Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 824
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Development ; 151(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38270401

RESUMO

A model organism in developmental biology is defined by its experimental amenability and by resources created for the model system by the scientific community. For the most powerful invertebrate models, the combination of both has already yielded a thorough understanding of developmental processes. However, the number of developmental model systems is still limited, and their phylogenetic distribution heavily biased. Members of one of the largest animal lineages, the Spiralia, for example, have long been neglected. In order to remedy this shortcoming, we have produced a detailed developmental transcriptome for the bivalve mollusk Mytilus galloprovincialis, and have expanded the list of experimental protocols available for this species. Our high-quality transcriptome allowed us to identify transcriptomic signatures of developmental progression and to perform a first comparison with another bivalve mollusk: the Pacific oyster Crassostrea gigas. To allow co-labelling studies, we optimized and combined protocols for immunohistochemistry and hybridization chain reaction to create high-resolution co-expression maps of developmental genes. The resources and protocols described here represent an enormous boost for the establishment of Mytilus galloprovincialis as an alternative model system in developmental biology.


Assuntos
Crassostrea , Mytilus , Animais , Mytilus/genética , Filogenia , Crassostrea/genética , Transcriptoma/genética , Perfilação da Expressão Gênica
2.
Mol Genet Genomics ; 299(1): 58, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38789628

RESUMO

Cancer is a multifaceted genetic disease characterized by the acquisition of several essential hallmarks. Notably, certain cancers exhibit horizontal transmissibility, observed across mammalian species and diverse bivalves, the latter referred to as hemic neoplasia. Within this complex landscape, epigenetic mechanisms such as histone modifications and cytosine methylation emerge as fundamental contributors to the pathogenesis of these transmissible cancers. Our study delves into the epigenetic landscape of Cerastoderma edule, focusing on whole-genome methylation and hydroxymethylation profiles in heathy specimens and transmissible neoplasias by means of Nanopore long-read sequencing. Our results unveiled a global hypomethylation in the neoplastic specimens compared to their healthy counterparts, emphasizing the role of DNA methylation in these tumorigenic processes. Furthermore, we verified that intragenic CpG methylation positively correlated with gene expression, emphasizing its role in modulating transcription in healthy and neoplastic cockles, as also highlighted by some up-methylated oncogenic genes. Hydroxymethylation levels were significantly more elevated in the neoplastic samples, particularly within satellites and complex repeats, likely related to structural functions. Additionally, our analysis also revealed distinct methylation and activity patterns in retrotransposons, providing additional insights into bivalve neoplastic processes. Altogether, these findings contribute to understanding the epigenetic dynamics of bivalve neoplasias and shed light on the roles of DNA methylation and hydroxymethylation in tumorigenesis. Understanding these epigenetic alterations holds promise for advancing our broader understanding of cancer epigenetics.


Assuntos
Cardiidae , Metilação de DNA , Epigênese Genética , Metilação de DNA/genética , Animais , Cardiidae/genética , Ilhas de CpG/genética , Genoma/genética , Neoplasias/genética , Neoplasias/patologia
3.
Proc Biol Sci ; 291(2017): 20232541, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38378149

RESUMO

Inter-individual transmission of cancer cells represents a unique form of microparasites increasingly reported in marine bivalves. In this study, we sought to understand the ecology of the propagation of Mytilus trossulus Bivalve Transmissible Neoplasia 2 (MtrBTN2), a transmissible cancer affecting four Mytilus mussel species worldwide. We investigated the prevalence of MtrBTN2 in the mosaic hybrid zone of M. edulis and M. galloprovincialis along the French Atlantic coast, sampling contrasting natural and anthropogenic habitats. We observed a similar prevalence in both species, probably due to the spatial proximity of the two species in this region. Our results showed that ports had higher prevalence of MtrBTN2, with a possible hotspot observed at a shuttle landing dock. No cancer was found in natural beds except for two sites close to the hotspot, suggesting spillover. Ports may provide favourable conditions for the transmission of MtrBTN2, such as high mussel density, stressful conditions, sheltered and confined shores or buffered temperatures. Ships may also spread the disease through biofouling. Our results suggest ports may serve as epidemiological hubs, with maritime routes providing artificial gateways for MtrBTN2 propagation. This highlights the importance of preventing biofouling on docks and ship hulls to limit the spread of marine pathogens hosted by fouling species.


Assuntos
Mytilus , Neoplasias , Animais , Neoplasias/epidemiologia
4.
Glob Chang Biol ; 30(5): e17261, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712641

RESUMO

Photoautotrophic marine ecosystems can lock up organic carbon in their biomass and the associated organic sediments they trap over millennia and are thus regarded as blue carbon ecosystems. Because of the ability of marine ecosystems to lock up organic carbon for millennia, blue carbon is receiving much attention within the United Nations' 2030 Agenda for Sustainable Development as a nature-based solution (NBS) to climate change, but classically still focuses on seagrass meadows, mangrove forests, and tidal marshes. However, other coastal ecosystems could also be important for blue carbon storage, but remain largely neglected in both carbon cycling budgets and NBS strategic planning. Using a meta-analysis of 253 research publications, we identify other coastal ecosystems-including mud flats, fjords, coralline algal (rhodolith) beds, and some components or coral reef systems-with a strong capacity to act as blue carbon sinks in certain situations. Features that promote blue carbon burial within these 'non-classical' blue carbon ecosystems included: (1) balancing of carbon release by calcification via carbon uptake at the individual and ecosystem levels; (2) high rates of allochthonous organic carbon supply because of high particle trapping capacity; (3) high rates of carbon preservation and low remineralization rates; and (4) location in depositional environments. Some of these features are context-dependent, meaning that these ecosystems were blue carbon sinks in some locations, but not others. Therefore, we provide a universal framework that can evaluate the likelihood of a given ecosystem to behave as a blue carbon sink for a given context. Overall, this paper seeks to encourage consideration of non-classical blue carbon ecosystems within NBS strategies, allowing more complete blue carbon accounting.


Assuntos
Ciclo do Carbono , Sequestro de Carbono , Carbono , Ecossistema , Carbono/metabolismo , Carbono/análise , Mudança Climática
5.
Fish Shellfish Immunol ; 151: 109743, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964433

RESUMO

Adenosine Deaminases Acting on RNA (ADARs) are evolutionarily conserved enzymes known to convert adenosine to inosine in double-stranded RNAs and participate in host-virus interactions. Conducting a meta-analysis of available transcriptome data, we identified and characterised eight ADAR transcripts in Chlamys farreri, a farmed marine scallop susceptible to Acute viral necrosis virus (AVNV) infections and mortality outbreaks. Accordingly, we identified six ADAR genes in the Zhikong scallop genome, revised previous gene annotations, and traced alternative splicing variants. In detail, each ADAR gene encodes a unique combination of functional domains, always including the Adenosine deaminase domain, RNA binding domains and, in one case, two copies of a Z-DNA binding domain. After phylogenetic analysis, five C. farreri ADARs clustered in the ADAR1 clade along with sequences from diverse animal phyla. Gene expression analysis indicated CF051320 as the most expressed ADAR, especially in the eye and male gonad. The other four ADAR1 genes and one ADAR2 gene exhibited variable expression levels, with CF105370 and CF051320 significantly increasing during early scallop development. ADAR-mediated single-base editing, evaluated across adult C. farreri tissues and developmental stages, was mainly detectable in intergenic regions (83 % and 85 %, respectively). Overall, the expression patterns of the six ADAR genes together with the editing and hyper-editing values computed on scallops RNA-seq samples support the adaptive value of ADAR1-mediated editing, particularly in the pre-settling larval stages.


Assuntos
Adenosina Desaminase , Pectinidae , Filogenia , Edição de RNA , Animais , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Pectinidae/genética , Pectinidae/imunologia , Imunidade Inata/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Sequência de Aminoácidos , Transcriptoma , Alinhamento de Sequência/veterinária
6.
Environ Res ; 242: 117787, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040179

RESUMO

Microplastic (MP) pollution raises urgent concerns about the environmental well-being and the safety of the food supply for humans. Mussels are essential filter-feeding organisms that may be highly susceptible to MPs uptake due to their global distribution and sedentary lifestyle. There is also a knowledge gap regarding MP levels in commercially-farmed and wild-sourced mussels for human consumption, creating gaps in risk identification for food safety. This study aims to fill this gap in understanding by (a) investigating the presence and abundance of MPs in both wild and aquacultured mussels collected from six different stations in the Sea of Marmara, (b) comparing the levels of MPs between aquacultured and wild mussels, and (c) evaluating the potential health risks associated with the consumption of these contaminated mussels. Polymer types were verified by ATR-FTIR (Attenuated Total Reflectance Fourier Transform- Infrared Spectroscopy), and 6 different polymers have been identified. Among the total 753 identified MPs, the majority (79.8%) were fibers, with the predominant size range (42.4%) falling between 0.1 and 0.5 mm. Consuming wild mussels was associated with a 187.6% higher risk of MP intake compared to aquaculture. A consumer can potentially be exposed to 133.11 to 844.86 MP particles when consuming a 100 g serving of mussels, with risks becoming more significant as portion sizes increase, as is the case in some countries where portions reach 225 g. In this study, detailed information is presented on MP pollution in both wild and aquacultured mussels from Sea of Marmara, providing valuable insights for ensuring food safety, effective management and control of MP pollution in this region.


Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Humanos , Microplásticos/toxicidade , Plásticos , Monitoramento Ambiental , Poluentes Químicos da Água/análise
7.
Ecotoxicology ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990495

RESUMO

Among aquatic organisms, filter feeders are particularly exposed to the ingestion of microplastics (MPs) and nanoplastics (NPs). The present study investigates the effect of environmental microplastics (ENV MPs) and nanoplastics (ENV NPs) generated from macro-sized plastic debris collected in the Garonne River (France), and polystyrene NPs (PS NPs) on the freshwater bivalve Corbicula fluminea. Organisms were exposed to plastic particles at three concentrations: 0.008, 10, and 100 µg L-1 for 21 days. Gene expression measurements were conducted in gills and visceral mass at 7 and 21 days to assess the effects of plastic particles on different functions. Our results revealed: (i) an up-regulation of genes, mainly involved in endocytosis, oxidative stress, immunity, apoptosis, and neurotoxicity, at 7 days of exposure for almost all environmental plastic particles and at 21 days of exposure for PS NPs in the gills, (ii) PS NPs at the three concentrations tested and ENV MPs at 0.008 µg L-1 induced strong down-regulation of genes involved in detoxication, oxidative stress, immunity, apoptosis, and neurotoxicity at 7 days of exposure in the visceral mass whereas ENV MPs at 10 and 100 µg L-1 and all ENV NPs induced less pronounced effects, (iii) overall, PS NPs and ENV MPs 0.008 µg L-1 did not trigger the same effects as ENV MPs 10 and 100 µg L-1 and all ENV NPs, either in the gills or the visceral mass at 7 and 21 days of exposure. This study highlighted the need to use MPs and NPs sampled in the environment for future studies as their properties induce different effects at the molecular level to living organisms.

8.
Ecotoxicology ; 33(1): 47-65, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38182932

RESUMO

This study provides evidence of fine-grained genetic structuring in Mediterranean mussels (Mytilus galloprovincialis) from the Strait of Istanbul, caused by barriers to gene flow via contaminant-mediated selection. In this study, mitochondrial D-loop sequences were analyzed in mussels from 8 localities, all less than 30 kilometers apart, with differing contaminant loads. The results were: 1) Intra-population genetic differentiation (ΦST) between sites with high and low contaminant loads was high (up to 0.459), even at distances of only a few kilometers. 2) Genetic diversity was negatively correlated with the contaminant load ("genetic erosion"). 3) There was evidence of selection, based on haplotype frequencies and neutrality tests (Tajima's D), with purifying selection at the most contaminated site and balancing selection at the least contaminated. 4) Genetic distance was not correlated with geographic distance (no isolation-by-distance), but was correlated with contaminant load at each site. 5) Population dendrograms and Bayesian estimators of migration indicated that gene flow between sites was affected by contamination. For the dendrograms of the sampling sites, the clades clustered according to contaminant load more than geographic distance. Overall, these results suggest that 1) contamination may serve as a genotype-dependent dispersal barrier (i.e., contamination may not affect total number of migrants, just the relative proportions of the haplotypes in the established immigrants), leading strong population differentiation over short distances, and 2) genetic erosion may occur by a combination of selection and altered patterns of haplotype-specific gene flow. These effects may be more pronounced in the Strait of Istanbul than in other locations because of the riverine nature and strong, uni-directional current of the strait.


Assuntos
Fluxo Gênico , Mytilus , Animais , Teorema de Bayes , Mytilus/genética , Haplótipos , Alimentos Marinhos , Variação Genética , Genética Populacional
9.
Foodborne Pathog Dis ; 21(1): 27-35, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37878812

RESUMO

Norovirus (NoV) is an enteric virus with foodborne transmission. Bivalve shellfish are a main source of infections and outbreaks. In Italy a voluntary based monitoring plan to check the safety of bivalve shellfish was set up at provincial level. This study describes the occurrence and distribution of NoV in the Northern Adriatic Sea and in the Ligurian Sea. From October 2018 to September 2020, 807 bivalve shellfish samples (n = 205 oysters, n = 182 mussels, n = 348 clams, n = 72 other bivalve shellfish) were tested by One-Step Retrotranscription Real-time polymerase chain reaction for NoV GI and GII and quantified according to the ISO 15216-2:2013 and ISO 15216-1:2017. Positive samples were further analyzed to determine genotype by sequencing of the ORF1/ORF2 junction of the viral genome. A total of 126 samples were positive for NoV, mussels, and oysters had the highest probability of being positive and positive samples were found mainly in the colder season. Of these samples, 46% were NoV GII, 13% NoV GI, and 40% carried both genogroups. Thirty-seven samples were typeable (GI n = 12 and GII n = 25) with GI samples belonging to four genotypes and GII samples belonging to five genotypes. GII.3 genotype was the most prevalent, followed by GII.4, particularly Sydney 2012 subtype, a leading cause of infections worldwide, was found in three oysters' and three clams' samples. The phylogenetic analysis revealed a high heterogeneity among the species that are scattered in several clusters. Considering the low infectious dose the overall presence of NoV in edible shellfish, particular those to be eaten raw or undercooked, is moderately high. The presence of genotypes frequently involved in human infections strengthens the need for ongoing monitoring, which should be extended at national level.


Assuntos
Bivalves , Infecções por Caliciviridae , Norovirus , Ostreidae , Animais , Humanos , Genótipo , Norovirus/genética , Filogenia , Frutos do Mar , Itália/epidemiologia , Oceanos e Mares
10.
J Environ Manage ; 360: 121102, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759561

RESUMO

Marine protected areas (MPAs) are zones geographically delimited under pre-defined management goals, seeking to reduce anthropogenic threats to biodiversity. Despite this, in recent years reports of MPAs affected by chemical contamination has grown. Therefore, this study addresses this critical issue assessing legacy and current chemical contamination in filter-feeder bivalves obtained in very restrictive no-take MPAs from Brazil. The detected pollutants encompass polycyclic aromatic hydrocarbons (PAHs), linear alkylbenzenes (LABs), and persistent organic pollutants (POPs) like dichlorodiphenyltrichloroethane (DDTs) and polychlorinated biphenyls (PCBs). Despite protective measures, bivalves from nine MPAs exhibited high LABs (13.2-1139.0 ng g-1) and DDTs levels (0.1-62.3 ng g-1). PAHs were present in low concentrations (3.1-29.03 ng g-1), as PCBs (0.7-6.4 ng g-1), hexachlorobenzene (0.1-0.2 ng g-1), and Mirex (0.1-0.3 ng g-1). Regardless of the sentinel species, MPAs and management categories, similar accumulation patterns were observed for LABs, DDTs, PAHs, and PCBs. Based on the limits proposed by Oslo Paris Commission, the measured levels of PAHs, PCBs and were below the environmental assessment criteria. Such findings indicate the no biological effects are expected to occur. However, they are higher considering background conditions typically measured in remote or pristine areas and potential simultaneous exposure. Such findings indicate an influence of anthropogenic sources, emphasizing the urgency for monitoring programs guiding strategic management efforts to safeguard these areas.


Assuntos
Bivalves , Monitoramento Ambiental , Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Brasil , Hidrocarbonetos Policíclicos Aromáticos/análise , Bifenilos Policlorados/análise , Poluentes Químicos da Água/análise , Poluentes Orgânicos Persistentes
11.
Int J Environ Health Res ; 34(2): 1180-1190, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37154030

RESUMO

Our study aimed to investigate the impact of nano-zinc oxide (nZnO), a widely used pollutant in industry, pharmaceuticals, and personal care products, on the behavior and oxidative stress of freshwater mussels (Potomida littoralis) an indicator species and also a model non-target organism in ecotoxicology. To this end mussels were exposed to nZnO (50 and 100 µg/L) and Zn2+ from ZnSO4 (50 and 100 µg/L) for 7 days. ZnSO4 was used for comparison purposes and to determine if the toxicity of nZnO was due to the release of ions into the aquatic environment. We evaluated changes in oxidative stress markers, including catalase (CAT), glutathione-S-transferase (GST), acetylcholinesterase (AChE), and malondialdehyde (MDA) levels, on the mussel gills and digestive glands. Additionally, the effect of nZnO on the filtration rate of bivalves was studied. The findings showed that the mussel tissue's different parameters were significantly affected by exposure to various concentrations of nZnO, causing changes in their behavior that led to a decrease in filtration rate. Additionally, noteworthy increments were observed in CAT activity, AChE activity, and MDA levels, whereas GST activity displayed a decreasing trend, implying that oxidative stress contributes to the toxicity of nZnO. The purpose of this review is to present a framework for comprehending the toxicological impacts of nanoparticles from an environmental standpoint. Additionally, it includes novel information about the connections between nanoparticles (NPs) and bivalve species.


Assuntos
Bivalves , Nanopartículas , Poluentes Químicos da Água , Óxido de Zinco , Animais , Óxido de Zinco/toxicidade , Acetilcolinesterase , Nanopartículas/toxicidade , Estresse Oxidativo , Água Doce , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química
12.
Environ Monit Assess ; 196(3): 259, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349477

RESUMO

This work focused on assessing of the risk associated with the consumption of bivalve mollusks, potentially contaminated with phycotoxins. The studied phycotoxins are saxitoxin (STX), okadaic acid (OA), dinophysistoxins (DTXs), yessotoxins (YTXs), pectenotoxins (PTX), azaspiracids (AZAs), and domoic acid (DA). These toxins were investigated in three species of bivalve mollusks (Anadara senilis, Crassostrea gasar, and Perna perna), originating from the Ebrié lagoon. Chemical analyses were carried out by LC-MS/MS, HPLC-FLD, and HPLC-UV. The level of OA and DTXs, STX, and DA was 10.92 µg OA eq./kg, 9.6 µg STX eq./kg, and 0.17 mg DA eq./kg, respectively. The level of PTXs and AZAs was 3.3 µg PTX-2 eq./kg and 13.86 µg AZA-1 eq./kg; that of YTXs was 0.01 mg YTX eq./kg. The daily exposure dose (DED) was 0.019 µg OA eq./kg bw for OA and DTXs; 0.285 µg DA eq./kg bw for DA; 0.006 µg PTX-2 eq./kg bw for PTXs; 0.016 µg STX eq./kg bw for STX; 0.01 µg YTX eq./kg bw for YTXs; and 0.024 µg AZA-1 eq./kg bw for AZAs for the oyster Crassostrea gasar. These estimated values are lower than the acute reference dose (ARfD) of each phycotoxin recommended by the European Food Safety Agency (EFSA). The risk of harmful effects is acceptable. The absence of risk is valid only for the study period (11 months) and concerns coastal populations living near the sampling points.


Assuntos
Bivalves , Ecossistema , Furanos , Macrolídeos , Venenos de Moluscos , Oxocinas , Toxinas de Poliéter , Animais , Côte d'Ivoire , Cromatografia Líquida , Espectrometria de Massas em Tandem , Monitoramento Ambiental , Ácido Okadáico
13.
BMC Genomics ; 24(1): 457, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582778

RESUMO

In recent years, some common themes in the development of sex-specific traits in different animal lineages have started to emerge since the discovery of the Dmrt (doublesex-mab3-related transcription factor gene) genes. Bivalves are characterized by a diversity of sexual systems, including simultaneous hermaphroditism, sequential hermaphroditism, and strict gonochorism. However, to date, no research has focused on the genome-wide characterization and analysis of Dmrt genes in bivalves. In this study, the identification and analysis of Dmrt genes in 15 bivalves were performed using bioinformatics methods. A total of 55 Dmrt genes were retrieved in the studied bivalve genomes. The number of Dmrt genes in different species ranged from 3 to 5. The phylogenetic tree showed that Dmrt genes in bivalves can be subdivided into 5 classes: the Dmrt2-like class, Dmrt3-like class, Dmrt4/5-like class, Dsx-like class, and scallop-specific Dmrt class. The Ka/Ks ratios suggested that all Dmrt classes underwent purifying selection pressure. Furthermore, the spatiotemporal expression of Dmrt genes in four bivalve species suggested that different Dmrt genes may have different functions, and scallop-specific Dmrt genes may play a key role in sex determination/differentiation. In general, this study provides a molecular basis for in-depth examination of the functions of Dmrt genes and phylogenomic analyses in bivalves.


Assuntos
Bivalves , Fatores de Transcrição , Masculino , Animais , Feminino , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Filogenia , Genoma , Diferenciação Sexual/genética , Bivalves/genética , Bivalves/metabolismo
14.
Glycoconj J ; 40(1): 33-46, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36454453

RESUMO

Marcia hiantina (Mollusca, Bivalvia) (Lamarck, 1818), is an edible clam mainly distributed along the tropical coastal regions. Recent researches have demonstrated that clams can possess compounds, including polysaccharides, with a wide range of biological actions including antioxidant, immunomodulatory and antitumor activities. Here an α-glucan was isolated from M. hiantina by hot water, purified by anion exchange chromatography, and its structure was characterized by a combination of multiple nuclear magnetic resonance (NMR) methods (1D 1H, 1H-1H COSY, 1H-1H TOCSY, 1H-1H NOESY, 1H-13C HSQC and 1H-13C HSQC-NOESY spectra), gas chromatography-mass spectrometry, and high performance size exclusion chromatography (HPSEC). The analysis from NMR, monosaccharide composition, methylation analyses and HPSEC combined with multi-angle light scattering (MALS) of M. hiantina-derived α-glycan confirmed a branched polysaccharide exclusively composed of glucose (Glc), mostly 4-linked in its backbone, branched occasionally at 6-positions, and having a molecular weight of ~ 570 kDa. The mollusk α-glucan was subjected to four cell-based assays: (i) viability of three cell lines (RAW264.7, HaCaT, and HT-29), (ii) activity on lipopolysaccharide (LPS)-induced prostaglandin production in RAW264.7 cells, (iii) inhibitory activities of in H2O2- and LPS-induced reactive oxygen species (ROS) production in HMC3 cells, and (iv) HaCaT cell proliferation. Results have indicated no cytotoxicity, potent inhibition of both H2O2- and LPS-induced ROS, and potent cell proliferative activity.


Assuntos
Bivalves , Glucanos , Animais , Glucanos/química , Lipopolissacarídeos , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Polissacarídeos/química , Cromatografia em Gel
15.
Artigo em Inglês | MEDLINE | ID: mdl-36609922

RESUMO

The sensing of chemical cues is essential for several aspects of bivalve biology, such as the detection of food and pheromones. However, little is known about chemical communication systems in bivalves or the possible role of the osphradium as a chemosensory organ. To address this, we adapted an electrophysiological technique extensively used in vertebrates-the electro-olfactogram-to record from the osphradium in the Pacific oyster, Magallana gigas. This technique was validated using amino acids as stimulants. The osphradium proved to be sensitive to most proteinogenic L-amino acids tested, evoking tonic, negative, concentration-dependent 'electro-osphradiogram' (EOsG) voltage responses, with thresholds of detection in the range of 10- 6 to 10- 5 M. Conversely, it was insensitive to L-arginine and L-glutamic acid. The current study supports the hypothesis that the osphradium is, indeed, a chemosensory organ. The 'electro-osphradiogram' may prove to be a powerful tool in the isolation and characterization of pheromones and other important chemical cues in bivalve biology.


Assuntos
Ostreidae , Olfato , Animais , Ostreidae/metabolismo , Aminoácidos/metabolismo , Fenômenos Eletrofisiológicos , Feromônios/metabolismo
16.
J Exp Biol ; 226(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37732510

RESUMO

Locomotion in benthic invertebrates can strongly affect habitat selection and ecosystem nutrient cycling. In the case of freshwater mussels, the drivers of locomotion are largely unresolved. Our aim was to assess the influence of light presence and intensity on the locomotory behaviour of freshwater mussels in controlled laboratory experiments. The species investigated in our study were Anodonta anatina and Unio pictorum, two widely distributed mussels in European lentic and lotic inland waters. At low algal concentrations, known to be associated with more frequent locomotory activities, we found that both species moved primarily in the absence of light (72.7% of all movements across experiments). However, the movements of both species were directed towards the light source, resembling a net-positive 'phototactic' response but in the absence of light. The distance to the light source, which was negatively correlated to light intensity, had a positive effect on the distance covered in locomotory activities by A. anatina but not by U. pictorum. Intraspecific variation in shell size had no impact on movement distance, indicating that the energetic costs of movement were not a limiting factor. We suggest that the observed movement towards brighter locations helps to enhance food quantity and quality, whilst movement in darkness mitigates predation risks.


Assuntos
Bivalves , Unionidae , Animais , Ecossistema , Locomoção , Alimentos
17.
J Exp Biol ; 226(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37278663

RESUMO

Ocean acidification and warming are key stressors for many marine organisms. Some organisms display physiological acclimatization or plasticity, but this may vary across species ranges, especially if populations are adapted to local climatic conditions. Understanding how acclimatization potential varies among populations is therefore important in predicting species responses to climate change. We carried out a common garden experiment to investigate how different populations of the economically important great scallop (Pecten maximus) from France and Norway responded to variation in temperature and PCO2 concentration. After acclimation, post-larval scallops (spat) were reared for 31 days at one of two temperatures (13°C or 19°C) under either ambient or elevated PCO2 (pH 8.0 and pH 7.7). We combined measures of proteomic, metabolic and phenotypic traits to produce an integrative picture of how physiological plasticity varies between the populations. The proteome of French spat showed significant sensitivity to environmental variation, with 12 metabolic, structural and stress-response proteins responding to temperature and/or PCO2. Principal component analysis revealed seven energy metabolism proteins in French spat that were consistent with countering ROS stress under elevated temperature. Oxygen uptake in French spat did not change under elevated temperature but increased under elevated PCO2. In contrast, Norwegian spat reduced oxygen uptake under both elevated temperature and PCO2. Metabolic plasticity allows French scallops to maintain greater energy availability for growth compared with Norwegian spat. However, increased physiological plasticity and growth in French spat may come at a cost, as they showed reduced survival compared with Norwegian scallops under elevated temperature.


Assuntos
Pecten , Pectinidae , Animais , Pecten/metabolismo , Concentração de Íons de Hidrogênio , Água do Mar , Larva , Proteômica , Acidificação dos Oceanos , Temperatura , Oxigênio/metabolismo , Dióxido de Carbono/metabolismo
18.
Biol Lett ; 19(8): 20230185, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37582403

RESUMO

Ocean acidification caused by anthropogenic carbon dioxide emissions alters the growth of marine calcifiers. Although the immediate effects of acidification from global ocean models have been well studied on calcifiers, their recovery capacity over a wide range of pH has never been evaluated. This aspect is crucial because acidification events that arise in coastal areas can far exceed global ocean predictions. However, such acidification events could occur transiently, allowing for recovery periods during which the effects on growth would be compensated, maintained or amplified. Here we evaluated the recovery capacity of a model calcifier, the Pacific oyster Crassostrea gigas. We exposed juveniles to 15 pH conditions between 6.4 and 7.8 for 14 days. Oyster growth was retarded below pH 7.1 while shells were corroded at pH 6.5. We then placed the oysters under ambient pH > 7.8 for 42 days. Growth retardation persisted at pH levels below pH 7.1 even after the stress was removed. However, despite persistent retardation, growth has resumed rapidly suggesting that the oysters can recover from extreme acidification. Yet we found that the differences in individual weight between pH conditions below 7.1 increased over time, and thus the growth retardation cannot be compensated and may affect the fitness of the bivalves.


Assuntos
Crassostrea , Água do Mar , Animais , Concentração de Íons de Hidrogênio , Dióxido de Carbono , Transtornos do Crescimento
19.
Biol Lett ; 19(5): 20230157, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37254520

RESUMO

Both the Cambrian explosion, more than half a billion years ago, and its Ordovician aftermath some 35 Myr later, are often framed as episodes of widespread ecological opportunity, but not all clades originating during this interval showed prolific rises in morphological or functional disparity. In a direct analysis of functional disparity, instead of the more commonly used proxy of morphological disparity, we find that ecological functions of Class Bivalvia arose concordantly with and even lagged behind taxonomic diversification, rather than the early-burst pattern expected for clades originating in supposedly open ecological landscapes. Unlike several other clades originating in the Cambrian explosion, the bivalves' belated acquisition of key anatomical novelties imposed a macroevolutionary lag, and even when those novelties evolved in the Early Ordovician, functional disparity never surpassed taxonomic diversity. Beyond this early period of animal evolution, the founding and subsequent diversification of new major clades and their functions might be expected to follow the pattern of the early bivalves-one where interactions between highly dynamic environmental and biotic landscapes and evolutionary contingencies need not promote prolific functional innovation.


Assuntos
Evolução Biológica , Bivalves , Animais , Fósseis , Filogenia
20.
Fish Shellfish Immunol ; 137: 108751, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37105424

RESUMO

Bivalve hemocytes have pivotal role as cellular biodefense. However, no information is available for cytological parameters, marker gene and function of the hemocytes in Yesso scallop, a commercially important aquaculture species worldwide. Due to their extremely strong cell aggregation ability, the scallop hemocytes were not able to assess as a single cell so far. In the present study, we established methodologies for studying the hemocytes of Yesso scallop, assessed cell morphology, measured seasonal fluctuation, and analyzed transcriptomes and cellular behavior during the immune response. Our results showed that the Yesso scallop possesses a single type of leukocyte-type hemocytes similar to other bivalve granulocytes circulating at an average of 1 × 107 cells/ml throughout the year. In addition, we identified five molecular marker genes specific to the scallop hemocytes. These hemocyte markers enabled us to precisely detect the hemocyte localization. Using these markers, we confirmed that tissue transplantation can experimentally induce an immune response, leading to the mobilization of circulating hemocytes for encapsulation. This study provides a comprehensive understanding of scallop hemocytes and their role in the cellular biodefense system of bivalves and various methods for cytological analysis.


Assuntos
Bivalves , Pectinidae , Animais , Hemócitos , Bivalves/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA