Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35819320

RESUMO

In this work, a solar-driven redox flow desalination system is reported, which combines a solar cell based on a Bi2O3 photoanode and a redox flow desalination cell through an integrated electrode. The Bi2O3 film was prepared through a simple one-step water bath deposition method and served as a photoanode after the coating of the N719 dye. The activated carbon (AC)-coated graphite paper served as both the integrated electrode and counter electrode. The I3-/I- redox electrolyte circulates in the solar cell channel between the photoanode and intergrated electrode, while the [Fe(CN)6]4-/[Fe(CN)6]3- electrolyte circulates in the redox flow desalination part between the integrated electrode and counter electrode. This dye-sensitized solar-driven desalination cell is capable of achieving a maximum salt removal rate of 62.89 µg/(cm2·min) without consuming any electrical power. The combination of the solar cell and redox flow desalination is highly efficient with double functions of desalination and energy release using light as a driving force. This current research work is significant for the development of efficient and stable photoanode materials in photoelectrochemical desalination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA