Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(48): e2308587120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37991945

RESUMO

Due to their long lifespan, trees and bushes develop higher order of branches in a perennial manner. In contrast to a tall tree, with a clearly defined main stem and branching order, a bush is shorter and has a less apparent main stem and branching pattern. To address the developmental basis of these two forms, we studied several naturally occurring architectural variants in silver birch (Betula pendula). Using a candidate gene approach, we identified a bushy kanttarelli variant with a loss-of-function mutation in the BpMAX1 gene required for strigolactone (SL) biosynthesis. While kanttarelli is shorter than the wild type (WT), it has the same number of primary branches, whereas the number of secondary branches is increased, contributing to its bush-like phenotype. To confirm that the identified mutation was responsible for the phenotype, we phenocopied kanttarelli in transgenic BpMAX1::RNAi birch lines. SL profiling confirmed that both kanttarelli and the transgenic lines produced very limited amounts of SL. Interestingly, the auxin (IAA) distribution along the main stem differed between WT and BpMAX1::RNAi. In the WT, the auxin concentration formed a gradient, being higher in the uppermost internodes and decreasing toward the basal part of the stem, whereas in the transgenic line, this gradient was not observed. Through modeling, we showed that the different IAA distribution patterns may result from the difference in the number of higher-order branches and plant height. Future studies will determine whether the IAA gradient itself regulates aspects of plant architecture.


Assuntos
Ácidos Indolacéticos , Reguladores de Crescimento de Plantas , Árvores , Lactonas , Regulação da Expressão Gênica de Plantas
2.
BMC Plant Biol ; 24(1): 17, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163907

RESUMO

Adventitious root formation is a key step in vegetative propagation via cuttings. It is crucial for establishing birch plantations and preserve birch varieties. Although previous studies have highlighted role of WOX11 in controlling adventitious root formation, no such study has been conducted in birch. Understanding the mechanism of adventitious root formation is essential for improvement of rooting or survival rate using stem cuttings in birch. In this study, we cloned BpWOX11 and produced BpWOX11 overexpression (OE) transgenic lines using the Agrobacterium-mediated plant transformation. OE lines exhibited early initiated adventitious root formation, leading to increase the rooting rate of stem cuttings plants. RNA sequencing analysis revealed that OE lines induced the gene expression related to expansin and cell division pathway, as well as defense and stress response genes. These may be important factors for the BpWOX11 gene to promote adventitious root formation in birch cuttings. The results of this study will help to further understand the molecular mechanisms controlling the formation of adventitious roots in birch.


Assuntos
Betula , Genes de Plantas , Raízes de Plantas , Raízes de Plantas/crescimento & desenvolvimento , Betula/genética , Betula/crescimento & desenvolvimento
3.
New Phytol ; 240(6): 2276-2287, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37897071

RESUMO

Climate warming advances the onset of tree growth in spring, but above- and belowground phenology are not always synchronized. These differences in growth responses may result from differences in root and bud dormancy dynamics, but root dormancy is largely unexplored. We measured dormancy in roots and leaf buds of Fagus sylvatica and Populus nigra by quantifying the warming sum required to initiate above- and belowground growth in October, January and February. We furthermore carried out seven experiments, manipulating only the soil and not air temperature before or during tree leaf-out to evaluate the potential of warmer roots to influence budburst timing using seedlings and adult trees of F. sylvatica and seedlings of Betula pendula. Root dormancy was virtually absent in comparison with the much deeper winter bud dormancy. Roots were able to start growing immediately as soils were warmed during the winter. Interestingly, higher soil temperature advanced budburst across all experiments, with soil temperature possibly accounting for c. 44% of the effect of air temperature in advancing aboveground spring phenology per growing degree hour. Therefore, differences in root and bud dormancy dynamics, together with their interaction, likely explain the nonsynchronized above- and belowground plant growth responses to climate warming.


Assuntos
Betula , Árvores , Estações do Ano , Temperatura , Solo , Folhas de Planta
4.
Photosynth Res ; 157(2-3): 133-146, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37382782

RESUMO

The JIP test, based on fast chlorophyll fluorescence (ChlF) kinetics and derived parameters, is a dependable tool for studying photosynthetic efficiency under varying environmental conditions. We extracted additional information from the whole OJIP and the normalized variable fluorescence (Vt) transient curve using first and second-order derivatives to visualize and localize points of landmark events. To account for light-induced variations in the fluorescence transient, we present a time-adjusted JIP test approach in which the derivatives of the transient curve are used to determine the exact timing of the J and I steps instead of fixed time points. We compared the traditional JIP test method with the time-adjusted method in analyzing fast ChlF measurements of silver birch (Betula pendula) in field conditions studying diurnal and within-crown variation. The time-adjusted JIP test method showed potential for studying ChlF dynamics, as it takes into account potential time shifts in the occurrence of J and I steps. The exact occurrence times of J and I steps and other landmark events coincided with the times of significant differences in fluorescence intensity. Chlorophyll fluorescence parameters were linearly related to photosynthetic photon flux density (PPFD) at different times of day, and the values obtained by the time-adjusted JIP test showed a stronger linear regression than the traditional JIP test. For fluorescence parameters having significant differences among different times of day and crown layers, the time-adjusted JIP test resulted in more clear differences than the traditional JIP test. Diurnal ChlF intensity data indicated that differences between the southern and northern provenance were only evident under low light conditions. Taken together, our results emphasize the potential relevance of considering the time domain in the analysis of the fast ChlF induction.


Assuntos
Betula , Árvores , Fluorescência , Clorofila , Fotossíntese , Folhas de Planta
5.
Int J Biometeorol ; 67(11): 1839-1852, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37658998

RESUMO

Pollen production is one plant characteristic that is considered to be altered by changes in environmental conditions. In this study, we investigated pollen production of the three anemophilous species Betula pendula, Plantago lanceolata, and Dactylis glomerata along an urbanization gradient in Ingolstadt, Germany. We compared pollen production with the potential influencing factors urbanization, air temperature, and the air pollutants nitrogen dioxide (NO2) and ozone (O3). While we measured air temperature in the field, we computed concentration levels of NO2 and O3 from a land use regression model. The results showed that average pollen production (in million pollen grains) was 1.2 ± 1.0 per catkin of Betula pendula, 5.0 ± 2.4 per inflorescence of Plantago lanceolata, and 0.7 ± 0.5 per spikelet of Dactylis glomerata. Pollen production was higher in rural compared to urban locations on average for B. pendula (+ 73%) and P. lanceolata (+ 31%), while the opposite was the case for D. glomerata (- 14%). We found that there was substantial heterogeneity across the three species with respect to the association of pollen production and environmental influences. Pollen production decreased for all species with increasing temperature and urbanization, while for increasing pollutant concentrations, decreases were observed for B. pendula, P. lanceolata, and increases for D. glomerata. Additionally, pollen production was found to be highly variable across species and within species-even at small spatial distances. Experiments should be conducted to further explore plant responses to altering environmental conditions.

6.
Molecules ; 28(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37446570

RESUMO

Inonotus obliquus, a wood-decaying mushroom, has been used as a health-promoting supplement and nutraceutical for centuries. It is a source of bioactive compounds accumulated in both the conks (pseudosclerotia/sclerotia) and the biomass obtained in vitro. This study aimed to qualitatively and quantitatively analyze the bioelements and selected metabolites produced in mycelial cultures obtained from different host species. The mycochemical potential of mycelial cultures isolated from pseudosclerotia grown in Betula pendula, Alnus glutinosa, and Carpinus betulus was compared. Parent cultures were obtained in two types of medium (malt extract agar substrates without and with birch wood). Experimental cultures were developed in 2 L bioreactors for 10 days. The content of bioelements was determined using FAAS and FAES methods. Organic compounds were estimated using the RP-HPLC-DAD method. The cytotoxicity of the extracts was evaluated in human keratinocytes HaCaT, human skin fibroblasts BJ, human liver cancer HepG2, human melanoma A375, and mouse melanoma B16-F10. The extracts showed the presence of bioelements: sodium, potassium, magnesium, calcium, zinc, manganese, iron, and copper; phenolic acids: p-hydroxybenzoic, caffeic, p-coumaric, and protocatechuic; sterols: lanosterol, ergosterol, ergosterol peroxide; triterpene compounds: betulin, betulinic acid, inotodiol; indole compounds: L-tryptophan, tryptamine, 5-methyltryptamine, melatonin. The content of bioactive substances in the biomass was dependent on both the origin of the host species of the fungus isolate and the type of culture medium. Based on the results of this study, mycelial cultures can be proposed as a potential source of bioactive compounds and are promising naturally derived cytotoxic agents.


Assuntos
Agaricales , Melanoma , Triterpenos , Animais , Camundongos , Humanos , Agaricales/química , Betula/metabolismo , Triterpenos/química
7.
Bull Exp Biol Med ; 174(3): 330-332, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36723740

RESUMO

In male Syrian hamsters fed a synthetic high-fat diet enriched with cholesterol (0.3%), administration of a polysaccharide from birch leaves L-rhamnopyranosyl-6-O-methyl-D-galacturonan (3 g/100 g of diet) resulted in a decrease in total cholesterol levels, mainly due to the LDL fraction, triglycerides, and bile acids in blood serum; the content of triglycerides and cholesterol in the liver also decreased, while excretion of bile acids with feces increased. Thus, the lipid-lowering effect of L-rhamnopyranosyl-6-O-methyl-D-galacturonan is related to its ability to bind bile acids in the intestine and interrupt their enterohepatic circulation.


Assuntos
Betula , Colesterol , Cricetinae , Masculino , Animais , Mesocricetus , Ácidos e Sais Biliares/metabolismo , Triglicerídeos , Pectinas , Fígado/metabolismo , Dieta Hiperlipídica , Fezes
8.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361755

RESUMO

Plant polyploidization changes its leaf morphology and leaf development patterns. Understanding changes in leaf morphology and development patterns is a prerequisite and key to studying leaf development in polyploid plants. In this study, we quantified and analyzed the differences in leaf morphology, leaf growth polarity, and leaf size between diploid and tetraploid birches (Betula pendula subsp. pendula), and preliminarily investigated genes involved in leaf growth and development in birch. The results showed significant changes in leaf morphology in tetraploid birches, especially the basal part of the leaf. In addition, the proximal growth rate of tetraploid leaves was altered. The changed proximal growth rate did not affect the growth polarity pattern of tetraploid leaves. The leaf area of tetraploid was significantly larger than that of diploid birch. The difference in leaf size was mainly due to differences in their growth rates in the middle and late stages of leaf development. Increased cell expansion capacity was the major reason for the enormous leaves of tetraploid birch; however, cell proliferation did not contribute to the larger tetraploid leaf. The gene expression of ATHB12 was associated with cell size and leaf area, and may be a critical gene affecting the leaf size in diploid and tetraploid birches. The results will provide valuable insights into plant polyploid leaf development and a theoretical basis for later investigations into the molecular mechanisms underlying the gigantism of tetraploid birch leaves.


Assuntos
Betula , Diploide , Betula/genética , Tetraploidia , Folhas de Planta , Expressão Gênica
9.
BMC Genomics ; 22(1): 314, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33932996

RESUMO

BACKGROUND: Class III peroxidases (POD) proteins are widely present in the plant kingdom that are involved in a broad range of physiological processes including stress responses and lignin polymerization throughout the plant life cycle. At present, POD genes have been studied in Arabidopsis, rice, poplar, maize and Chinese pear, but there are no reports on the identification and function of POD gene family in Betula pendula. RESULTS: We identified 90 nonredundant POD genes in Betula pendula. (designated BpPODs). According to phylogenetic relationships, these POD genes were classified into 12 groups. The BpPODs are distributed in different numbers on the 14 chromosomes, and some BpPODs were located sequentially in tandem on chromosomes. In addition, we analyzed the conserved domains of BpPOD proteins and found that they contain highly conserved motifs. We also investigated their expression patterns in different tissues, the results showed that some BpPODs might play an important role in xylem, leaf, root and flower. Furthermore, under low temperature conditions, some BpPODs showed different expression patterns at different times. CONCLUSIONS: The research on the structure and function of the POD genes in Betula pendula plays a very important role in understanding the growth and development process and the molecular mechanism of stress resistance. These results lay the theoretical foundation for the genetic improvement of Betula pendula.


Assuntos
Betula , Peroxidases , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Peroxidases/genética , Filogenia
10.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34298887

RESUMO

Aquaporin water channels (AQPs) constitute a large family of transmembrane proteins present throughout all kingdoms of life. They play key roles in the flux of water and many solutes across the membranes. The AQP diversity, protein features, and biological functions of silver birch are still unknown. A genome analysis of Betula pendula identified 33 putative genes encoding full-length AQP sequences (BpeAQPs). They are grouped into five subfamilies, representing ten plasma membrane intrinsic proteins (PIPs), eight tonoplast intrinsic proteins (TIPs), eight NOD26-like intrinsic proteins (NIPs), four X intrinsic proteins (XIPs), and three small basic intrinsic proteins (SIPs). The BpeAQP gene structure is conserved within each subfamily, with exon numbers ranging from one to five. The predictions of the aromatic/arginine selectivity filter (ar/R), Froger's positions, specificity-determining positions, and 2D and 3D biochemical properties indicate noticeable transport specificities to various non-aqueous substrates between members and/or subfamilies. Nevertheless, overall, the BpePIPs display mostly hydrophilic ar/R selective filter and lining-pore residues, whereas the BpeTIP, BpeNIP, BpeSIP, and BpeXIP subfamilies mostly contain hydrophobic permeation signatures. Transcriptional expression analyses indicate that 23 BpeAQP genes are transcribed, including five organ-related expressions. Surprisingly, no significant transcriptional expression is monitored in leaves in response to cold stress (6 °C), although interesting trends can be distinguished and will be discussed, notably in relation to the plasticity of this pioneer species, B. pendula. The current study presents the first detailed genome-wide analysis of the AQP gene family in a Betulaceae species, and our results lay a foundation for a better understanding of the specific functions of the BpeAQP genes in the responses of the silver birch trees to cold stress.


Assuntos
Aquaporinas/metabolismo , Betula/genética , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Família Multigênica/genética , Éxons/genética , Perfilação da Expressão Gênica/métodos , Estudo de Associação Genômica Ampla/métodos , Interações Hidrofóbicas e Hidrofílicas , Filogenia , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Transcrição Gênica/genética
11.
Molecules ; 26(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361786

RESUMO

Silver birch, Betula pendula Roth, is one of the most common trees in Europe. Due to its content of many biologically active substances, it has long been used in medicine and cosmetics, unlike the rare black birch, Betula obscura Kotula. The aim of the study was therefore to compare the antioxidant properties of extracts from the inner and outer bark layers of both birch trees towards the L929 line treated with acetaldehyde. Based on the lactate dehydrogenase test and the MTT test, 10 and 25% concentrations of extracts were selected for the antioxidant evaluation. All extracts at tested concentrations reduced the production of hydrogen peroxide, superoxide anion radical, and 25% extract decreased malonic aldehyde formation in acetaldehyde-treated cells. The chemical composition of bark extracts was accessed by IR and HPLC-PDA methods and surprisingly, revealed a high content of betulin and lupeol in the inner bark extract of B. obscura. Furthermore, IR analysis revealed differences in the chemical composition of the outer bark between black and silver birch extracts, indicating that black birch may be a valuable source of numerous biologically active substances. Further experiments are required to evaluate their potential against neuroinflammation, cancer, viral infections, as well as their usefulness in cosmetology.


Assuntos
Antioxidantes/farmacologia , Betula/química , Casca de Planta/química , Extratos Vegetais/farmacologia , Acetaldeído/antagonistas & inibidores , Acetaldeído/farmacologia , Animais , Antioxidantes/química , Antioxidantes/isolamento & purificação , Betula/classificação , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Peróxido de Hidrogênio/antagonistas & inibidores , Malondialdeído/antagonistas & inibidores , Camundongos , Oxidantes/antagonistas & inibidores , Oxidantes/farmacologia , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/isolamento & purificação , Casca de Planta/classificação , Extratos Vegetais/química , Polônia , Superóxidos/antagonistas & inibidores , Triterpenos/química , Triterpenos/isolamento & purificação
12.
J Chem Ecol ; 46(2): 217-231, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31879865

RESUMO

Despite active research, antiherbivore activity of specific plant phenolics remains largely unresolved. We constructed silver birch (Betula pendula) lines with modified phenolic metabolism to study the effects of foliar flavonoids and condensed tannins on consumption and growth of larvae of a generalist herbivore, the autumnal moth (Epirrita autumnata). We conducted a feeding experiment using birch lines in which expression of dihydroflavonol reductase (DFR), anthocyanidin synthase (ANS) or anthocyanidin reductase (ANR) had been decreased by RNA interference. Modification-specific effects on plant phenolics, nutrients and phenotype, and on larval consumption and growth were analyzed using uni- and multivariate methods. Inhibiting DFR expression increased the concentration of flavonoids at the expense of condensed tannins, and silencing DFR and ANR decreased leaf and plant size. E. autumnata larvae consumed on average 82% less of DFRi plants than of unmodified controls, suggesting that flavonoids or glandular trichomes deter larval feeding. However, larval growth efficiency was highest on low-tannin DFRi plants, indicating that condensed tannins (or their monomers) are physiologically more harmful than non-tannin flavonoids for E. autumnata larvae. Our results show that genetic manipulation of the flavonoid pathway in plants can effectively be used to produce altered phenolic profiles required for elucidating the roles of low-molecular weight phenolics and condensed tannins in plant-herbivore relationships, and suggest that phenolic secondary metabolites participate in regulation of plant growth.


Assuntos
Betula/química , Flavonoides/metabolismo , Mariposas/fisiologia , Plantas Geneticamente Modificadas/química , Taninos/metabolismo , Oxirredutases do Álcool/antagonistas & inibidores , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Betula/enzimologia , Betula/parasitologia , Flavonoides/farmacologia , Herbivoria/efeitos dos fármacos , Interações Hospedeiro-Parasita , Larva/crescimento & desenvolvimento , Larva/fisiologia , Mariposas/crescimento & desenvolvimento , Oxigenases/antagonistas & inibidores , Oxigenases/genética , Oxigenases/metabolismo , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/parasitologia , Interferência de RNA , Taninos/farmacologia
13.
Environ Monit Assess ; 192(4): 229, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32162040

RESUMO

Soil is one of the most important factors in plant cultivation, and its content affects plant growth significantly. However, soil composition and characteristics vary depending on the environmental conditions in the area where the soil is located. In this study, urease and catalase enzyme activities in plant soils grown under different shade conditions were examined. The Prunus cerasifera, Tilia tomentosa, Gleditsia triacanthos, Euonymus japonica, and Betula pendula species were grown in five different light conditions during one vegetation period, and the urease and catalase enzyme activities and Ph, EC (mS.cm ̄1), CaCO3 (%), OM (%), P (ppm), and K (ppm) changes were examined within the scope of the study. As a result, it was found that characteristics other than Ph, which was the subject of the study, changed to a great extent depending on the plant species and light conditions; however, in the areas where different plant species were grown, the soil characters changed at different levels depending on the light. As a result of the study, the highest values in many characteristics were obtained under 45% and 65% light conditions.


Assuntos
Poluentes do Solo , Solo , Betula , Monitoramento Ambiental , Enzimas/metabolismo , Desenvolvimento Vegetal , Microbiologia do Solo
14.
BMC Plant Biol ; 19(1): 491, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31718548

RESUMO

BACKGROUND: Plant architecture, which is mostly determined by shoot branching, plays an important role in plant growth and development. Thus, it is essential to explore the regulatory molecular mechanism of branching patterns based on the economic and ecological importance. In our previous work, a multiple-branches birch mutant br was identified from 19 CINNAMOYL-COENZYME A REDUCTASE 1 (CCR1)-overexpressed transgenic lines, and the expression patterns of differentially expressed genes in br were analyzed. In this study, we further explored some other characteristics of br, including plant architecture, wood properties, photosynthetic characteristics, and IAA and Zeatin contents. Meanwhile, the T-DNA insertion sites caused by the insertion of exogenous BpCCR1 in br were identified to explain the causes of the mutation phenotypes. RESULTS: The mutant br exhibited slower growth, more abundant and weaker branches, and lower wood basic density and lignin content than BpCCR1 transgenic line (OE2) and wild type (WT). Compared to WT and OE2, br had high stomatal conductance (Gs), transpiration rate (Tr), but a low non-photochemical quenching coefficient (NPQ) and chlorophyll content. In addition, br displayed an equal IAA and Zeatin content ratio of main branches' apical buds to lateral branches' apical buds and high ratio of Zeatin to IAA content. Two T-DNA insertion sites caused by the insertion of exogenous BpCCR1 in br genome were found. On one site, chromosome 2 (Chr2), no known gene was detected on the flanking sequence. The other site was on Chr5, with an insertion of 388 bp T-DNA sequence, resulting in deletion of 107 bp 5' untranslated region (UTR) and 264 bp coding sequence (CDS) on CORONATINE INSENSITIVE 1 (BpCOII). In comparison with OE2 and WT, BpCOI1 was down-regulated in br, and the sensitivity of br to Methyl Jasmonate (MeJA) was abnormal. CONCLUSIONS: Plant architecture, wood properties, photosynthetic characteristics, and IAA and Zeatin contents in main and lateral branches' apical buds changed in br over the study's time period. One T-DNA insertion was identified on the first exon of BpCOI1, which resulted in the reduction of BpCOI1 expression and abnormal perception to MeJA in br. These mutation phenotypes might be associated with a partial loss of BpCOI1 in birch.


Assuntos
Betula/genética , DNA Bacteriano , Betula/química , Betula/crescimento & desenvolvimento , Betula/fisiologia , Ácidos Indolacéticos/análise , Mutação , Fotossíntese , Árvores/genética , Árvores/crescimento & desenvolvimento , Árvores/fisiologia , Madeira , Zeatina/análise
15.
New Phytol ; 222(4): 1816-1831, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30724367

RESUMO

Tree bark is a highly specialized array of tissues that plays important roles in plant protection and development. Bark tissues develop from two lateral meristems; the phellogen (cork cambium) produces the outermost stem-environment barrier called the periderm, while the vascular cambium contributes with phloem tissues. Although bark is diverse in terms of tissues, functions and species, it remains understudied at higher resolution. We dissected the stem of silver birch (Betula pendula) into eight major tissue types, and characterized these by a combined transcriptomics and metabolomics approach. We further analyzed the varying bark types within the Betulaceae family. The two meristems had a distinct contribution to the stem transcriptomic landscape. Furthermore, inter- and intraspecies analyses illustrated the unique molecular profile of the phellem. We identified multiple tissue-specific metabolic pathways, such as the mevalonate/betulin biosynthesis pathway, that displayed differential evolution within the Betulaceae. A detailed analysis of suberin and betulin biosynthesis pathways identified a set of underlying regulators and highlighted the important role of local, small-scale gene duplication events in the evolution of metabolic pathways. This work reveals the transcriptome and metabolic diversity among bark tissues and provides insights to its development and evolution, as well as its biotechnological applications.


Assuntos
Betula/genética , Casca de Planta/química , Casca de Planta/genética , Caules de Planta/genética , Transcriptoma/genética , Betula/crescimento & desenvolvimento , Vias Biossintéticas/genética , Câmbio/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Lipídeos/química , Meristema/genética , Especificidade de Órgãos , Especificidade da Espécie , Nicho de Células-Tronco , Triterpenos/metabolismo , Madeira/genética
16.
New Phytol ; 224(1): 166-176, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31209882

RESUMO

Information on the onset of leaf senescence in temperate deciduous trees and comparisons on its assessment methods are limited, hampering our understanding of autumn dynamics. We compare five field proxies, five remote sensing proxies and two data analysis approaches to assess leaf senescence onset at one main beech stand, two stands of oak and birch, and three ancillary stands of the same species in Belgium during 2017 and 2018. Across species and sites, onset of leaf senescence was not significantly different for the field proxies based on Chl leaf content and canopy coloration, except for an advanced canopy coloration during the extremely dry and warm 2018. Two remote sensing indices provided results fully consistent with the field data. A significant lag emerged between leaf senescence onset and leaf fall, and when a threshold of 50% change in the seasonal variable under study (e.g. Chl content) was used to derive the leaf senescence onset. Our results provide unprecedented information on the quality and applicability of different proxies to assess leaf senescence onset in temperate deciduous trees. In addition, a sound base is offered to select the most suited methods for the different disciplines that need this type of data.


Assuntos
Florestas , Folhas de Planta/crescimento & desenvolvimento , Estações do Ano , Árvores/crescimento & desenvolvimento , Especificidade da Espécie , Fatores de Tempo
17.
New Phytol ; 221(4): 2250-2260, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30347456

RESUMO

Insect herbivore damage and abundance are often reduced in diverse plant stands. However, few studies have explored whether this phenomenon is a result of plant diversity effects on host plant traits. We explored indirect effects of tree species diversity on herbivory via changes in leaf traits in a long-term forest diversity experiment in Finland. We measured 16 leaf traits and leaf damage by four insect guilds (chewers, gall formers, leaf miners and rollers) on silver birch (Betula pendula) trees growing in one-, two-, three- and five-species mixtures. A decline in the frequency of birch in mixed stands resulted in reduced leaf area. This, in turn, mediated the reduction in chewing damage in mixed stands. In contrast, associational resistance of birch to leaf miners was not trait-mediated but driven directly by concurrent declines in birch frequency as tree species richness increased. Our results show that leaf trait variation across the diversity gradient might promote associational resistance, but these patterns are driven by an increase in the relative abundance of heterospecifics rather than by tree species richness per se. Therefore, accounting for concurrent changes in stand structure and key foliar traits is important for the interpretation of plant diversity effects and predictions of associational patterns.


Assuntos
Biodiversidade , Florestas , Herbivoria/fisiologia , Insetos/fisiologia , Folhas de Planta/fisiologia , Característica Quantitativa Herdável , Animais , Modelos Biológicos , Especificidade da Espécie , Árvores/fisiologia
18.
Int J Mol Sci ; 20(19)2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31548512

RESUMO

The CUP-SHAPED COTYLEDON 2 (CUC2) gene, which is negatively regulated by microRNA164 (miR164), has been specifically linked to the regulation of leaf margin serration and the maintenance of phyllotaxy in model plants. However, few studies have investigated these effects in woody plants. In this study, we integrated genomic, transcriptomic, and physiology approaches to explore the function of BpCUC2 gene in Betula pendula growth and development. Our results showed that Betula pendula plants overexpressing BpCUC2, which is targeted by BpmiR164, exhibit shortened internodes and abnormal leaf shapes. Subsequent analysis indicated that the short internodes of BpCUC2 overexpressed transgenic lines and were due to decreased epidermal cell size. Moreover, transcriptome analysis, yeast one-hybrid assays, and ChIP-PCR suggested that BpCUC2 directly binds to the LTRECOREATCOR15 (CCGAC), CAREOSREP1 (CAACTC), and BIHD1OS (TGTCA) motifs of a series of IAA-related and cyclin-related genes to regulate expression. These results may be useful to our understanding of the functional role and genetic regulation of BpCUC2.


Assuntos
Betula/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Epiderme Vegetal/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/biossíntese , Betula/genética , Epiderme Vegetal/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
19.
Ecology ; 99(5): 1227-1235, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29411866

RESUMO

Plants enhance N use efficiency by resorbing N from senescing leaves. This can affect litter N mineralization rate due to the C:N-ratio requirements of microbial growth. We examined genotypic links between leaf N resorption and litter mineralization by collecting leaves and litter from 19 Betula pendula genotypes and following the N release of litter patches on forest ground. We found significant genotypic variation for N resorption efficiency, litter N concentration, cumulative three-year patch N-input and litter N release with high broad-sense heritabilities (H2  = 0.28-0.65). The genotype means of N resorption efficiency varied from 46% to 65% and correlated negatively with the genotype means of litter N concentration, cumulative patch N-input and litter N release. NH4+ yield under patches had a positive genotypic correlation with the cumulative patch N-input. During the first year of litter decomposition, genotypes varied from N immobilization (max 2.71 mg/g dry litter) to N release (max 1.41 mg/g dry litter), creating a genotypic tradeoff between the N conserved by resorption and the N available for root uptake during the growing season. We speculate that this tradeoff is one likely reason for the remarkably wide genotypic range of N resorption efficiencies in our birch population.


Assuntos
Betula , Nitrogênio , Genótipo , Folhas de Planta/genética , Estações do Ano
20.
Prep Biochem Biotechnol ; 48(9): 867-876, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30296385

RESUMO

Betulin (B) and betulinic acid (BA) are two triterpenes with diverse pharmacological and physiological actions. Elicitation of Betula pendula Roth cell cultures by elicitors is an excellent strategy to increase B and BA levels. Six abiotic and biotic elicitors were studied to improve accumulation of B and BA in the cell culture of B. pendula. The B and BA production in treated cells was verified by HPLC. The results showed the maximum growth index (7) on day 3 in cells treated with 0.5 mg L-1 chlorocholine chloride (CCC). The increased accumulation of BA in the cells treated with 200 mg L-1 of chitosan was found to be 5.9 × (6.5 mg g-1 DW) higher over control cells. Treating the cells with 2 mg L-1 of CCC, after 7 days, led to 149.3× enhancement of B content (19.4 mg g-1 DW) over the controls. Production of this triterpenoid at a much shorter time with a much higher growth rate can be economic and lead to producing large amounts of B and BA for anti-cancer and HIV drugs preparation.


Assuntos
Betula/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Triterpenos/metabolismo , Acetatos/farmacologia , Fármacos Anti-HIV/metabolismo , Antineoplásicos Fitogênicos/biossíntese , Betula/efeitos dos fármacos , Técnicas de Cultura de Células/métodos , Sobrevivência Celular/efeitos dos fármacos , Clormequat/farmacologia , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Triterpenos Pentacíclicos , Ácido Salicílico/farmacologia , Ácido Betulínico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA