Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 178(6): 1437-1451.e14, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491387

RESUMO

CCCTC-binding factor (CTCF) and cohesin are key players in three-dimensional chromatin organization. The topologically associating domains (TADs) demarcated by CTCF are remarkably well conserved between species, although genome-wide CTCF binding has diverged substantially following transposon-mediated motif expansions. Therefore, the CTCF consensus motif poorly predicts TADs, and additional factors must modulate CTCF binding and subsequent TAD formation. Here, we demonstrate that the ChAHP complex (CHD4, ADNP, HP1) competes with CTCF for a common set of binding motifs. In Adnp knockout cells, novel insulated regions are formed at sites normally bound by ChAHP, whereas proximal canonical boundaries are weakened. These data reveal that CTCF-mediated loop formation is modulated by a distinct zinc-finger protein complex. Strikingly, ChAHP-bound loci are mainly situated within less diverged SINE B2 transposable elements. This implicates ChAHP in maintenance of evolutionarily conserved spatial chromatin organization by buffering novel CTCF binding sites that emerged through SINE expansions.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Retroelementos , Animais , Sítios de Ligação , Linhagem Celular , Homólogo 5 da Proteína Cromobox , Células-Tronco Embrionárias/citologia , Camundongos , Ligação Proteica , Domínios Proteicos
2.
Genes Dev ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960717

RESUMO

Retrotransposon control in mammals is an intricate process that is effectuated by a broad network of chromatin regulatory pathways. We previously discovered ChAHP, a protein complex with repressive activity against short interspersed element (SINE) retrotransposons that is composed of the transcription factor ADNP, chromatin remodeler CHD4, and HP1 proteins. Here we identify ChAHP2, a protein complex homologous to ChAHP, in which ADNP is replaced by ADNP2. ChAHP2 is predominantly targeted to endogenous retroviruses (ERVs) and long interspersed elements (LINEs) via HP1ß-mediated binding of H3K9 trimethylated histones. We further demonstrate that ChAHP also binds these elements in a manner mechanistically equivalent to that of ChAHP2 and distinct from DNA sequence-specific recruitment at SINEs. Genetic ablation of ADNP2 alleviates ERV and LINE1 repression, which is synthetically exacerbated by additional depletion of ADNP. Together, our results reveal that the ChAHP and ChAHP2 complexes function to control both nonautonomous and autonomous retrotransposons by complementary activities, further adding to the complexity of mammalian transposon control.

3.
Genes Dev ; 36(7-8): 468-482, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35450884

RESUMO

The nucleosome remodeling and deacetylase (NuRD) complex is one of the central chromatin remodeling complexes that mediates gene repression. NuRD is essential for numerous developmental events, including heart development. Clinical and genetic studies have provided direct evidence for the role of chromodomain helicase DNA-binding protein 4 (CHD4), the catalytic component of NuRD, in congenital heart disease (CHD), including atrial and ventricular septal defects. Furthermore, it has been demonstrated that CHD4 is essential for mammalian cardiomyocyte formation and function. A key unresolved question is how CHD4/NuRD is localized to specific cardiac target genes, as neither CHD4 nor NuRD can directly bind DNA. Here, we coupled a bioinformatics-based approach with mass spectrometry analyses to demonstrate that CHD4 interacts with the core cardiac transcription factors GATA4, NKX2-5, and TBX5 during embryonic heart development. Using transcriptomics and genome-wide occupancy data, we characterized the genomic landscape of GATA4, NKX2-5, and TBX5 repression and defined the direct cardiac gene targets of the GATA4-CHD4, NKX2-5-CHD4, and TBX5-CHD4 complexes. These data were used to identify putative cis-regulatory elements controlled by these complexes. We genetically interrogated two of these silencers in vivo: Acta1 and Myh11 We show that deletion of these silencers leads to inappropriate skeletal and smooth muscle gene misexpression, respectively, in the embryonic heart. These results delineate how CHD4/NuRD is localized to specific cardiac loci and explicates how mutations in the broadly expressed CHD4 protein lead to cardiac-specific disease states.


Assuntos
DNA Helicases , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Animais , DNA Helicases/metabolismo , Genes Homeobox , Mamíferos/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Miócitos Cardíacos/metabolismo , Nucleossomos , Fatores de Transcrição/genética
4.
Mol Cell ; 81(2): 239-254.e8, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33301730

RESUMO

Metazoan transcription factors typically regulate large numbers of genes. Here we identify via a CRISPR-Cas9 genetic screen ZNF410, a pentadactyl DNA-binding protein that in human erythroid cells directly activates only a single gene, the NuRD component CHD4. Specificity is conveyed by two highly evolutionarily conserved clusters of ZNF410 binding sites near the CHD4 gene with no counterparts elsewhere in the genome. Loss of ZNF410 in adult-type human erythroid cell culture systems and xenotransplantation settings diminishes CHD4 levels and derepresses the fetal hemoglobin genes. While previously known to be silenced by CHD4, the fetal globin genes are exposed here as among the most sensitive to reduced CHD4 levels.. In vitro DNA binding assays and crystallographic studies reveal the ZNF410-DNA binding mode. ZNF410 is a remarkably selective transcriptional activator in erythroid cells, and its perturbation might offer new opportunities for treatment of hemoglobinopathies.


Assuntos
DNA/genética , Células Precursoras Eritroides/metabolismo , Hemoglobina Fetal/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Fatores de Transcrição/genética , Animais , Sítios de Ligação , Células COS , Sistemas CRISPR-Cas , Chlorocebus aethiops , DNA/metabolismo , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/transplante , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Hemoglobina Fetal/metabolismo , Feto , Edição de Genes , Células HEK293 , Xenoenxertos , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/química , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Camundongos , Modelos Moleculares , Células-Tronco Embrionárias Murinas/citologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Ativação Transcricional
5.
EMBO J ; 42(21): e113448, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37737560

RESUMO

The nucleosome remodeling and histone deacetylase (NuRD) complex physically associates with BCL11B to regulate murine T-cell development. However, the function of NuRD complex in mature T cells remains unclear. Here, we characterize the fate and metabolism of human T cells in which key subunits of the NuRD complex or BCL11B are ablated. BCL11B and the NuRD complex bind to each other and repress natural killer (NK)-cell fate in T cells. In addition, T cells upregulate the NK cell-associated receptors and transcription factors, lyse NK-cell targets, and are reprogrammed into NK-like cells (ITNKs) upon deletion of MTA2, MBD2, CHD4, or BCL11B. ITNKs increase OPA1 expression and exhibit characteristically elongated mitochondria with augmented oxidative phosphorylation (OXPHOS) activity. OPA1-mediated elevated OXPHOS enhances cellular acetyl-CoA levels, thereby promoting the reprogramming efficiency and antitumor effects of ITNKs via regulating H3K27 acetylation at specific targets. In conclusion, our findings demonstrate that the NuRD complex and BCL11B cooperatively maintain T-cell fate directly by repressing NK cell-associated transcription and indirectly through a metabolic-epigenetic axis, providing strategies to improve the reprogramming efficiency and antitumor effects of ITNKs.


Assuntos
Histonas , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Animais , Humanos , Camundongos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Dinâmica Mitocondrial , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Linfócitos T/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
6.
Development ; 151(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619323

RESUMO

Regulation of chromatin states is essential for proper temporal and spatial gene expression. Chromatin states are modulated by remodeling complexes composed of components that have enzymatic activities. CHD4 is the catalytic core of the nucleosome remodeling and deacetylase (NuRD) complex, which represses gene transcription. However, it remains to be determined how CHD4, a ubiquitous enzyme that remodels chromatin structure, functions in cardiomyocytes to maintain heart development. In particular, whether other proteins besides the NuRD components interact with CHD4 in the heart is controversial. Using quantitative proteomics, we identified that CHD4 interacts with SMYD1, a striated muscle-restricted histone methyltransferase that is essential for cardiomyocyte differentiation and cardiac morphogenesis. Comprehensive transcriptomic and chromatin accessibility studies of Smyd1 and Chd4 null embryonic mouse hearts revealed that SMYD1 and CHD4 repress a group of common genes and pathways involved in glycolysis, response to hypoxia, and angiogenesis. Our study reveals a mechanism by which CHD4 functions during heart development, and a previously uncharacterized mechanism regarding how SMYD1 represses cardiac transcription in the developing heart.


Assuntos
DNA Helicases , Proteínas de Ligação a DNA , Regulação da Expressão Gênica no Desenvolvimento , Coração , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Miócitos Cardíacos , Fatores de Transcrição , Animais , Humanos , Camundongos , Diferenciação Celular/genética , Cromatina/metabolismo , Glicólise/genética , Coração/embriologia , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Camundongos Knockout , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Miócitos Cardíacos/metabolismo , Proteômica , Transcrição Gênica
7.
Genes Dev ; 33(13-14): 763-781, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31123064

RESUMO

Coordinated induction, but also repression, of genes are key to normal differentiation. Although the role of lineage-specific transcription regulators has been studied extensively, their functional integration with chromatin remodelers, one of the key enzymatic machineries that control chromatin accessibility, remains ill-defined. Here we investigate the role of Mi-2ß, a SNF-2-like nucleosome remodeler and key component of the nucleosome remodeling and histone deacetylase (NuRD) complex in early B cells. Inactivation of Mi-2ß arrested differentiation at the large pre-B-cell stage and caused derepression of cell adhesion and cell migration signaling factors by increasing chromatin access at poised enhancers and chromosome architectural elements. Mi-2ß also supported IL-7R signaling, survival, and proliferation by repressing negative effectors of this pathway. Importantly, overexpression of Bcl2, a mitochondrial prosurvival gene and target of IL-7R signaling, partly rescued the differentiation block caused by Mi-2ß loss. Mi-2ß stably associated with chromatin sites that harbor binding motifs for IKAROS and EBF1 and physically associated with these transcription factors both on and off chromatin. Notably, Mi-2ß shared loss-of-function cellular and molecular phenotypes with IKAROS and EBF1, albeit in a distinct fashion. Thus, the nucleosome remodeler Mi-2ß promotes pre-B-cell differentiation by providing repression capabilities to distinct lineage-specific transcription factor-based regulatory networks.


Assuntos
Linfócitos B/citologia , Diferenciação Celular/genética , Cromatina/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Animais , Linhagem da Célula , Proliferação de Células/genética , Sobrevivência Celular/genética , Células Cultivadas , Camundongos , Fatores de Transcrição
8.
Am J Hum Genet ; 110(3): 442-459, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36812914

RESUMO

Dysregulated Plastin 3 (PLS3) levels associate with a wide range of skeletal and neuromuscular disorders and the most common types of solid and hematopoietic cancer. Most importantly, PLS3 overexpression protects against spinal muscular atrophy. Despite its crucial role in F-actin dynamics in healthy cells and its involvement in many diseases, the mechanisms that regulate PLS3 expression are unknown. Interestingly, PLS3 is an X-linked gene and all asymptomatic SMN1-deleted individuals in SMA-discordant families who exhibit PLS3 upregulation are female, suggesting that PLS3 may escape X chromosome inactivation. To elucidate mechanisms contributing to PLS3 regulation, we performed a multi-omics analysis in two SMA-discordant families using lymphoblastoid cell lines and iPSC-derived spinal motor neurons originated from fibroblasts. We show that PLS3 tissue-specifically escapes X-inactivation. PLS3 is located ∼500 kb proximal to the DXZ4 macrosatellite, which is essential for X chromosome inactivation. By applying molecular combing in a total of 25 lymphoblastoid cell lines (asymptomatic individuals, individuals with SMA, control subjects) with variable PLS3 expression, we found a significant correlation between the copy number of DXZ4 monomers and PLS3 levels. Additionally, we identified chromodomain helicase DNA binding protein 4 (CHD4) as an epigenetic transcriptional regulator of PLS3 and validated co-regulation of the two genes by siRNA-mediated knock-down and overexpression of CHD4. We show that CHD4 binds the PLS3 promoter by performing chromatin immunoprecipitation and that CHD4/NuRD activates the transcription of PLS3 by dual-luciferase promoter assays. Thus, we provide evidence for a multilevel epigenetic regulation of PLS3 that may help to understand the protective or disease-associated PLS3 dysregulation.


Assuntos
Epigênese Genética , Atrofia Muscular Espinal , Feminino , Humanos , Masculino , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Proteínas dos Microfilamentos/genética , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética
9.
Genes Dev ; 32(11-12): 836-848, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29907651

RESUMO

Attenuation of pre-rRNA synthesis in response to elevated temperature is accompanied by increased levels of PAPAS ("promoter and pre-rRNA antisense"), a long noncoding RNA (lncRNA) that is transcribed in an orientation antisense to pre-rRNA. Here we show that PAPAS interacts directly with DNA, forming a DNA-RNA triplex structure that tethers PAPAS to a stretch of purines within the enhancer region, thereby guiding associated CHD4/NuRD (nucleosome remodeling and deacetylation) to the rDNA promoter. Protein-RNA interaction experiments combined with RNA secondary structure mapping revealed that the N-terminal part of CHD4 interacts with an unstructured A-rich region in PAPAS. Deletion or mutation of this sequence abolishes the interaction with CHD4. Stress-dependent up-regulation of PAPAS is accompanied by dephosphorylation of CHD4 at three serine residues, which enhances the interaction of CHD4/NuRD with RNA and reinforces repression of rDNA transcription. The results emphasize the function of lncRNAs in guiding chromatin remodeling complexes to specific genomic loci and uncover a phosphorylation-dependent mechanism of CHD4/NuRD-mediated transcriptional regulation.


Assuntos
DNA Ribossômico/genética , Regulação da Expressão Gênica/genética , Temperatura Alta , Regiões Promotoras Genéticas/genética , RNA Longo não Codificante/metabolismo , RNA Ribossômico/genética , Estresse Fisiológico/genética , Animais , Elementos Facilitadores Genéticos , Células HEK293 , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Camundongos , Células NIH 3T3 , Fosforilação , Estrutura Secundária de Proteína , RNA Ribossômico/biossíntese
10.
Immunol Rev ; 305(1): 29-42, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34927255

RESUMO

B lymphocytes develop from uncommitted precursors into immunoglobulin (antibody)-producing B cells, a major arm of adaptive immunity. Progression of early progenitors to antibody-expressing cells in the bone marrow is orchestrated by the temporal regulation of different gene programs at discrete developmental stages. A major question concerns how B cells control the accessibility of these genes to transcription factors. Research has implicated nucleosome remodeling ATPases as mediators of chromatin accessibility. Here, we describe studies of chromodomain helicase DNA-binding 4 (CHD4; also known as Mi-2ß) in early B cell development. CHD4 comprises multiple domains that function in nucleosome mobilization and histone binding. CHD4 is a key component of Nucleosome Remodeling and Deacetylase, or NuRD (Mi-2) complexes, which assemble with other proteins that mediate transcriptional repression. We review data demonstrating that CHD4 is necessary for B lineage identity: early B lineage progression, proliferation in response to interleukin-7, responses to DNA damage, and cell survival in vivo. CHD4-NuRD is also required for the Ig heavy-chain repertoire by promoting utilization of distal variable (VH ) gene segments in V(D)J recombination. In conclusion, the regulation of chromatin accessibility by CHD4 is essential for production of antibodies by B cells, which in turn mediate humoral immune responses to pathogens and disease.


Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Recombinação V(D)J , Linfócitos B/metabolismo , DNA , DNA Helicases/genética , DNA Helicases/metabolismo , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo
11.
J Virol ; 98(2): e0138623, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38240593

RESUMO

The Kaposi's sarcoma-associated herpesvirus (KSHV) genome consists of an approximately 140-kb unique coding region flanked by 30-40 copies of a 0.8-kb terminal repeat (TR) sequence. A gene enhancer recruits transcription-related enzymes by having arrays of transcription factor binding sites. Here, we show that KSHV TR possesses transcription regulatory function with latency-associated nuclear antigen (LANA). Cleavage under targets and release using nuclease demonstrated that TR fragments were occupied by LANA-interacting histone-modifying enzymes in naturally infected cells. The TR was enriched with histone H3K27 acetylation (H3K27Ac) and H3K4 tri-methylation (H3K4me3) modifications and also expressed nascent RNAs. The sites of H3K27Ac and H3K4me3 modifications were also conserved in the KSHV unique region among naturally infected primary effusion lymphoma cells. KSHV origin of lytic replication (Ori-Lyt) showed similar protein and histone modification occupancies with that of TR. In the Ori-Lyt region, the LANA and LANA-interacting proteins colocalized with an H3K27Ac-modified nucleosome along with paused RNA polymerase II. The KSHV transactivator KSHV replication and transcription activator (K-Rta) recruitment sites franked the LANA-bound nucleosome, and reactivation evicted the LANA-bound nucleosome. Including TR fragments in reporter plasmid enhanced inducible viral gene promoter activities independent of the orientations. In the presence of TR in reporter plasmids, K-Rta transactivation was drastically increased, while LANA acquired the promoter repression function. KSHV TR, therefore, functions as an enhancer for KSHV inducible genes. However, in contrast to cellular enhancers bound by multiple transcription factors, perhaps the KSHV enhancer is predominantly regulated by the LANA nuclear body.IMPORTANCEEnhancers are a crucial regulator of differential gene expression programs. Enhancers are the cis-regulatory sequences determining target genes' spatiotemporal and quantitative expression. Here, we show that Kaposi's sarcoma-associated herpesvirus (KSHV) terminal repeats fulfill the enhancer definition for KSHV inducible gene promoters. The KSHV enhancer is occupied by latency-associated nuclear antigen (LANA) and its interacting proteins, such as CHD4. Neighboring terminal repeat (TR) fragments to lytic gene promoters drastically enhanced KSHV replication and transcription activator and LANA transcription regulatory functions. This study, thus, proposes a new latency-lytic switch model in which TR accessibility to the KSHV gene promoters regulates viral inducible gene expression.


Assuntos
Herpesvirus Humano 8 , Proteínas Imediatamente Precoces , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiologia , Histonas/genética , Histonas/metabolismo , Nucleossomos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Latência Viral/genética , Antígenos Virais/genética , Antígenos Virais/metabolismo , Sequências Repetidas Terminais/genética , Regulação Viral da Expressão Gênica
12.
Biochem Biophys Res Commun ; 701: 149555, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325179

RESUMO

Fetal-to-adult hemoglobin switching is controlled by programmed silencing of γ-globin while the re-activation of fetal hemoglobin (HbF) is an effective strategy for ameliorating the clinical severity of ß-thalassemia and sickle cell disease. The identification of enhancer RNAs (eRNAs) related to the fetal (α2γ2) to adult hemoglobin (α2ß2) switching remains incomplete. In this study, the transcriptomes of GYPA+ cells from six ß-thalassemia patients with extreme HbF levels were sequenced to identify differences in patterns of noncoding RNA expression. It is interesting that an enhancer upstream of CHD4, an HbF-related core subunit of the NuRD complex, was differentially transcribed. We found a significantly positive correlation of eRNA-CHD4 enhancer-gene interaction using the public database of FANTOM5. Specifically, the eRNA-CHD4 expression was found to be significantly higher in both CD34+ HSPCs and HUDEP-2 than those in K562 cells which commonly expressed high level of HbF, suggesting a correlation between eRNA and HbF expression. Furthermore, prediction of transcription binding sites of cis-eQTLs and the CHD4 genomic region revealed a putative interaction site between rs73264846 and ZNF410, a known transcription factor regulating HbF expression. Moreover, in-vitro validation showed that the inhibition of eRNA could reduce the expression of HBG expression in HUDEP-2 cells. Taken together, the findings of this study demonstrate that a distal enhancer contributes to stage-specific silencing of γ-globin genes through direct modulation of CHD4 expression and provide insights into the epigenetic mechanisms of NuRD-mediated hemoglobin switching.


Assuntos
Anemia Falciforme , Talassemia beta , Adulto , Humanos , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismo , Talassemia beta/genética , Regulação da Expressão Gênica , Anemia Falciforme/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo
13.
J Transl Med ; 22(1): 99, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38268032

RESUMO

BACKGROUND: Cancer stem cells (CSCs) are a small population of cells in tumor tissues that can drive tumor initiation and promote tumor progression. A small number of previous studies indirectly mentioned the role of F-box and WD repeat domain-containing 7 (FBXW7) as a tumor suppressor in Triple-negative breast cancer (TNBC). However, few studies have focused on the function of FBXW7 in cancer stemness in TNBC and the related mechanism. METHODS: We detected FBXW7 by immunohistochemistry (IHC) in 80 TNBC patients. FBXW7 knockdown and overexpression in MD-MBA-231 and HCC1937 cell models were constructed. The effect of FBXW7 on malignant phenotype and stemness was assessed by colony assays, flow cytometry, transwell assays, western blot, and sphere formation assays. Immunoprecipitation-Mass Spectrometry (IP-MS) and ubiquitination experiments were used to find and verify potential downstream substrate proteins of FBXW7. Animal experiments were constructed to examine the effect of FBXW7 on tumorigenic potential and cancer stemness of TNBC cells in vivo. RESULTS: The results showed that FBXW7 was expressed at low levels in TNBC tissues and positively correlated with prognosis of TNBC patients. In vitro, FBXW7 significantly inhibited colony formation, cell cycle progression, cell migration, EMT process, cancer stemness and promotes apoptosis. Further experiments confirmed that chromodomain-helicase-DNA-binding protein 4 (CHD4) is a novel downstream target of FBXW7 and is downregulated by FBXW7 via proteasomal degradation. Moreover, CHD4 could promote the nuclear translocation of ß-catenin and reverse the inhibitory effect of FBXW7 on ß-catenin, and ultimately activate the Wnt/ß-catenin pathway. Rescue experiments confirmed that the FBXW7-CHD4-Wnt/ß-catenin axis was involved in regulating the maintenance of CSC in TNBC cells. In animal experiments, FBXW7 reduced CSC marker expression and suppressed TNBC cell tumorigenesis in vivo. CONCLUSIONS: Taken together, these results highlight that FBXW7 degrades CHD4 protein through ubiquitination, thereby blocking the activation of the Wnt/ß-catenin pathway to inhibit the stemness of TNBC cells. Thus, targeting FBXW7 may be a promising strategy for therapeutic intervention against TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Humanos , beta Catenina , Carcinogênese , Transformação Celular Neoplásica , Proteína 7 com Repetições F-Box-WD/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Neoplasias de Mama Triplo Negativas/genética
14.
Drug Resist Updat ; 66: 100913, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603431

RESUMO

AIMS: Chemoresistance remains a major challenge in gastric cancer (GC). Chromodomain helicase DNA-binding protein 4 (CHD4) mediated chromatin remodeling plays critical roles in various tumor types, but its role in chemoresistance in GC remains uncharacterized. METHODS: CHD4 expression was examined by immunohistochemistry and Western blotting. The role of CHD4 on cell proliferation and chemoresistance of GC was examined in vitro and in vivo. Immunoprecipitation and liquid chromatography-mass spectrometry were used to identify CHD4-binding proteins and a proximity ligation assay was used to explore protein-protein interaction. RESULTS: Chemoresistance is associated with upregulation of CHD4 in the tumor tissues of GC patients. Overexpression of CHD4 increased chemoresistance and cell proliferation. Knockdown of CHD4 induced cell apoptosis and cell cycle arrest. CHD4 mediates the decrease of the intracellular concentration of cisplatin by inducing drug efflux. Additionally, CHD4 promotes the interaction between ERK1/2 and MEK1/2, resulting in continuous activation of MEK/ERK pathway. Knockdown of CHD4 in GC increased sensitivity to chemotherapy and suppressed tumor growth in a mouse xenograft model. CONCLUSIONS: This study identifies CHD4 dominated multi-drug efflux as a promising therapeutic target for overcoming acquired chemoresistance in GC.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , Animais , Humanos , Camundongos , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Quinases de Proteína Quinase Ativadas por Mitógeno , MAP Quinases Reguladas por Sinal Extracelular/metabolismo
15.
Adv Exp Med Biol ; 1441: 467-480, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884726

RESUMO

Although atrial septal defects (ASD) can be subdivided based on their anatomical location, an essential aspect of human genetics and genetic counseling is distinguishing between isolated and familiar cases without extracardiac features and syndromic cases with the co-occurrence of extracardiac abnormalities, such as developmental delay. Isolated or familial cases tend to show genetic alterations in genes related to important cardiac transcription factors and genes encoding for sarcomeric proteins. By contrast, the spectrum of genes with genetic alterations observed in syndromic cases is diverse. Currently, it points to different pathways and gene networks relevant to the dysregulation of cardiomyogenesis and ASD pathogenesis. Therefore, this chapter reflects the current knowledge and highlights stable associations observed in human genetics studies. It gives an overview of the different types of genetic alterations in these subtypes, including common associations based on genome-wide association studies (GWAS), and it highlights the most frequently observed syndromes associated with ASD pathogenesis.


Assuntos
Estudo de Associação Genômica Ampla , Comunicação Interatrial , Humanos , Comunicação Interatrial/genética , Predisposição Genética para Doença/genética , Mutação
16.
Genes Cells ; 27(1): 61-71, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34897913

RESUMO

The CHD (chromodomain helicase DNA binding protein) family consists of nine chromatin remodeling factors that alter chromatin structure in an ATP-dependent manner. CHD4 contributes to the regulation of various cellular activities and processes including development through interaction with multiple proteins including formation of the NuRD (nucleosome remodeling and deacetylase activity) complex. Functions of CHD4 that appear not to be mediated by the NuRD complex or other known interactors have also been identified, however, suggesting the existence of unrecognized proteins that also associate with CHD4. We here generated HeLa-S3 and HEK293T cells with a knock-in allele for FLAG epitope-tagged CHD4 and used these cells to identify proteins that bind to CHD4 with the use of immunoprecipitation followed by liquid chromatography and tandem mass spectrometry. LCORL (ligand-dependent nuclear receptor corepressor like) and NOL4L (nucleolar protein 4 like) were reproducibly identified as novel CHD4 interactors. Furthermore, RNA-sequencing analysis of HEK293T cells depleted of CHD4, LCORL, or NOL4L revealed consistent up-regulation of genes related to the Notch signaling pathway. Our results thus suggest that both LCORL and NOL4L may cooperate with CHD4 to suppress the Notch pathway in mammalian cells.


Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Nucleossomos , Animais , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Proteínas
17.
Genes Dev ; 29(5): 489-94, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25737278

RESUMO

Hereditary cancers derive from gene defects that often compromise DNA repair. Thus, BRCA-associated cancers are sensitive to DNA-damaging agents such as cisplatin. The efficacy of cisplatin is limited, however, by the development of resistance. One cisplatin resistance mechanism is restoration of homologous recombination (HR), which can result from BRCA reversion mutations. However, in BRCA2 mutant cancers, cisplatin resistance can occur independently of restored HR by a mechanism that remains unknown. Here we performed a genome-wide shRNA screen and found that loss of the nucleosome remodeling factor CHD4 confers cisplatin resistance. Restoration of cisplatin resistance is independent of HR but correlates with restored cell cycle progression, reduced chromosomal aberrations, and enhanced DNA damage tolerance. Suggesting clinical relevance, cisplatin-resistant clones lacking genetic reversion of BRCA2 show de novo loss of CHD4 expression in vitro. Moreover, BRCA2 mutant ovarian cancers with reduced CHD4 expression significantly correlate with shorter progression-free survival and shorter overall survival. Collectively, our findings indicate that CHD4 modulates therapeutic response in BRCA2 mutant cancer cells.


Assuntos
Autoantígenos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Genes BRCA2/fisiologia , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Neoplasias Ovarianas/genética , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Feminino , Humanos , Mutação/genética , Neoplasias Ovarianas/tratamento farmacológico
18.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445725

RESUMO

The chromatin remodeler Chromodomain-helicase-DNA-binding protein 4 (CHD4) is crucial for the development of multiple organ systems. Functional mutations of CHD4 have recently been described in a developmental disorder, namely Siffrim-Hitz-Weiss syndrome (SIHIWES). Herein, we have generated a homozygous CHD4G1003D hESC line (WAe025-A-1) using CRISPR/eCas9-based gene editing in the WA-25 hESC line. The edited hESC line maintains normal karyotype, pluripotency, and ability to differentiate into three germ layers. This cell line will be a valuable resource for studying the functional role of CHD4 during the development and disease modeling of SIHIWES in vitro.


Assuntos
Células-Tronco Embrionárias Humanas , Humanos , Células-Tronco Embrionárias Humanas/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Linhagem Celular , Homozigoto , Proteínas de Ligação a DNA/metabolismo , Sistemas CRISPR-Cas/genética
19.
Arch Toxicol ; 96(6): 1739-1749, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35362730

RESUMO

Epigenetic complex NuRD (nucleosome remodeling and deacetylase) engages in a range of basic cellular processes, including chromatin modification. Changes in the activity of NuRD complex can influence gastric cancer progression. Multivariate logistic regression analyses were used to estimate the association between single-nucleotide polymorphisms (SNPs) and gastric cancer risk. Expression quantitative trait loci (eQTL) analysis was used to analyze the relationship between the genotypes and gene expression levels using data from the genotype tissue expression project (GTEx). Gene expression was calculated using databases from The Cancer Genome Atlas (TCGA) and The Gene Expression Omnibus (GEO). Kaplan-Meier plotter was used to evaluate the association between gene expression and survival. SNP rs11064275 T allele in CHD4, rs892022 A allele and rs2033481 A allele in GATAD2A were found to contribute to the decreased risk of gastric cancer. The increase in the number of favorable alleles of these three SNPs was associated with a lower risk of gastric cancer. rs2033481 and rs892022 were substantially correlated with GATAD2A mRNA expression levels. Meanwhile, we detected that the CHD4 and GATAD2A mRNA expression was increased in gastric cancer tissues compared with the adjacent normal tissues. Furthermore, we found that patients with higher CHD4 or GATAD2A mRNA expression level had more advantageous overall survival. Our findings indicated that genetic variants in NuRD complex subunits encoding genes may be promising predictors of gastric cancer risk.


Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Neoplasias Gástricas , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Nucleossomos/genética , RNA Mensageiro , Neoplasias Gástricas/genética
20.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36076959

RESUMO

The sarcomere regulates striated muscle contraction. This structure is composed of several myofibril proteins, isoforms of which are encoded by genes specific to either the heart or skeletal muscle. The chromatin remodeler complex Chd4/NuRD regulates the transcriptional expression of these specific sarcomeric programs by repressing genes of the skeletal muscle sarcomere in the heart. Aberrant expression of skeletal muscle genes induced by the loss of Chd4 in the heart leads to sudden death due to defects in cardiomyocyte contraction that progress to arrhythmia and fibrosis. Identifying the transcription factors (TFs) that recruit Chd4/NuRD to repress skeletal muscle genes in the myocardium will provide important information for understanding numerous cardiac pathologies and, ultimately, pinpointing new therapeutic targets for arrhythmias and cardiomyopathies. Here, we sought to find Chd4 interactors and their function in cardiac homeostasis. We therefore describe a physical interaction between Chd4 and the TF Znf219 in cardiac tissue. Znf219 represses the skeletal-muscle sarcomeric program in cardiomyocytes in vitro and in vivo, similarly to Chd4. Aberrant expression of skeletal-muscle sarcomere proteins in mouse hearts with knocked down Znf219 translates into arrhythmias, accompanied by an increase in PR interval. These data strongly suggest that the physical and genetic interaction of Znf219 and Chd4 in the mammalian heart regulates cardiomyocyte identity and myocardial contraction.


Assuntos
DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Fatores de Transcrição , Animais , Regulação da Expressão Gênica , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Camundongos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Nucleossomos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA