos , Animais , Criança , Recém-Nascido , Lactente , Glicemia/metabolismo , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Animais Recém-Nascidos , Biogênese de Organelas , Células Secretoras de Insulina/metabolismo , Glucose/metabolismo , Oxirredução , DNA Mitocondrial/metabolismo , Trifosfato de Adenosina/metabolismo
2.
Diabetes Obes Metab ; 24(9): 1721-1733, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35546452

RESUMO

AIM: To show that depletion of pancreatic macrophages impairs gestational beta cell proliferation and leads to glucose intolerance. MATERIALS AND METHODS: Genetic animal models were applied to study the effects of depletion of pancreatic macrophges on gestational beta-cell proliferaiton and glucose response. The crosstalk between macrophages and beta-cells was studied in vivo using beta-cell-specific extracellular-signal-regulated kinase 5 (ERK5) knockout and epidermal growth receptor (EGFR) knockout mice, and in vitro using a co-culture system. RESULTS: Beta cell-derived placental growth factor (PlGF) recruited naïve macrophages and polarized them towards an M2-like phenotype. These macrophages then secreted epidermal growth factor (EGF), which activated extracellular signal-regulated kinase 5 (ERK5) signalling in beta cells to promote gestational beta cell proliferation. On the other hand, activation of ERK5 signalling in beta cells likely, in turn, enhanced the production and secretion of PlGF by beta cells. CONCLUSIONS: Our study shows a regulatory loop between macrophages and beta cells through PlGF/EGF/ERK5 signalling cascades to regulate gestational beta cell growth.


Assuntos
Fator de Crescimento Epidérmico , Proteína Quinase 7 Ativada por Mitógeno , Animais , Proliferação de Células , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Feminino , Macrófagos/metabolismo , Camundongos , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Fator de Crescimento Placentário/metabolismo
3.
J Endocrinol Invest ; 45(1): 95-103, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34191257

RESUMO

AIMS: Metformin, rosiglitazone and sulfonylureas enhance either insulin action or secretion and thus have been used extensively as early stage anti-diabetic medication, independently of the aetiology of the disease. When administered to newly diagnosed diabetes patients, these drugs produce variable results. Here, we examined the effects of the three early stage oral hypoglycaemic agents in mice with diabetes induced by multiple low doses of streptozotocin, focusing specifically on the developmental biology of pancreatic islets. METHODS: Streptozotocin-treated diabetic mice expressing a fluorescent reporter specifically in pancreatic islet α-cells were administered the biguanide metformin (100 mg/kg), thiazolidinedione rosiglitazone (10 mg/kg), or sulfonylurea tolbutamide (20 mg/kg) for 10 days. We assessed the impact of the treatment on metabolic status of the animals as well as on the morphology, proliferative potential and transdifferentiation of pancreatic islet cells, using immunofluorescence. RESULTS: The effect of the therapy on the islet cells varied depending on the drug and included enhanced pancreatic islet ß-cell proliferation, in case of metformin and rosiglitazone; de-differentiation of α-cells and ß-cell apoptosis with tolbutamide; increased relative number of ß-cells and bi-hormonal insulin + glucagon + cells with metformin. These effects were accompanied by normalisation of food and fluid intake with only minor effects on glycaemia at the low doses of the agents employed. CONCLUSIONS: Our data suggest that metformin and rosiglitazone attenuate the depletion of the ß-cell pool in the streptozotocin-induced diabetes, whereas tolbutamide exacerbates the ß-cell apoptosis, but is likely to protect ß-cells from chronic hyperglycaemia by directly elevating insulin secretion.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Secreção de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas , Metformina/farmacologia , Rosiglitazona/farmacologia , Animais , Glicemia/metabolismo , Diferenciação Celular/efeitos dos fármacos , Transdiferenciação Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Camundongos
4.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555462

RESUMO

During mouse pregnancy placental lactogens stimulate prolactin receptors on pancreatic islet beta cells to induce expression of the tryptophan hydroxylase Tph1, resulting in the synthesis and secretion of serotonin. Presently, the functional relevance of this phenomenon is unclear. One hypothesis is that serotonin-induced activation of 5-HT2B receptors on beta cells stimulates beta cell proliferation during pregnancy. We tested this hypothesis via three different mouse models: (i) total Tph1KO mice, (ii) 129P2/OlaHsd mice, which are incompetent to upregulate islet Tph1 during pregnancy, whereas Tph1 is normally expressed in the intestine, mammary glands, and placenta, and (iii) Htr2b-deficient mice. We observed normal pregnancy-induced levels of beta cell proliferation in total Tph1KO mice, 129P2/OlaHsd mice, and in Htr2b-/- mice. The three studied mouse models indicate that islet serotonin production and its signaling via 5-HT2B receptors are not required for the wave of beta cell proliferation that occurs during normal mouse pregnancy.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Feminino , Animais , Gravidez , Camundongos , Serotonina/metabolismo , Placenta/metabolismo , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Proliferação de Células , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
5.
Diabetologia ; 64(10): 2292-2305, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34296320

RESUMO

AIMS/HYPOTHESIS: ZBED6 (zinc finger, BED-type containing 6) is known to regulate muscle mass by suppression of Igf2 gene transcription. In insulin-producing cell lines, ZBED6 maintains proliferative capacity at the expense of differentiation and beta cell function. The aim was to study the impact of Zbed6 knockout on beta cell function and glucose tolerance in C57BL/6 mice. METHODS: Beta cell area and proliferation were determined in Zbed6 knockout mice using immunohistochemical analysis. Muscle and fat distribution were assessed using micro-computed tomography. Islet gene expression was assessed by RNA sequencing. Effects of a high-fat diet were analysed by glucose tolerance and insulin tolerance tests. ZBED6 was overexpressed in EndoC-ßH1 cells and human islet cells using an adenoviral vector. Beta cell cell-cycle analysis, insulin release and mitochondrial function were studied in vitro using propidium iodide staining and flow cytometry, ELISA, the Seahorse technique, and the fluorescent probes JC-1 and MitoSox. RESULTS: Islets from Zbed6 knockout mice showed lowered expression of the cell cycle gene Pttg1, decreased beta cell proliferation and decreased beta cell area, which occurred independently from ZBED6 effects on Igf2 gene expression. Zbed6 knockout mice, but not wild-type mice, developed glucose intolerance when given a high-fat diet. The high-fat diet Zbed6 knockout islets displayed upregulated expression of oxidative phosphorylation genes and genes associated with beta cell differentiation. In vitro, ZBED6 overexpression resulted in increased EndoC-ßH1 cell proliferation and a reduced glucose-stimulated insulin release in human islets. ZBED6 also reduced mitochondrial JC-1 J-aggregate formation, mitochondrial oxygen consumption rates (OCR) and mitochondrial reactive oxygen species (ROS) production, both at basal and palmitate + high glucose-stimulated conditions. ZBED6-induced inhibition of OCR was not rescued by IGF2 addition. ZBED6 reduced levels of the mitochondrial regulator PPAR-γ related coactivator 1 protein (PRC) and bound its promoter/enhancer region. Knockdown of PRC resulted in a lowered OCR. CONCLUSIONS/INTERPRETATION: It is concluded that ZBED6 is required for normal beta cell replication and also limits excessive beta cell mitochondrial activation in response to an increased functional demand. ZBED6 may act, at least in part, by restricting PRC-mediated mitochondrial activation/ROS production, which may lead to protection against beta cell dysfunction and glucose intolerance in vivo.


Assuntos
Dieta Hiperlipídica , Intolerância à Glucose/metabolismo , Células Secretoras de Insulina/fisiologia , Mitocôndrias/metabolismo , Proteínas Repressoras/fisiologia , Adenoviridae/genética , Animais , Proliferação de Células , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Regulação da Expressão Gênica/fisiologia , Vetores Genéticos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Consumo de Oxigênio/fisiologia , Fosforilação , Espécies Reativas de Oxigênio , Reação em Cadeia da Polimerase em Tempo Real , Securina/genética
6.
Diabetologia ; 63(3): 577-587, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31897526

RESUMO

AIMS/HYPOTHESIS: Sodium-glucose cotransporter 2 (SGLT2) inhibitors, which prevent the renal reabsorption of glucose, decrease blood glucose levels in an insulin-independent manner. We previously reported creating a mouse model of systemic inhibition of target receptors for both insulin and IGF-1 by treating animals with OSI-906, a dual insulin/IGF-1 receptor inhibitor, for 7 days. The OSI-906-treated mice exhibited an increased beta cell mass, hepatic steatosis and adipose tissue atrophy, accompanied by hyperglycaemia and hyperinsulinaemia. In the present study, we investigated the effects of an SGLT2 inhibitor, luseogliflozin, on these changes in OSI-906-treated mice. METHODS: We treated C57BL/6J male mice either with vehicle, luseogliflozin, OSI-906 or OSI-906 plus luseogliflozin for 7 days, and phenotyping was performed to determine beta cell mass and proliferation. Subsequently, we tested whether serum-derived factors have an effect on beta cell proliferation in genetically engineered beta cells, mouse islets or human islets. RESULTS: SGLT2 inhibition with luseogliflozin significantly ameliorated hyperglycaemia, but not hyperinsulinaemia, in the OSI-906-treated mice. Liver steatosis and adipose tissue atrophy induced by OSI-906 were not altered by treatment with luseogliflozin. Beta cell mass and proliferation were further increased by SGLT2 inhibition with luseogliflozin in the OSI-906-treated mice. Luseogliflozin upregulated gene expression related to the forkhead box M1 (FoxM1)/polo-like kinase 1 (PLK1)/centromere protein A (CENP-A) pathway in the islets of OSI-906-treated mice. The increase in beta cell proliferation was recapitulated in a co-culture of Irs2 knockout and Insr/IR knockout (ßIRKO) beta cells with serum from both luseogliflozin- and OSI-906-treated mice, but not after SGLT2 inhibition in beta cells. Circulating factors in both luseogliflozin- and OSI-906-treated mice promoted beta cell proliferation in both mouse islets and cadaveric human islets. CONCLUSIONS/INTERPRETATION: These results suggest that luseogliflozin can increase beta cell proliferation through the activation of the FoxM1/PLK1/CENP-A pathway via humoral factors that act in an insulin/IGF-1 receptor-independent manner.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Sorbitol/análogos & derivados , Animais , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Sinergismo Farmacológico , Técnicas de Inativação de Genes , Humanos , Imidazóis/farmacologia , Proteínas Substratos do Receptor de Insulina/genética , Células Secretoras de Insulina/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Pirazinas/farmacologia , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/fisiologia , Receptor de Insulina/antagonistas & inibidores , Receptor de Insulina/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sorbitol/farmacologia
7.
Diabetologia ; 62(5): 822-834, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30824970

RESUMO

AIMS/HYPOTHESIS: We previously reported that exposure to antibodies neutralising serpin B13, a protease inhibitor expressed in exocrine pancreatic ducts, promotes beta cell proliferation, underscoring the importance of a functional relationship between exocrine and endocrine pancreas. The aim of the present study was to identify the molecular events that link inhibition of serpin B13 to islet cell proliferation. METHODS: We used an in vitro culture system consisting of isolated pancreatic islets, an extract of pancreatic ductal epithelium and a monoclonal antibody (mAb) to serpin B13 or IgG isotype control. In vivo studies involved treatment of mice with these mAbs. RESULTS: The catalytic activity of cathepsin L (CatL), a cysteine protease target of serpin B13, was augmented in the pancreas of mice injected with serpin B13 mAb. Furthermore, the addition of serpin B13 mAb to the islets, together with the pancreatic ductal epithelium lysate, caused CatL-dependent cleavage of E-cadherin and concomitant upregulation of REG genes, ultimately leading to beta cell proliferation. Direct blockade of E-cadherin with mAb also markedly enhanced REG gene induction, while chemical inhibition of ß-catenin, a binding target of E-cadherin, prevented the serpin B13 mAb-induced upregulation of REG genes. CONCLUSIONS/INTERPRETATION: Our work implicates the CatL-E-cadherin-REG pathway in the regulation of islet cell proliferation in response to signals generated in exocrine pancreatic tissue and demonstrates that protease activity may promote adaptive changes in the islets. DATA AVAILABILITY: Microarray data that support the findings of this study have been deposited in Gene Expression Omnibus (GEO) with the accession no. GSE125151.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Catepsina L/metabolismo , Ilhotas Pancreáticas/metabolismo , Serpinas/metabolismo , Animais , Anticorpos Monoclonais , Proliferação de Células , Feminino , Expressão Gênica , Células HEK293 , Humanos , Ilhotas Pancreáticas/citologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Pâncreas Exócrino/metabolismo , Ductos Pancreáticos/citologia , Transdução de Sinais , alfa 1-Antitripsina/metabolismo
8.
Diabetologia ; 61(10): 2202-2214, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30032427

RESUMO

AIMS/HYPOTHESIS: There is a great need to identify factors that could protect pancreatic beta cells against apoptosis or stimulate their replication and thus prevent or reverse the development of diabetes. One potential candidate is mesencephalic astrocyte-derived neurotrophic factor (MANF), an endoplasmic reticulum (ER) stress inducible protein. Manf knockout mice used as a model of diabetes develop the condition because of increased apoptosis and reduced proliferation of beta cells, apparently related to ER stress. Given this novel association between MANF and beta cell death, we studied the potential of MANF to protect human beta cells against experimentally induced ER stress. METHODS: Primary human islets were challenged with proinflammatory cytokines, with or without MANF. Cell viability was analysed and global transcriptomic analysis performed. Results were further validated using the human beta cell line EndoC-ßH1. RESULTS: There was increased expression and secretion of MANF in human beta cells in response to cytokines. Addition of recombinant human MANF reduced cytokine-induced cell death by 38% in human islets (p < 0.05). MANF knockdown in EndoC-ßH1 cells led to increased ER stress after cytokine challenge. Mechanistic studies showed that the protective effect of MANF was associated with repression of the NF-κB signalling pathway and amelioration of ER stress. MANF also increased the proliferation of primary human beta cells twofold when TGF-ß signalling was inhibited (p < 0.01). CONCLUSIONS/INTERPRETATION: Our studies show that exogenous MANF protein can provide protection to human beta cells against death induced by inflammatory stress. The antiapoptotic and mitogenic properties of MANF make it a potential therapeutic agent for beta cell protection.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Células Secretoras de Insulina/citologia , Fatores de Crescimento Neural/metabolismo , Astrócitos/metabolismo , Morte Celular/efeitos dos fármacos , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Citocinas/metabolismo , Humanos , Inflamação , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/citologia , NF-kappa B/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Transcriptoma
9.
Diabetologia ; 61(6): 1470-1483, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29497784

RESUMO

AIMS/HYPOTHESIS: The cannabinoid 1 receptor (CB1R) regulates insulin sensitivity and glucose metabolism in peripheral tissues. CB1R is expressed on pancreatic beta cells and is coupled to the G protein Gαi, suggesting a negative regulation of endogenous signalling in the beta cell. Deciphering the exact function of CB1R in beta cells has been confounded by the expression of this receptor on multiple tissues involved in regulating metabolism. Thus, in models of global genetic or pharmacological CB1R blockade, it is difficult to distinguish the indirect effects of improved insulin sensitivity in peripheral tissues from the direct effects of inhibiting CB1R in beta cells per se. To assess the direct contribution of beta cell CB1R to metabolism, we designed a mouse model that allows us to determine the role of CB1R specifically in beta cells in the context of whole-body metabolism. METHODS: We generated a beta cell specific Cnr1 (CB1R) knockout mouse (ß-CB1R-/-) to study the long-term consequences of CB1R ablation on beta cell function in adult mice. We measured beta cell function, proliferation and viability in these mice in response to a high-fat/high-sugar diet and induction of acute insulin resistance with the insulin receptor antagonist S961. RESULTS: ß-CB1R-/- mice had increased fasting (153 ± 23% increase at 10 weeks of age) and stimulated insulin secretion and increased intra-islet cAMP levels (217 ± 33% increase at 10 weeks of age), resulting in primary hyperinsulinaemia, as well as increased beta cell viability, proliferation and islet area (1.9-fold increase at 10 weeks of age). Hyperinsulinaemia led to insulin resistance, which was aggravated by a high-fat/high-sugar diet and weight gain, although beta cells maintained their insulin secretory capacity in response to glucose. Strikingly, islets from ß-CB1R-/- mice were protected from diet-induced inflammation. Mechanistically, we show that this is a consequence of curtailment of oxidative stress and reduced activation of the NLRP3 inflammasome in beta cells. CONCLUSIONS/INTERPRETATION: Our data demonstrate CB1R to be a negative regulator of beta cell function and a mediator of islet inflammation under conditions of metabolic stress. Our findings point to beta cell CB1R as a therapeutic target, and broaden its potential to include anti-inflammatory effects in both major forms of diabetes. DATA AVAILABILITY: Microarray data have been deposited at GEO (GSE102027).


Assuntos
Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Receptor CB1 de Canabinoide/genética , Animais , Peso Corporal , Proliferação de Células , Sobrevivência Celular , Dieta Hiperlipídica/efeitos adversos , Carboidratos da Dieta/efeitos adversos , Inflamação/patologia , Insulina/metabolismo , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Estresse Oxidativo
10.
Int J Mol Sci ; 19(10)2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30322036

RESUMO

Diabetes is a global epidemic and affects millions of individuals in the United States. Devising novel treatments for diabetes continues to be a great medical challenge. Postnatal beta cell growth or compensation is largely attributed to beta cell proliferation, which declines continuously with age. To boost beta cell proliferation to regenerate an adequate functional mass, there is a need to understand the signaling pathways that regulate beta cell proliferation for creating practical strategies to promote the process. Transforming growth factor ß (TGFß) belongs to a signaling superfamily that governs pancreatic development and the regeneration of beta cells after pancreatic diseases. TGFß exerts its functions by activation of downstream Smad proteins and through its crosstalk with other pathways. Accumulating data demonstrate that the TGFß receptor signaling pathway also participates in the control of beta cell proliferation. This review details the role of the TGFß receptor signaling pathway in beta cell proliferation physiologically and in the pathogenesis of diabetes.


Assuntos
Células Secretoras de Insulina/citologia , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adulto , Animais , Ciclo Celular , Proliferação de Células , Humanos , Células Secretoras de Insulina/metabolismo , Transdução de Sinais
11.
IUBMB Life ; 67(8): 634-44, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26099053

RESUMO

A gradual decline in insulin response is known to precede the onset of type 1 diabetes (T1D). To track age-related changes in the ß-cell function of nonobese diabetic (NOD) mice, the most commonly used animal model for T1D, and to establish differences between those who do and do not become hyperglycemic, we performed a long-term longitudinal oral glucose tolerance test (OGTT) study (10-42 weeks) in combination with immunofluorescence imaging of islet morphology and cell proliferation. We observed a clear biphasic decline in insulin secretion (AUC0-30 min ) even in euglycemic animals. A first phase (10-28 weeks) consisted of a relatively rapid decline and paralleled diabetes development in the same cohort of animals. This was followed by a second phase (29-42 weeks) during which insulin secretion declined much slower while no additional animals became diabetic. Blood glucose profiles showed a corresponding, but less pronounced change: the area under the concentration curve (AUC0-150 min ) increased with age, and fit with a bilinear model indicated a rate-change in the trendline around 28 weeks. In control NOD scids, no such changes were observed. Islet morphology also changed with age as islets become surrounded by mononuclear infiltrates, and, in all mice, islets with immune cell infiltration around them showed increased ß-cell proliferation. In conclusion, insulin secretion declines in a biphasic manner in all NOD mice. This trend, as well as increased ß-cell proliferation, is present even in the NODs that never become diabetic, whereas, it is absent in control NOD scid mice.


Assuntos
Envelhecimento/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Envelhecimento/patologia , Animais , Glicemia , Proliferação de Células , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/patologia , Modelos Animais de Doenças , Teste de Tolerância a Glucose , Humanos , Secreção de Insulina , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Endogâmicos NOD
12.
Curr Diab Rep ; 15(12): 104, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26458375

RESUMO

The prevalence of type 2 diabetes is increasing worldwide, and while numerous treatments exist, none of the current pharmacologic therapies is curative. Pharmacologic approaches that increase beta cell mass may present an avenue for actual cure. There have been numerous reports on factors that can induce beta cell proliferation in rodents, whereas there are still very limited data on the occurrence of beta cell proliferation in humans. The recent discovery of the hormone betatrophin, which in mice counteracted glucose intolerance induced by insulin resistance by potently stimulating beta cell proliferation, has boosted the hope for a new target for drug development for the treatment of diabetes mellitus in humans. With the encouraging preclinical findings as a background, this review presents the available clinical data on betatrophin and discusses its possible role in humans.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hormônios Peptídicos/sangue , Hormônios Peptídicos/uso terapêutico , Animais , Proliferação de Células , Intolerância à Glucose , Humanos , Resistência à Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos
13.
Mol Metab ; 82: 101906, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423253

RESUMO

OBJECTIVE: Type 1 diabetes (T1D) occurs because of islet infiltration by autoreactive immune cells leading to destruction of beta cells and it is becoming evident that beta cell dysfunction partakes in this process. We previously reported that genetic deletion and pharmacological antagonism of the cannabinoid 1 receptor (CB1) in mice improves insulin synthesis and secretion, upregulates glucose sensing machinery, favors beta cell survival by reducing apoptosis, and enhances beta cell proliferation. Moreover, beta cell specific deletion of CB1 protected mice fed a high fat high sugar diet against islet inflammation and beta cell dysfunction. Therefore, we hypothesized that it would mitigate the dysfunction of beta cells in the precipitating events leading to T1D. METHODS: We genetically deleted CB1 specifically from beta cells in non-obese diabetic (NOD; NOD RIP Cre+ Cnr1fl/fl) mice. We evaluated female NOD RIP Cre+ Cnr1fl/fl mice and their NOD RIP Cre-Cnr1fl/fl and NOD RIP Cre+ Cnr1Wt/Wt littermates for onset of hyperglycemia over 26 weeks. We also examined islet morphology, islet infiltration by immune cells and beta cell function and proliferation. RESULTS: Beta cell specific deletion of CB1 in NOD mice significantly reduced the incidence of hyperglycemia by preserving beta cell function and mass. Deletion also prevented beta cell apoptosis and aggressive insulitis in NOD RIP Cre+ Cnr1fl/fl mice compared to wild-type littermates. NOD RIP Cre+ Cnr1fl/fl islets maintained normal morphology with no evidence of beta cell dedifferentiation or appearance of extra islet beta cells, indicating that protection from autoimmunity is inherent to genetic deletion of beta cell CB1. Pancreatic lymph node Treg cells were significantly higher in NOD RIP Cre+ Cnr1fl/flvs NOD RIP Cre-Cnr1fl/fl. CONCLUSIONS: Collectively these data demonstrate how protection of beta cells from metabolic stress during the active phase of T1D can ameliorate destructive insulitis and provides evidence for CB1 as a potential pharmacologic target in T1D.


Assuntos
Canabinoides , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Hiperglicemia , Ilhotas Pancreáticas , Camundongos , Feminino , Animais , Camundongos Endogâmicos NOD , Diabetes Mellitus Tipo 1/metabolismo , Ilhotas Pancreáticas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Canabinoides/metabolismo , Hiperglicemia/genética , Hiperglicemia/metabolismo
14.
Mol Metab ; 79: 101848, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042369

RESUMO

OBJECTIVE: All forms of diabetes result from insufficient functional ß-cell mass. Thus, achieving the therapeutic goal of expanding ß-cell mass requires a better mechanistic understanding of how ß-cells proliferate. Glucose is a natural ß-cell mitogen that mediates its effects in part through the glucose-responsive transcription factor, carbohydrate response element binding protein (ChREBP) and the anabolic transcription factor, MYC. However, mechanistic details by which glucose activates Myc at the transcriptional level are poorly understood. METHODS: Here, siRNA was used to test the role of ChREBP in the glucose response of MYC, ChIP and ChIPseq to identify potential regulatory binding sites, chromatin conformation capture to identify DNA/DNA interactions, and an adenovirus was constructed to expresses x-dCas9 and an sgRNA that specifically disrupts the recruitment of ChREBP to a specific targeted ChoRE. RESULTS: We found that ChREBP is essential for glucose-mediated transcriptional induction of Myc, and for increases in Myc mRNA and protein abundance. Further, ChIPseq revealed that the carbohydrate response element (ChoRE) nearest to the Myc transcriptional start site (TSS) is immediately upstream of the gene encoding the lncRNA, Pvt1, 60,000 bp downstream of the Myc gene. Chromatin Conformation Capture (3C) confirmed a glucose-dependent interaction between these two sites. Transduction with an adenovirus expressing x-dCas9 and an sgRNA specifically targeting the highly conserved Pvt1 ChoRE, attenuates ChREBP recruitment, decreases Myc-Pvt1 DNA/DNA interaction, and decreases expression of the Pvt1 and Myc genes in response to glucose. Importantly, isolated and dispersed rat islet cells transduced with the ChoRE-disrupting adenovirus also display specific decreases in ChREBP-dependent, glucose-mediated expression of Pvt1 and Myc, as well as decreased glucose-stimulated ß-cell proliferation. CONCLUSIONS: The mitogenic glucose response of Myc is mediated via glucose-dependent recruitment of ChREBP to the promoter of the Pvt1 gene and subsequent DNA looping with the Myc promoter.


Assuntos
Genes myc , Glucose , Animais , Ratos , Cromatina/genética , DNA , Glucose/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética , Proteínas Proto-Oncogênicas c-myc
15.
SLAS Discov ; 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37527729

RESUMO

Diabetes poses a global health crisis affecting individuals across age groups and backgrounds, with a prevalence estimate of 700 million people worldwide by 2045. Current therapeutic strategies primarily rely on insulin therapy or hypoglycemic agents, which fail to address the root cause of the disease - the loss of pancreatic insulin-producing beta-cells. Therefore, bioassays that recapitulate intact islets are needed to enable drug discovery for beta-cell replenishment, protection from beta-cell loss, and islet-cell interactions. Standard cancer insulinoma beta-cell lines MIN6 and INS-1 have been used to interrogate beta-cell metabolic pathways and function but are not suitable for studying proliferative effects. Screening using primary human/rodent intact islets offers a higher level of physiological relevance to enhance diabetes drug discovery and development. However, the 3-dimensionality of intact islets have presented challenges in developing robust, high-throughput assays to detect beta-cell proliferative effects. Established methods rely on either dissociated islet cells plated in 2D monolayer cultures for imaging or reconstituted pseudo-islets formed in round bottom plates to achieve homogeneity. These approaches have significant limitations due to the islet cell dispersion process. To address these limitations, we have developed a robust, intact ex vivo pancreatic islet bioassay in 384-well format that is capable of detecting diabetes-relevant endpoints including beta-cell proliferation, chemoprotection, and islet spatial morphometrics.

16.
Mol Metab ; 60: 101477, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35331962

RESUMO

BACKGROUND: Stem cell therapies are finally coming of age as a viable alternative to pancreatic islet transplantation for the treatment of insulin-dependent diabetes. Several clinical trials using human embryonic stem cell (hESC)-derived ß-like cells are currently underway, with encouraging preliminary results. Remaining challenges notwithstanding, these strategies are widely expected to reduce our reliance on human isolated islets for transplantation procedures, making cell therapies available to millions of diabetic patients. At the same time, advances in our understanding of pancreatic cell plasticity and the molecular mechanisms behind ß-cell replication and regeneration have spawned a multitude of translational efforts aimed at inducing ß-cell replenishment in situ through pharmacological means, thus circumventing the need for transplantation. SCOPE OF REVIEW: We discuss here the current state of the art in hESC transplantation, as well as the parallel quest to discover agents capable of either preserving the residual mass of ß-cells or inducing their proliferation, transdifferentiation or differentiation from progenitor cells. MAJOR CONCLUSIONS: Stem cell-based replacement therapies in the mold of islet transplantation are already around the corner, but a permanent cure for type 1 diabetes will likely require the endogenous regeneration of ß-cells aided by interventions to restore the immune balance. The promise of current research avenues and a strong pipeline of clinical trials designed to tackle these challenges bode well for the realization of this goal.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Transplante das Ilhotas Pancreáticas , Diferenciação Celular , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/terapia , Humanos , Células Secretoras de Insulina/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Pâncreas
17.
J Mol Endocrinol ; 66(4): 325-338, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33875613

RESUMO

Strategies to increase functional pancreatic beta cell mass is of great interest in diabetes-related research. TNF-related apoptosis-inducing ligand (TRAIL) is well known to promote proliferation and survival in various cell types, including vascular smooth muscle and endothelial cells. Correlation between the protective nature of TRAIL on these cells and its proliferative effect is noteworthy. TRAIL's seemingly protective/therapeutic effect in diabetes prompted us to question whether it may act as an inducer of proliferation in pancreatic beta cells. We used rat primary islet cells and MIN6 mouse beta cell line to investigate TRAIL-induced proliferation. Cell viability and/or death was analyzed by MTT, WST-1, and Annexin-V/PI assays, while proliferation rates and pathways were assessed via immunocytochemical and Western blot analyses. Receptor neutralization antibodies identified the mediator receptors. Recombinant soluble TRAIL (sTRAIL) treatment led to 1.6-fold increased proliferation in insulin-positive cells in dispersed rat islets compared to the untreated group, while adenovirus-mediated overexpression of TRAIL increased the number of proliferating beta cells up to more than six-fold. sTRAIL or adenoviral vector-mediated TRAIL overexpression induced proliferation in MIN6 cells also. TRAIL's proliferative effect was mediated via AKT activation, which was suppressed upon specific inhibition. Neutralization of each TRAIL receptor reversed the proliferative effect to some degree, with the highest level of inhibition in death receptor 5 (DR5) blockage in MIN6 cells and in decoy receptor 1 (DcR1) blockage in primary rat beta cells. Thus, TRAIL induces proliferation in rodent pancreatic beta cells through activation of the AKT pathway.


Assuntos
Diabetes Mellitus/genética , Células Secretoras de Insulina/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Membro 10c de Receptores do Fator de Necrose Tumoral/genética , Ligante Indutor de Apoptose Relacionado a TNF/genética , Animais , Apoptose/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Diabetes Mellitus/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Regulação da Expressão Gênica/genética , Humanos , Células Secretoras de Insulina/patologia , Camundongos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Ratos
18.
Mol Metab ; 54: 101347, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34626853

RESUMO

OBJECTIVE: Type 2 diabetes is characterized by hyperglycemia and inflammation. Prostaglandin E2, which signals through four G protein-coupled receptors (EP1-4), is a mediator of inflammation and is upregulated in diabetes. We have shown previously that EP3 receptor blockade promotes ß-cell proliferation and survival in isolated mouse and human islets ex vivo. Here, we analyzed whether systemic EP3 blockade could enhance ß-cell mass and identity in the setting of type 2 diabetes using mice with a spontaneous mutation in the leptin receptor (Leprdb). METHODS: Four- or six-week-old, db/+, and db/db male mice were treated with an EP3 antagonist daily for two weeks. Pancreata were analyzed for α-cell and ß-cell proliferation and ß-cell mass. Islets were isolated for transcriptomic analysis. Selected gene expression changes were validated by immunolabeling of the pancreatic tissue sections. RESULTS: EP3 blockade increased ß-cell mass in db/db mice through enhanced ß-cell proliferation. Importantly, there were no effects on α-cell proliferation. EP3 blockade reversed the changes in islet gene expression associated with the db/db phenotype and restored the islet architecture. Expression of the GLP-1 receptor was slightly increased by EP3 antagonist treatment in db/db mice. In addition, the transcription factor nuclear factor E2-related factor 2 (Nrf2) and downstream targets were increased in islets from db/db mice in response to treatment with an EP3 antagonist. The markers of oxidative stress were decreased. CONCLUSIONS: The current study suggests that EP3 blockade promotes ß-cell mass expansion in db/db mice. The beneficial effects of EP3 blockade may be mediated through Nrf2, which has recently emerged as a key mediator in the protection against cellular oxidative damage.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Células Secretoras de Insulina/efeitos dos fármacos , Receptores de Prostaglandina E Subtipo EP3/antagonistas & inibidores , Animais , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Estresse Oxidativo/efeitos dos fármacos , Receptores de Prostaglandina E Subtipo EP3/metabolismo
19.
Endocrinology ; 162(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33914056

RESUMO

Beta cell dysfunction is central to the development of type 2 diabetes (T2D). In T2D, environmental and genetic influences can manifest beta cell dysfunction in many ways, including impaired glucose-sensing and secretion coupling mechanisms, insufficient adaptative responses to stress, and aberrant beta cell loss through increased cell death and/or beta cell de-differentiation. In recent years, circadian disruption has emerged as an important environmental risk factor for T2D. In support of this, genetic disruption of the circadian timing system in rodents impairs insulin secretion and triggers diabetes development, lending important evidence that the circadian timing system is intimately connected to, and essential for the regulation of pancreatic beta cell function; however, the role of the circadian timing system in the regulation of beta cell biology is only beginning to be unraveled. Here, we review the recent literature that explores the importance of the pancreatic islet/beta cell circadian clock in the regulation of various aspects of beta cell biology, including transcriptional and functional control of daily cycles of insulin secretion capacity, regulation of postnatal beta cell maturation, and control of the adaptive responses of the beta cell to metabolic stress and acute injury.


Assuntos
Ritmo Circadiano/fisiologia , Células Secretoras de Insulina/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Relógios Circadianos/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Humanos , Insulina/metabolismo , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/fisiologia
20.
ChemMedChem ; 15(16): 1562-1570, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32613743

RESUMO

Loss of ß-cell mass and function can lead to insufficient insulin levels and ultimately to hyperglycemia and diabetes mellitus. The mainstream treatment approach involves regulation of insulin levels; however, approaches intended to increase ß-cell mass are less developed. Promoting ß-cell proliferation with low-molecular-weight inhibitors of dual-specificity tyrosine-regulated kinase 1A (DYRK1A) offers the potential to treat diabetes with oral therapies by restoring ß-cell mass, insulin content and glycemic control. GNF4877, a potent dual inhibitor of DYRK1A and glycogen synthase kinase 3ß (GSK3ß) was previously reported to induce primary human ß-cell proliferation in vitro and in vivo. Herein, we describe the lead optimization that lead to the identification of GNF4877 from an aminopyrazine hit identified in a phenotypic high-throughput screening campaign measuring ß-cell proliferation.


Assuntos
Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Células Secretoras de Insulina/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Camundongos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Ratos , Relação Estrutura-Atividade , Quinases Dyrk
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA