Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Geochem Health ; 45(4): 1067-1077, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34236582

RESUMO

Airborne particulate matter (PM) pollution, as a leading environmental health risk, causes millions of premature deaths globally every year. Lower respiratory infection (LRI) is a sensitive response to short-term exposure to outdoor PM pollution. The airborne transmission of etiological agents of LRI, as an important pathway for infection and morbidity, bridges the public health issues of air quality and pathogen infectivity, virulence, resistance, and others. Enormous efforts are underway to identify common pathogens and substances that are etiological agents for LRI and to understand the underlying toxicological and clinical basis of health effects by identifying mechanistic pathways. Seasonal variations and geographical disparities in the survival and infectivity of LRI pathogens are unsolved mysteries. Weather conditions in geographical areas may have a key effect, but also potentially connect LRI with short-term increases in ambient air PM pollution. Statistical associations show that short-term elevations in fine and coarse PM lead to increases in respiratory infections, but the causative agents could be chemical or microbiological and be present individually or in mixtures, and the interactions between chemical and microbiological agents remain undefined. Further investigations on high-resolution monitoring of airborne pathogens in relation to PM pollution for an integrated exposure-response assessment and mechanistic study are warranted. Improving our understanding of the spatiotemporal features of pathogenic bioaerosols and air pollutants and translating scientific evidence into effective policies is vital to reducing the health risks and devastating death toll from PM pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Infecções Respiratórias , Humanos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Material Particulado/toxicidade , Material Particulado/análise , Estações do Ano , Infecções Respiratórias/induzido quimicamente , Infecções Respiratórias/epidemiologia
2.
Ecotoxicology ; 28(8): 949-963, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31410744

RESUMO

The bioaccumulation of the neurotoxin methylmercury (MeHg) in freshwater ecosystems is thought to be mediated by both water chemistry (e.g., dissolved organic carbon [DOC] and dissolved mercury [Hg]) and diet (e.g., trophic position and diet composition). Hg in small streams is of particular interest given their role as a link between terrestrial and aquatic processes. Terrestrial processes determine the quantity and quality of streamwater DOC, which in turn influence the quantity and bioavailability of dissolved MeHg. To better understand the effects of water chemistry and diet on Hg bioaccumulation in stream biota, we measured DOC and dissolved Hg in stream water and mercury concentration in three benthic invertebrate taxa and three fish species across up to 12 tributary streams in a forested watershed in New Hampshire, USA. As expected, dissolved total mercury (THg) and MeHg concentrations increased linearly with DOC. However, mercury concentrations in fish and invertebrates varied non-linearly, with maximum bioaccumulation at intermediate DOC concentrations, which suggests that MeHg bioavailability may be reduced at high levels of DOC. Further, MeHg and THg concentrations in invertebrates and fish, respectively, increased with δ15N (suggesting trophic position) but were not associated with δ13C. These results show that even though MeHg in water is strongly determined by DOC concentrations, mercury bioaccumulation in stream food webs is the result of both MeHg availability in stream water and trophic position.


Assuntos
Bioacumulação , Peixes/metabolismo , Invertebrados/metabolismo , Mercúrio/metabolismo , Compostos de Metilmercúrio/metabolismo , Rios/química , Animais , Dieta , Cadeia Alimentar , Substâncias Húmicas/análise , New Hampshire
3.
J Basic Microbiol ; 59(4): 425-436, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30624810

RESUMO

Ammonia oxidation, mainly driven by ammonia-oxidizing archaea (AOA) and bacteria (AOB), plays an important role in determining the rate of nitrification in riparian zones. However, the underlying factors driving the distribution and activity of AOA and AOB in riparian zones, especially in the rhizosphere of Phragmites communis remain unknown. This study revealed the dominance of AOA in ammonium oxidization with higher abundance and activity in both rhizosphere and bulk soil in summer and winter over AOB in riparian zones, based on molecular methods and double-inhibitors method. Phylogenetic analysis showed that 54d9 cluster and Nitrososphaera dominated the AOA community and Nitrosospira dominated the AOB, respectively. For the distribution of AOA and AOB, it was the spatial heterogeneity of physicochemical properties that had the most significant effect. Specifically, TOM & TC were the main physicochemical variables accounting for the difference in abundance and community composition of AOA, and TN had an important influence on AOB in the sediment/soil in riparian zones. For abundance and activity, seasonal heterogeneity and P. communis rhizosphere had a significant impact on the archaeal activity and abundance, respectively, but did not show significant influencing on AOB. These findings suggest that the small-scale environmental heterogeneities in riparian zones are important in shaping the community composition and abundance of AOA and AOB.


Assuntos
Amônia/metabolismo , Archaea/classificação , Bactérias/classificação , Poaceae , Rizosfera , Microbiologia do Solo , Archaea/genética , Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Ecossistema , Genes Arqueais/genética , Genes Bacterianos/genética , Sedimentos Geológicos/microbiologia , Nitrificação/genética , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Estações do Ano
4.
Chemosphere ; 150: 202-210, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26901477

RESUMO

Free metal ion concentrations have been recognized as a better indicator of metal bioavailability in aquatic environments than total dissolved metal concentrations. However, our understanding of the determinants of free ion concentrations, especially in a metal mixture, is limited, due to underexplored techniques for measuring multiple free metal ions simultaneously. In this work, we performed statistical analyses on a large dataset containing repeated measurements of free ion concentrations of Cu, Zn, Pb, Ni, and Cd, the most commonly measured metals in seawater, at five inshore locations in Boston Harbor, previously collected using an in-situ equilibrium-based multi-metal free ion sampler, the 'Gellyfish'. We examined correlations among these five metals by season, and evaluated effects of 10 biogeochemical variables on free ion concentrations over time and location through multivariate regressions. We also explored potential clustering among the five metals through a principal component analysis. We found significant correlations among metals, with varying patterns over season. Our regression results suggest that instead of dissolved metals, pH, salinity, temperature and rainfall were the most significant determinants of free metal ion concentrations. For example, a one-unit decrease in pH was associated with a 2.2 (Cd) to 99 (Cu) times increase in free ion concentrations. This work is among the first to reveal key contributors to spatiotemporal variations in free ion concentrations, and demonstrated the usefulness of the Gellyfish sampler in routine sampling of free ions within metal mixtures and in generating data for statistical analyses.


Assuntos
Monitoramento Ambiental , Estuários , Metais Pesados/análise , Água do Mar/química , Poluentes Químicos da Água/análise , Boston , Monitoramento Ambiental/métodos , Monitoramento Ambiental/estatística & dados numéricos , Íons/análise , Estações do Ano , Análise Espaço-Temporal , Temperatura , Urbanização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA