Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36012717

RESUMO

The sesquiterpenoid hormone methyl farnesoate (MF) plays a vital role during crustacean development, which is mainly evidenced by its varied titers during different developmental stages. However, the biosynthesis pathways of MF remain obscure to some extent. In this study, we identified the complete MF biosynthesis and related pathway genes in Scylla paramamosain, including three involved in acetyl-CoA metabolism, eight in the mevalonate pathway, five in the sesquiterpenoids synthesis pathway, and five in the methionine cycle pathway. Bioinformatics, genomic structure, and phylogenetic analysis indicated that the JH biosynthesis genes might have experienced evolution after species differentiation. The mRNA tissue distribution analysis revealed that almost all genes involving in or relating to MF syntheses were highly expressed in the mandibular organ (MO), among which juvenile hormone acid methyltransferase was exclusively expressed in the MO, suggesting that most of these genes might mainly function in MF biosynthesis and that the methionine cycle pathway genes might play a crucial regulatory role during MF synthesis. In addition, the phylogenetic and tissue distribution analysis of the cytochrome P450 CYP15-like gene suggested that the epoxidized JHs might exist in crustaceans, but are mainly synthesized in hepatopancreas rather than the MO. Finally, we also found that betaine-homocysteine S-methyltransferase genes were lost in insects while methionine synthase was probably lost in most insects except Folsomia candida, indicating a regulatory discrepancy in the methionine cycle between crustaceans and insects. This study might increase our understanding of synthetic metabolism tailored for sesquiterpenoid hormones in S. paramamosain and other closely related species.


Assuntos
Braquiúros , Ácidos Graxos Insaturados , Animais , Braquiúros/genética , Braquiúros/metabolismo , Ácidos Graxos Insaturados/biossíntese , Metionina/metabolismo , Filogenia
2.
J Nutr ; 149(8): 1369-1376, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31111947

RESUMO

BACKGROUND: Hyperhomocysteinemia is associated with increased cardiovascular disease risk. Whole eggs contain several nutrients known to affect homocysteine regulation, including sulfur amino acids, choline, and B vitamins. OBJECTIVE: The aim of this study was to determine the effect of whole eggs and egg components (i.e., egg protein and choline) with respect to 1) homocysteine balance and 2) the hepatic expression and activity of betaine-homocysteine S-methyltransferase (BHMT) and cystathionine ß-synthase (CBS) in a folate-restricted (FR) rat model of hyperhomocysteinemia. METHODS: Male Sprague Dawley rats (n = 48; 6 wk of age) were randomly assigned to a casein-based diet (C; n = 12), a casein-based diet supplemented with choline (C + Cho; 1.3%, wt:wt; n = 12), an egg protein-based diet (EP; n = 12), or a whole egg-based diet (WE; n = 12). At week 2, half of the rats in each of the 4 dietary groups were provided an FR (0 g folic acid/kg) diet and half continued on the folate-sufficient (FS; 0.2 g folic acid/kg) diet for an additional 6 wk. All diets contained 20% (wt:wt) total protein. Serum homocysteine was measured by HPLC and BHMT and CBS expression and activity were evaluated using real-time quantitative polymerase chain reaction, Western blot, and enzyme activity. A 2-factor ANOVA was used for statistical comparisons. RESULTS: Rats fed FR-C exhibited a 53% increase in circulating homocysteine concentrations compared with rats fed FS-C (P < 0.001). In contrast, serum homocysteine did not differ between rats fed FS-C and FR-EP (P = 0.078). Hepatic BHMT activity was increased by 45% and 40% by the EP (P < 0.001) and WE (P = 0.002) diets compared with the C diets, respectively. CONCLUSIONS: Dietary intervention with egg protein prevented elevated circulating homocysteine concentrations in a rat model of hyperhomocysteinemia, due in part to upregulation of hepatic BHMT. These data may support the inclusion of egg protein for dietary recommendations targeting hyperhomocysteinemia prevention.


Assuntos
Betaína-Homocisteína S-Metiltransferase/metabolismo , Proteínas Dietéticas do Ovo/administração & dosagem , Deficiência de Ácido Fólico/metabolismo , Hiper-Homocisteinemia/prevenção & controle , Fígado/enzimologia , Regulação para Cima , Animais , Betaína-Homocisteína S-Metiltransferase/genética , Peso Corporal , Cisteína/sangue , Proteínas Dietéticas do Ovo/metabolismo , Masculino , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley
3.
Biosci Biotechnol Biochem ; 82(4): 669-676, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29207911

RESUMO

We examined whether soybean (SB) and soy protein isolate (SPI) can prevent the betaine-induced elevation of plasma cholesterol as well as maintain the betaine-induced reduction of plasma Hcy concentration. Rats were fed casein-, SB-, or SPI-based diet with or without betaine; SPI-based diet with betaine containing soybean fiber (SF) or soy lecithin (SL) or the combination of SF and SL. Plasma Hcy concentration was decreased by feeding betaine to rats fed the casein-, SB-, and SPI-based diets. Betaine-induced elevation of plasma cholesterol was decreased by feeding the SB-based diet compared with the casein-based diet, but was not decreased by feeding the SPI-based diet. In rats fed the SPI-based diet, the increased concentration of plasma cholesterol by betaine feeding was not prevented by independent addition of SL or SF, but was prevented by a combination of SL and SF, and was associated with increased fecal excretion of bile acids.


Assuntos
Glycine max , Homocisteína/sangue , Hipercolesterolemia/prevenção & controle , Ração Animal , Animais , Betaína/administração & dosagem , Ácidos e Sais Biliares/metabolismo , Peso Corporal , Caseínas/administração & dosagem , Colesterol/sangue , Fezes , Expressão Gênica , Hipercolesterolemia/dietoterapia , Lecitinas/administração & dosagem , Fígado/metabolismo , Masculino , Tamanho do Órgão , Ratos Wistar , Proteínas de Soja/administração & dosagem , Triglicerídeos/sangue
4.
Biochim Biophys Acta ; 1860(7): 1373-87, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27036080

RESUMO

BACKGROUND: To better understand the complex mechanisms of bone formation it is fundamental that genes central to signaling/regulatory pathways and matrix formation are identified. Cell systems were used to analyze genes differentially expressed during extracellular matrix mineralization and bhmt3, coding for a betaine-homocysteine S-methyltransferase, was shown to be down-regulated in mineralizing gilthead seabream cells. METHODS: Levels and sites of bhmt3 expression were determined by qPCR and in situ hybridization throughout seabream development and in adult tissues. Transcriptional regulation of bhmt3 was assessed from the activity of promoter constructs controlling luciferase gene expression. Molecular phylogeny of vertebrate BHMT was determined from maximum likelihood analysis of available sequences. RESULTS: bhmt3 transcript is abundant in calcified tissues and localized in cartilaginous structures undergoing endo/perichondral ossification. Promoter activity is regulated by transcription factors involved in bone and cartilage development, further demonstrating the central role of Bhmt3 in chondrogenesis and/or osteogenesis. Molecular phylogeny revealed the explosive diversity of bhmt genes in neoteleost fish, while tissue distribution of bhmt genes in seabream suggested that neoteleostean Bhmt may have undergone several steps of sub-functionalization. CONCLUSIONS: Data on bhmt3 gene expression and promoter activity evidences a novel function for betaine-homocysteine S-methyltransferase in bone and cartilage development, while phylogenetic analysis provides new insights into the evolution of vertebrate BHMTs and suggests that multiple gene duplication events occurred in neoteleost fish lineage. GENERAL SIGNIFICANCE: High and specific expression of Bhmt3 in gilthead seabream calcified tissues suggests that bone-specific betaine-homocysteine S-methyltransferases could represent a suitable marker of chondral ossification.


Assuntos
Betaína-Homocisteína S-Metiltransferase/metabolismo , Cartilagem/enzimologia , Condrogênese , Proteínas de Peixes/metabolismo , Osteogênese , Dourada/metabolismo , Animais , Betaína-Homocisteína S-Metiltransferase/genética , Linhagem Celular , Clonagem Molecular , Evolução Molecular , Proteínas de Peixes/genética , Regulação Enzimológica da Expressão Gênica , Filogenia , Regiões Promotoras Genéticas , Dourada/genética , Transcrição Gênica , Transfecção
5.
Heliyon ; 9(2): e13216, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36755585

RESUMO

Betaine-homocysteine methyltransferase (BHMT) catalyzes the transfer of methyl groups from betaine to homocysteine (Hcy), producing methionine and dimethylglycine. In this work, we characterize Bhmt wild type (Bhmt-WT) and knockout (Bhmt-KO) mice that were fully backcrossed to a C57Bl6/J background. Consistent with our previous findings, Bhmt-KO mice had decreased body weight, fat mass, and adipose tissue weight compared to WT. Histological analyses and gene expression profiling indicate that adipose browning was activated in KO mice and contributed to the adipose atrophy observed. BHMT is not expressed in adipose tissue but is abundant in liver; thus, a signal must originate from the liver that modulates adipose tissue. We found that, in Bhmt-KO mice, homocysteine-induced endoplasmic reticulum (ER) stress is associated with activation of the hepatic transcription factor cyclic AMP response element binding protein (CREBH), and an increase in hepatic and plasma concentrations of fibroblast growth factor 21 (FGF21), which is known to induce adipose browning. Our data indicate that the deletion of a single gene in one-carbon metabolism modifies adipose biology and energy metabolism. Future studies could focus on identifying if functional polymorphisms in BHMT result in a similar adipose atrophy phenotype.

6.
Nutrients ; 15(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37111122

RESUMO

Hsp70.1 has a dual function as a chaperone protein and lysosomal stabilizer. In 2009, we reported that calpain-mediated cleavage of carbonylated Hsp70.1 causes neuronal death by inducing lysosomal rupture in the hippocampal CA1 neurons of monkeys after transient brain ischemia. Recently, we also reported that consecutive injections of the vegetable oil-peroxidation product 'hydroxynonenal' induce hepatocyte death via a similar cascade in monkeys. As Hsp70.1 is also related to fatty acid ß-oxidation in the liver, its deficiency causes fat accumulation. The genetic deletion of betaine-homocysteine S-methyltransferase (BHMT) was reported to perturb choline metabolism, inducing a decrease in phosphatidylcholine and resulting in hepatic steatosis. Here, focusing on Hsp70.1 and BHMT disorders, we studied the mechanisms of hepatocyte degeneration and steatosis. Monkey liver tissues with and without hydroxynonenal injections were compared using proteomics, immunoblotting, immunohistochemical, and electron microscopy-based analyses. Western blotting showed that neither Hsp70.1 nor BHMT were upregulated, but an increased cleavage was observed in both. Proteomics showed a marked downregulation of Hsp70.1, albeit a two-fold increase in the carbonylated BHMT. Hsp70.1 carbonylation was negligible, in contrast to the ischemic hippocampus, which was associated with ~10-fold increments. Although histologically, the control liver showed very little lipid deposition, numerous tiny lipid droplets were seen within and around the degenerating/dying hepatocytes in monkeys after the hydroxynonenal injections. Electron microscopy showed permeabilization/rupture of lysosomal membranes, dissolution of the mitochondria and rough ER membranes, and proliferation of abnormal peroxisomes. It is probable that the disruption of the rough ER caused impaired synthesis of the Hsp70.1 and BHMT proteins, while impairment of the mitochondria and peroxisomes contributed to the sustained generation of reactive oxygen species. In addition, hydroxynonenal-induced disorders facilitated degeneration and steatosis in the hepatocytes.


Assuntos
Betaína-Homocisteína S-Metiltransferase , Fígado Gorduroso , Animais , Betaína-Homocisteína S-Metiltransferase/metabolismo , Haplorrinos/metabolismo , Morte Celular , Hepatócitos/metabolismo , Isquemia , Fígado/metabolismo
7.
Insect Sci ; 29(4): 1047-1058, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34647692

RESUMO

Homocysteine (Hcy) is a sulfur-containing amino acid derived from the essential amino acid methionine (Met). Circulating levels of Hcy in animals can be increased by feeding on Met-enriched diets, which is generally considered harmful. Spiders are one of the largest groups of obligate carnivores and feed on animals high in protein and Met. We analyzed the Hcy metabolism pathways in 18 species of 3 taxa (Mammalia, Insecta, and Arachnida) and found that the betaine-dependent remethylation pathway (BRP) was present in all carnivorous arachnid species and mammals but absent in insects and red spider mites. We then studied the Hcy metabolism pathway in Pardosa pseudoannulata. In P. pseudoannulata, Hcy is metabolized through the transsulfuration pathway, BRP, and S-methylmethionine-dependent remethylation pathway. Because of a prior duplication event of the betaine homocysteine S-methyltransferase (BHMT) gene in the BRP, BHMTa and BHMTb are present in tandem in the genome of P. pseudoannulata. The high expression levels of BHMTa and its high abundance in detoxification tissues indicate that it plays an important role in the BRP; the ability of BHMTa and BHMTb to remethylate Hcy using betaine as substrate was similar. Compared with other Hcy metabolic enzyme genes, BHMT responded quickly to the application of Hcy or betaine. In sum, the BRP is important in Hcy metabolism in P. pseudoannulata and in other spider species.


Assuntos
Betaína , Dieta , Animais , Betaína/metabolismo , Hábitos , Homocisteína , Mamíferos/metabolismo
8.
Mol Genet Metab Rep ; 23: 100580, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32257815

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is associated with dietary folate deficiency and mutations in genes required for one­carbon metabolism. However, the mechanism through which this occurs is unclear. To improve our understanding of this link, we investigated liver morphology, metabolism and fuel storage in adult mice with a hypomorphic mutation in the gene methionine synthase reductase (Mtrr gt ). MTRR enzyme is a key regulator of the methionine and folate cycles. The Mtrr gt mutation in mice was previously shown to disrupt one­carbon metabolism and cause a wide-spectrum of developmental phenotypes and late adult-onset macrocytic anaemia. Here, we showed that livers of Mtrr gt/gt female mice were enlarged compared to control C57Bl/6J livers. Histological analysis of these livers revealed eosinophilic hepatocytes with decreased glycogen content, which was associated with down-regulation of genes involved in glycogen synthesis (e.g., Ugp2 and Gsk3a genes). While female Mtrr gt/gt livers showed evidence of reduced ß-oxidation of fatty acids, there were no other associated changes in the lipidome in female or male Mtrr gt/gt livers compared with controls. Defects in glycogen storage and lipid metabolism often associate with disruption of mitochondrial electron transfer system activity. However, defects in mitochondrial function were not detected in Mtrr gt/gt livers as determined by high-resolution respirometry analysis. Overall, we demonstrated that adult Mtrr gt/gt female mice showed abnormal liver morphology that differed from the NAFLD phenotype and that was accompanied by subtle changes in their hepatic metabolism and fuel storage.

9.
Biol Trace Elem Res ; 184(2): 436-441, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29204947

RESUMO

Zinc plays a role in alleviating oxidative stress. However, the related mechanisms remain to be further elucidated. The present study was conducted to investigate whether the recovery of oxidative stress in high-fat-diet (HFD)-pretreated mice was affected by zinc. Male mice received either an HFD or a low-fat-diet (LFD) for 8 weeks. Then, the mice fed with HFD and LFD were both assigned to either a control diet (30 mg zinc, ZD) or a no-added zinc diet (NZD) for an additional 4 weeks. The results showed that after feeding with NZD for 4 weeks, the HFD-pretreated mice had the highest plasma glucose and insulin concentrations, while had the lowest CuZn-SOD and glutathione concentrations. Moreover, after feeding with NZD for 4 weeks, the HFD-pretreated mice had the highest hepatic ROS and homocysteine concentrations, while had the lowest glutathione and methionine concentrations. Furthermore, the HFD-pretreated mice fed with NZD for 4 weeks had the lowest gene and protein expression of betaine homocysteine-S-methyltransferase (BHMT), cystathionine ß-synthase, and Sp1. The results suggested that zinc was critical for oxidative stress alleviation and homocysteine clearance in HFD-pretreated mice. It was further elucidated that improved Sp1 and BHMT expression are involved in the effects of zinc on oxidative stress.


Assuntos
Betaína-Homocisteína S-Metiltransferase/genética , Dieta Hiperlipídica , Homocisteína/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fator de Transcrição Sp1/genética , Zinco/farmacologia , Animais , Betaína-Homocisteína S-Metiltransferase/metabolismo , Glicemia/metabolismo , Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Insulina/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição Sp1/metabolismo , Superóxido Dismutase-1 , Zinco/administração & dosagem
10.
Cell Mol Gastroenterol Hepatol ; 5(2): 101-112, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29693039

RESUMO

BACKGROUND & AIMS: Alcohol-induced progression of hepatitis C virus (HCV) infection is related to dysfunction of innate immunity in hepatocytes. Endogenously produced interferon (IFN)α induces activation of interferon-stimulated genes (ISGs) via triggering of the Janus kinase-signal transducer and activator of transcription 1 (STAT1) pathway. This activation requires protein methyltransferase 1-regulated arginine methylation of STAT1. Here, we aimed to study whether STAT1 methylation also depended on the levels of demethylase jumonji domain-containing 6 protein (JMJD6) and whether ethanol and HCV affect JMJD6 expression in hepatocytes. METHODS: Huh7.5-CYP (RLW) cells and hepatocytes were exposed to acetaldehyde-generating system (AGS) and 50 mmol/L ethanol, respectively. JMJD6 messenger RNA and protein expression were measured by real-time polymerase chain reaction and Western blot. IFNα-activated cells either overexpressing JMJD6 or with knocked-down JMJD6 expression were tested for STAT1 methylation, ISG activation, and HCV RNA. In vivo studies have been performed on C57Bl/6 mice (expressing HCV structural proteins or not) or chimeric mice with humanized livers fed control or ethanol diets. RESULTS: AGS exposure to cells up-regulated JMJD6 expression in RLW cells. These results were corroborated by ethanol treatment of primary hepatocytes. The promethylating agent betaine reversed the effects of AGS/ethanol. Similar results were obtained in vivo, when mice were fed control/ethanol with and without betaine supplementation. Overexpression of JMJD6 suppressed STAT1 methylation, IFNα-induced ISG activation, and increased HCV-RNA levels. In contrast, JMJD6 silencing enhanced STAT1 methylation, ISG stimulation by IFNα, and attenuated HCV-RNA expression in Huh7.5 cells. CONCLUSIONS: We conclude that arginine methylation of STAT1 is suppressed by JMJD6. Both HCV and acetaldehyde increase JMJD6 levels, thereby impairing STAT1 methylation and innate immunity protection in hepatocytes exposed to the virus and/or alcohol.

11.
Toxicol Sci ; 158(2): 356-366, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28898977

RESUMO

There is increasing concern that early-life exposure to endocrine disruptors affects male offspring reproduction. However, whether di-n-butyl phthalate (DBP), a widely used endocrine disruptor, has transgenerational effects and, if so, the exact underlying molecular mechanisms involved remain unknown. In our study, 5 of time-mated pregnant SD rats were exposed to 0 and 500 mg/kg DBP with corn oil as the vehicle via oral gavage from embryonic days (E8-E14). Epigenetic and metabolomic of testis were analyzed after post-natal 60 days. Sperm and testicular cell functions were examined to confirm the transgenerational effects. DBP exposure significantly decreased the sperm counts in F1 through F3 generation. We found distinct metabolic changes in the testis of both F1 and F3 generation offspring, specifically, a significantly increased level of betaine, which is an important methyl donor. In contrast, the expression of betaine homocysteine S-methyltransferase (BHMT), which catalyzes the transfer of methyl moiety from betaine to homocysteine, significantly decreased. There was accompanying global DNA hypomethylation, along with a reduction in follistatin-like 3 (Fstl3) promoter hypomethylation, which is a known modulator of Sertoli cell number and spermatogenesis. In summary, we conclude that metabolomic and epigenetic changes induced by the aberrant expression of BHMT represent a novel mechanism linking in utero DBP exposure to transgenerational spermatogenesis failure.


Assuntos
Betaína/farmacologia , Epigênese Genética , Exposição Materna , Metabolômica , Espermatogênese/efeitos dos fármacos , Animais , Feminino , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley
12.
Appl Physiol Nutr Metab ; 42(11): 1228-1231, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28715642

RESUMO

Using a mouse model, this study examined the impact of lack of betaine homocysteine S-methyltransferase (BHMT) on neurological function. Bhmt-/- mice maintained on a control diet had elevated concentrations of homocysteine, reduced total brain magnetic resonance imaging (MRI) volume, as well as impaired reference and short-term memories. The results of this study indicate that the absence of BHMT may play a role in neurological function.


Assuntos
Betaína-Homocisteína S-Metiltransferase/genética , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Memória , Animais , Encéfalo/diagnóstico por imagem , Deleção de Genes , Homocisteína/sangue , Imageamento por Ressonância Magnética , Masculino , Transtornos da Memória , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho do Órgão
13.
Data Brief ; 8: 1344-7, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27579339

RESUMO

Male Wistar rats with different thyroid status (eu-, hypothyroid) were exposed to 0, 3 or 30 mg/kg body weight of the flame retardant HBCD for 7 days and obtained data compared with a previous study in females, "Hexabromocyclododecane (HBCD) induced changes in the liver proteome of eu- and hypothyroid female rats" (Miller et al., 2016) [1]. Specifically, proteomic investigation of liver protein patterns obtained by 2D-DIGE was performed and differences between animals groups recorded, based on the factors exposure, thyroid status and gender. All proteins with significantly changed abundance in any of these comparisons were identified by mass spectrometry. General, hormone and proteomic data of both the present and the previous studies are discussed in Miller et al. (2016) [1] and in "Gender specific differences in the liver proteome of rats exposed to hexabromocyclododecane (HBCD)" Miller et al. (2016) [2].

14.
Genetics ; 201(4): 1397-410, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26482792

RESUMO

MicroRNAs (miRNAs) have emerged as key regulators in many pathological processes by suppressing the transcriptional and post-transcriptional expression of target genes. MiR-2008 was previously found to be significantly up-regulated in diseased sea cucumber Apostichopus japonicus by high-through sequencing, whereas the reads of miR-137, a well-documented tumor repressor, displayed no significant change. In the present study, we found that miR-137 expression was slightly attenuated and miR-2008 was significantly enhanced after Vibrio splendidus infection or Lipopolysaccharides application. Further target screening and dual-luciferase reporter assay revealed that the two important miRNAs shared a common target gene of betaine-homocysteine S-methyltransferase (AjBHMT), which exhibited noncorrelated messenger RNA and protein expression patterns after bacterial challenge. In order to fully understand their regulatory mechanisms, we conducted the functional experiments in vitro and in vivo. The overexpression of miR-137 in sea cucumber or primary coelomocytes significantly decreased, whereas the inhibition of miR-137 increased the mRNA and protein expression levels of AjBHMT. In contrast, miR-2008 overexpression and inhibition showed no effect on AjBHMT mRNA levels, but the concentration of AjBHMT protein displayed significant changes both in vitro and in vivo. Consistently, the homocysteine (Hcy) contents were also accordingly altered in the aberrant expression analysis of both miRNAs, consistent with the results of the AjBHMT silencing assay in vitro and in vivo. More importantly, small interfering RNA mediated AjBHMT knockdown and Hcy exposure analyses both significantly increased reactive oxygen species (ROS) production and decreased the number of surviving invasive pathogen in sea cucumber coelomocytes. Taken together, these findings confirmed the differential roles of sea cucumber miR-137 and miR-2008 in regulating the common target AjBHMT to promote ROS production and the clearance of pathogenic microorganisms through Hcy accumulation.


Assuntos
MicroRNAs/fisiologia , Pepinos-do-Mar/imunologia , Animais , Betaína-Homocisteína S-Metiltransferase/genética , Clonagem Molecular , Regulação Enzimológica da Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Biossíntese de Proteínas , Pepinos-do-Mar/enzimologia , Pepinos-do-Mar/genética , Pepinos-do-Mar/microbiologia , Transcrição Gênica , Vibrio/imunologia
15.
Autophagy ; 11(5): 812-32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25984893

RESUMO

By monitoring the fragmentation of a GST-BHMT (a protein fusion of glutathionine S-transferase N-terminal to betaine-homocysteine S-methyltransferase) reporter in lysosomes, the GST-BHMT assay has previously been established as an endpoint, cargo-based assay for starvation-induced autophagy that is largely nonselective. Here, we demonstrate that under nutrient-rich conditions, proteasome inhibition by either pharmaceutical or genetic manipulations induces similar autophagy-dependent GST-BHMT processing. However, mechanistically this proteasome inhibition-induced autophagy is different from that induced by starvation as it does not rely on regulation by MTOR (mechanistic target of rapamycin [serine/threonine kinase]) and PRKAA/AMPK (protein kinase, AMP-activated, α catalytic subunit), the upstream central sensors of cellular nutrition and energy status, but requires the presence of the cargo receptors SQSTM1/p62 (sequestosome 1) and NBR1 (neighbor of BRCA1 gene 1) that are normally involved in the selective autophagy pathway. Further, it depends on ER (endoplasmic reticulum) stress signaling, in particular ERN1/IRE1 (endoplasmic reticulum to nucleus signaling 1) and its main downstream effector MAPK8/JNK1 (mitogen-activated protein kinase 8), but not XBP1 (X-box binding protein 1), by regulating the phosphorylation-dependent disassociation of BCL2 (B-cell CLL/lymphoma 2) from BECN1 (Beclin 1, autophagy related). Moreover, the multimerization domain of GST-BHMT is required for its processing in response to proteasome inhibition, in contrast to its dispensable role in starvation-induced processing. Together, these findings support a model in which under nutrient-rich conditions, proteasome inactivation induces autophagy-dependent processing of the GST-BHMT reporter through a distinct mechanism that bears notable similarity with the yeast Cvt (cytoplasm-to-vacuole targeting) pathway, and suggest the GST-BHMT reporter might be employed as a convenient assay to study selective macroautophagy in mammalian cells.


Assuntos
Autofagia/efeitos dos fármacos , Betaína-Homocisteína S-Metiltransferase/metabolismo , Glutationa Transferase/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/metabolismo , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Leupeptinas/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas/metabolismo , Proteína Sequestossoma-1 , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Ubiquitinação/efeitos dos fármacos
16.
Gene ; 533(1): 168-72, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24103477

RESUMO

Methionine synthase (MTR) and methylenetetrahydrofolate reductase (MTHFR) enzymes are involved in the metabolism of methyl groups, and thus have an important role in the maintenance of proper DNA methylation level. In our study we aimed to evaluate the effect of the polymorphism A2756G (rs1805087) in the MTR gene on the level of human leukocyte genomic DNA methylation. Since the well-studied polymorphism C677T (rs1801133) in the MTHFR gene has already been shown to affect DNA methylation, we aimed to analyze the effect of MTR A2756G independently of the MTHFR C677T polymorphism. For this purpose, we collected the groups of 80 subjects with the MTR 2756AA genotype and 80 subjects with the MTR 2756GG genotype, having equal numbers of individuals with the MTHFR 677CC and the MTHFR 677TT genotypes, and determined the level of DNA methylation in each group. Individuals homozygous for the mutant MTR 2756G allele showed higher DNA methylation level than those harboring the MTR 2756AA genotype (5.061 ± 1.761% vs. 4.501 ± 1.621%, P=0.0391). Individuals with wild-type MTHFR 677СC genotype displayed higher DNA methylation level than the subjects with mutant MTHFR 677TT genotype (5.103 ± 1.767% vs. 4.323 ± 1.525%, P=0.0034). Our data provide evidence that the MTR A2756G polymorphism increases the level of DNA methylation and confirm the previous reports that the MTHFR C677T polymorphism is associated with DNA hypomethylation.


Assuntos
5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , Metilação de DNA , Leucócitos/metabolismo , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Polimorfismo Genético , Sequência de Bases , Primers do DNA , Humanos
17.
Gene ; 529(2): 228-37, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-23948084

RESUMO

Betaine-homocysteine S-methyltransferase (BHMT) activity is only detected in the liver of rodents, but in both the liver and kidney cortex of humans and pigs; therefore, the pig was chosen as a model to define the spatial and temporal expression of BHMT during development. During fetal development, a total of ten splice variants of bhmt were expressed at varying levels across a wide range of porcine tissues. Two variants contained an identical ORF that encoded a C-terminal truncated form of BHMT (tBHMT). The bhmt transcripts were expressed at significant levels in the liver and kidney from day 45 of gestation (G45) onward. The transcripts encoding tBHMT represented 5-13% of the total bhmt transcripts in G30 fetus, G45 liver, and adult liver and kidney cortex. The dominant structural feature of wild type BHMT is an (ßα)8 barrel, however, a modeled structure of tBHMT suggests that this protein would assume a horseshoe fold and lack methyltransferase activity. Low BHMT activity was detected in the G30 fetus, and slightly increased levels of activity were observed in the liver from G45 and G90 fetuses. The bhmt promoter contained three key CpG sites, and methylation of these sites was significantly higher in adult lung compared to adult liver. The data reported herein suggest that genomic DNA methylation and variation of the 5' and 3' UTRs of bhmt transcripts are key regulators for the level of BHMT transcription and translation.


Assuntos
Betaína-Homocisteína S-Metiltransferase/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transcrição Gênica , Processamento Alternativo , Sequência de Aminoácidos , Animais , Betaína-Homocisteína S-Metiltransferase/química , Betaína-Homocisteína S-Metiltransferase/genética , Encéfalo/metabolismo , Ilhas de CpG , Metilação de DNA , Embrião de Mamíferos/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Rim/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Dados de Sequência Molecular , Especificidade de Órgãos , RNA Mensageiro/metabolismo , Suínos
18.
Eur J Med Chem ; 65: 256-75, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23727536

RESUMO

Betaine-homocysteine S-methyltransferase (BHMT) is an important zinc-dependent methyltransferase that uses betaine as the methyl donor for the remethylation of homocysteine to form methionine. In the liver, BHMT performs to half of the homocysteine remethylation. In this study, we systematically investigated the tolerance of the enzyme for modifications at the "homocysteine" part of the previously reported potent inhibitor (R,S)-5-(3-amino-3-carboxy-propylsulfanyl)-pentanoic acid (1). In the new compounds, which are S-alkylated homocysteine derivatives, we replaced the carboxylic group in the "homocysteine" part of inhibitor 1 with different isosteric moieties (tetrazole and oxadiazolone); we suppressed the carboxylic negative charge by amidations; we enhanced acidity by replacing the carboxylate with phosphonic or phosphinic acids; and we introduced pyrrolidine steric constraints. Some of these compounds display high affinity toward human BHMT and may be useful for further pharmacological studies of this enzyme. Although none of the new compounds were more potent inhibitors than the reference inhibitor 1, this study helped to completely define the structural requirements of the active site of BHMT and revealed the remarkable selectivity of the enzyme for homocysteine.


Assuntos
Betaína-Homocisteína S-Metiltransferase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Ácidos Pentanoicos/farmacologia , Sulfetos/farmacologia , Betaína-Homocisteína S-Metiltransferase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Ácidos Pentanoicos/síntese química , Ácidos Pentanoicos/química , Relação Estrutura-Atividade , Sulfetos/síntese química , Sulfetos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA