Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.558
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105683, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272220

RESUMO

Histidine-rich glycoprotein (HRG) is an abundant plasma protein harboring at least three N-glycosylation sites. HRG integrates many biological processes, such as coagulation, antiangiogenic activity, and pathogen clearance. Importantly, HRG is known to exhibit five genetic variants with minor allele frequencies of more than 10%. Among them, Pro204Ser can induce a fourth N-glycosylation site (Asn202). Considerable efforts have been made to reveal the biological function of HRG, whereas data on HRG glycosylation are scarcer. To close this knowledge gap, we used C18-based LC-MS/MS to study the glycosylation characteristics of six HRG samples from different sources. We used endogenous HRG purified from human plasma and compared its glycosylation to that of the recombinant HRG produced in Chinese hamster ovary cells or human embryonic kidney 293 cells, targeting distinct genotypic isoforms. In endogenous plasma HRG, every N-glycosylation site was occupied predominantly with a sialylated diantennary complex-type glycan. In contrast, in the recombinant HRGs, all glycans showed different antennarities, sialylation, and core fucosylation, as well as the presence of oligomannose glycans, LacdiNAcs, and antennary fucosylation. Furthermore, we observed two previously unreported O-glycosylation sites in HRG on residues Thr273 and Thr274. These sites together showed more than 90% glycan occupancy in all HRG samples studied. To investigate the potential relevance of HRG glycosylation, we assessed the plasmin-induced cleavage of HRG under various conditions. These analyses revealed that the sialylation of the N- and O-glycans as well as the genotype-dependent N-glycosylation significantly influenced the kinetics and specificity of plasmin-induced cleavage of HRG.


Assuntos
Fibrinolisina , Proteínas , Espectrometria de Massas em Tandem , Animais , Cricetinae , Humanos , Células CHO , Cricetulus , Fibrinolisina/química , Genótipo , Glicosilação , Polissacarídeos/química , Isoformas de Proteínas , Cromatografia Líquida de Alta Pressão
2.
Curr Issues Mol Biol ; 46(6): 6085-6099, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38921034

RESUMO

We produced a recombinant eel luteinizing hormone (rec-eel LH) analog with high potency in Chinese hamster ovary DG44 (CHO DG44) cells. The tethered eel LH mutant (LH-M), which had a linker comprising the equine chorionic gonadotropin (eLH/CG) ß-subunit carboxyl-terminal peptide (CTP) region (amino acids 115 to 149), was inserted between the ß-subunit and α-subunit of wild-type tethered eel LH (LH-wt). Monoclonal cells transfected with the tethered eel LH-wt and eel LH-M plasmids were isolated from five to nine clones of CHO DG44 cells, respectively. The secreted quantities abruptly increased on day 3, with peak levels of 5000-7500 ng/mL on day 9. The molecular weight of tethered rec-eel LH-wt was 32-36 kDa, while that of tethered rec-eel LH-M increased to approximately 38-44 kDa, indicating the detection of two bands. Treatment with the peptide N-glycanase F decreased the molecular weight by approximately 8 kDa. The oligosaccharides at the eCG ß-subunit O-linked glycosylation sites were appropriately modified post-translation. The EC50 value and maximal responsiveness of eel LH-M increased by approximately 2.90- and 1.29-fold, respectively, indicating that the mutant exhibited more potent biological activity than eel LH-wt. Phosphorylated extracellular regulated kinase (pERK1/2) activation resulted in a sharp peak 5 min after agonist treatment, with a rapid decrease thereafter. These results indicate that the new tethered rec-eel LH analog had more potent activity in cAMP response than the tethered eel LH-wt in vitro. Taken together, this new eel LH analog can be produced in large quantities using a stable CHO DG44 cell system.

3.
Curr Issues Mol Biol ; 46(1): 542-556, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38248337

RESUMO

We produced rec-single chain eel luteinizing (rec-eel LH) and follicle-stimulating (rec- eel FSH) hormones displaying high biological activity in Chinese hamster ovary suspension (CHO-S) cells. We constructed several mutants, in which a linker, including an O-linked glycosylated carboxyl-terminal peptide (CTP) of an equine chorionic gonadotropin (eCG) ß-subunit, was attached between the ß- and α-subunit (LH-M and FSH-M) or in the N-terminal (C-LH and C-FSH) or C-terminal (LH-C and FSH-C) regions. The plasmids were transfected into CHO-S cells, and culture supernatants were collected. The secretion of mutants from the CHO-S cells was faster than that of eel LHß/α-wt and FSHß/α-wt proteins. The molecular weight of eel LHß/α-wt and eel FSHß/α-wt was 32-34 and 34-36 kDa, respectively, and that of LH-M and FSH-M was 40-43 and 42-45 kDa, respectively. Peptide-N-glycanase F-treatment markedly decreased the molecular weight by approximately 8-10 kDa. The EC50 value and the maximal responsiveness of the eel LH-M and eel FSH-M increased compared with the wild-type proteins. These results show that the CTP region plays a pivotal role in early secretion and signal transduction. We suggest that novel rec-eel LH and FSH proteins, exhibiting potent activity, could be produced in large quantities using a stable CHO cell system.

4.
Metab Eng ; 81: 157-166, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081506

RESUMO

Rare diseases are, despite their name, collectively common and millions of people are affected daily of conditions where treatment often is unavailable. Sulfatases are a large family of activating enzymes related to several of these diseases. Heritable genetic variations in sulfatases may lead to impaired activity and a reduced macromolecular breakdown within the lysosome, with several severe and lethal conditions as a consequence. While therapeutic options are scarce, treatment for some sulfatase deficiencies by recombinant enzyme replacement are available. The recombinant production of such sulfatases suffers greatly from both low product activity and yield, further limiting accessibility for patient groups. To mitigate the low product activity, we have investigated cellular properties through computational evaluation of cultures with varying media conditions and comparison of two CHO clones with different levels of one active sulfatase variant. Transcriptome analysis identified 18 genes in secretory pathways correlating with increased sulfatase production. Experimental validation by upregulation of a set of three key genes improved the specific enzymatic activity at varying degree up to 150-fold in another sulfatase variant, broadcasting general production benefits. We also identified a correlation between product mRNA levels and sulfatase activity that generated an increase in sulfatase activity when expressed with a weaker promoter. Furthermore, we suggest that our proposed workflow for resolving bottlenecks in cellular machineries, to be useful for improvements of cell factories for other biologics as well.


Assuntos
Sulfatases , Humanos , Sulfatases/genética , Sulfatases/metabolismo
5.
Metab Eng ; 81: 53-69, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007176

RESUMO

We report a simple and effective means to increase the biosynthetic capacity of host CHO cells. Lonza proprietary CHOK1SV® cells were evolved by serial sub-culture for over 150 generations at 32 °C. During this period the specific proliferation rate of hypothermic cells gradually recovered to become comparable to that of cells routinely maintained at 37 °C. Cold-adapted cell populations exhibited (1) a significantly increased volume and biomass content (exemplified by total RNA and protein), (2) increased mitochondrial function, (3) an increased antioxidant capacity, (4) altered central metabolism, (5) increased transient and stable productivity of a model IgG4 monoclonal antibody and Fc-fusion protein, and (6) unaffected recombinant protein N-glycan processing. This phenotypic transformation was associated with significant genome-scale changes in both karyotype and the relative abundance of thousands of cellular mRNAs across numerous functional groups. Taken together, these observations provide evidence of coordinated cellular adaptations to sub-physiological temperature. These data reveal the extreme genomic/functional plasticity of CHO cells, and that directed evolution is a viable genome-scale cell engineering strategy that can be exploited to create host cells with an increased cellular capacity for recombinant protein production.


Assuntos
Cricetulus , Cricetinae , Animais , Temperatura , Células CHO , Biomassa , Proteínas Recombinantes
6.
Metab Eng ; 85: 94-104, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39047894

RESUMO

Characterizing the phenotypic diversity and metabolic capabilities of industrially relevant manufacturing cell lines is critical to bioprocess optimization and cell line development. Metabolic capabilities of production hosts limit nutrient and resource channeling into desired cellular processes and can have a profound impact on productivity. These limitations cannot be directly inferred from measured data such as spent media concentrations or transcriptomics. Here, we present an integrated multi-omic analysis pipeline combining exo-metabolomics, transcriptomics, and genome-scale metabolic network analysis and apply it to three antibody-producing Chinese Hamster Ovary cell lines to identify reprogramming features associated with high-producing clones and metabolic bottlenecks limiting product formation in an industrial bioprocess. Analysis of individual datatypes revealed a decreased nitrogenous byproduct secretion in high-producing clones and the topological changes in peripheral metabolic pathway expression associated with phase shifts. An integrated omics analysis in the context of the genome-scale metabolic model elucidated the differences in central metabolism and identified amino acid utilization bottlenecks limiting cell growth and antibody production that were not evident from exo-metabolomics or transcriptomics alone. Thus, we demonstrate the utility of a multi-omics characterization in providing an in-depth understanding of cellular metabolism, which is critical to efforts in cell engineering and bioprocess optimization.

7.
Metab Eng ; 84: 128-144, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38908817

RESUMO

Chinese hamster ovary (CHO) cells require cysteine for growth and productivity in fed-batch cultures. In intensified processes, supplementation of cysteine at high concentrations is a challenge due to its limited solubility and instability in solution. Methionine can be converted to cysteine (CYS) but key enzymes, cystathionine beta-synthase (Cbs) and cystathionine gamma-lyase (Cth), are not active in CHO cells resulting in accumulation of an intermediate, homocysteine (HCY), in cell culture milieu. In this study, Cbs and Cth were overexpressed in CHO cells to confer cysteine prototrophy, i.e., the ability to grow in a cysteine free environment. These pools (CbCt) needed homocysteine and beta-mercaptoethanol (ßME) to grow in CYS-free medium. To increase intracellular homocysteine levels, Gnmt was overexpressed in CbCt pools. The resultant cell pools (GnCbCt), post adaptation in CYS-free medium with decreasing residual HCY and ßME levels, were able to proliferate in the HCY-free, ßME-free and CYS-free environment. Interestingly, CbCt pools were also able to be adapted to grow in HCY-free and CYS-free conditions, albeit at significantly higher doubling times than GnCbCt cells, but couldn't completely adapt to ßME-free conditions. Further, single cell clones derived from the GnCbCt cell pool had a wide range in expression levels of Cbs, Cth and Gnmt and, when cultivated in CYS-free fed-batch conditions, performed similarly to the wild type (WT) cell line cultivated in CYS supplemented fed-batch culture. Intracellular metabolomic analysis showed that HCY and glutathione (GSH) levels were lower in the CbCt pool in CYS-free conditions but were restored closer to WT levels in the GnCbCt cells cultivated in CYS-free conditions. Transcriptomic analysis showed that GnCbCt cells upregulated several genes encoding transporters as well as methionine catabolism and transsulfuration pathway enzymes that support these cells to biosynthesize cysteine effectively. Further, 'omics analysis suggested CbCt pool was under ferroptotic stress in CYS-free conditions, which, when inhibited, enhanced the growth and viability of these cells in CYS-free conditions.


Assuntos
Cricetulus , Cisteína , Engenharia Metabólica , Células CHO , Animais , Cisteína/metabolismo , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Cricetinae , Homocisteína/metabolismo , Homocisteína/genética
8.
Metab Eng ; 83: 110-122, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561148

RESUMO

Especially for the production of artificial, difficult to express molecules a further development of the CHO production cell line is required to keep pace with the continuously increasing demands. However, the identification of novel targets for cell line engineering to improve CHO cells is a time and cost intensive process. Since plasma cells are evolutionary optimized for a high antibody expression in mammals, we performed a comprehensive multi-omics comparison between CHO and plasma cells to exploit optimized cellular production traits. Comparing the transcriptome, proteome, miRNome, surfaceome and secretome of both cell lines identified key differences including 392 potential overexpression targets for CHO cell engineering categorized in 15 functional classes like transcription factors, protein processing or secretory pathway. In addition, 3 protein classes including 209 potential knock-down/out targets for CHO engineering were determined likely to affect aggregation or proteolysis. For production phenotype engineering, several of these novel targets were successfully applied to transient and transposase mediated overexpression or knock-down strategies to efficiently improve productivity of CHO cells. Thus, substantial improvement of CHO productivity was achieved by taking nature as a blueprint for cell line engineering.


Assuntos
Cricetulus , Animais , Células CHO , Plasmócitos/metabolismo , Proteoma/metabolismo , Proteoma/genética , Transcriptoma , Engenharia Metabólica , Multiômica
9.
Metab Eng ; 82: 79-88, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290598

RESUMO

A significant problem during recombinant protein production is proteolysis. One of the most common preventive strategies is the addition of protease inhibitors, which has drawbacks, such as their short half-life and high cost, and their limited prevention of extracellular proteolysis. Actinomycetes produce the most commonly used inhibitors, which are non-ribosomal small aldehydic peptides. Previously, an unprecedented biosynthetic route involving a condensation-minus non-ribosomal peptide synthetase (NRPSs) and a tRNA utilizing enzyme (tRUE) was shown to direct the synthesis of one of these inhibitor peptides, livipeptin. Here, we show that expression of the livipeptin biosynthetic pathway encoded by the lvp genes in CHO cells resulted in the production of this metabolite with cysteine protease inhibitory activity, implying that mammalian tRNAs were recruited by the lvp system. CHO cells transiently expressing the biosynthetic pathway produced livipeptin without affecting cell growth or viability. Expression of the lvp system in CHO cells producing two model proteins, secreted alkaline phosphatase (hSeAP) and a monoclonal antibody, resulted in higher specific productivity with reduced proteolysis. We show for the first time that the expression of a bacterial biosynthetic pathway is functional in CHO cells, resulting in the efficient, low-cost synthesis of a protease inhibitor without adverse effects on CHO cells. This expands the field of metabolic engineering of mammalian cells by expressing the overwhelming diversity of actinomycetes biosynthetic pathways and opens a new option for proteolysis inhibition in bioprocess engineering.


Assuntos
Vias Biossintéticas , Peptídeos , Cricetinae , Animais , Cricetulus , Proteólise , Células CHO , Proteínas Recombinantes
10.
Biotechnol Bioeng ; 121(4): 1355-1365, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38079069

RESUMO

N-linked glycosylation is one of the most important post-translational modifications of monoclonal antibodies (mAbs) and is considered to be a critical quality attribute (CQA), as the glycan composition often has immunomodulatory effects. Since terminal galactose residues of mAbs can affect antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytolysis (CDC) activation, serum half-life, and antiviral activity it has to be monitored, controlled and modulated to ensure therapeutic effects. The ability of small noncoding microRNAs (miRNAs) to modulate glycosylation in Chinese hamster ovary (CHO) production cells was recently reported establishing miRNAs as engineering tools for modulation of protein glycosylation. In this study, we report the characterization and validation of miRNAs as engineering tools for increased (mmu-miR-452-5p, mmu-miR-193b-3p) or decreased (mmu-miR-7646-5p, mmu-miR-7243-3p, mmu-miR-1668, mmu-let-7c-1-3p, mmu-miR-7665-3p, mmu-miR-6403) degree of galactosylation. Furthermore, the biological mode of action regulating gene expression of the galactosylation pathway was characterized as well as their influence on bioprocess-related parameters. Most important, stable plasmid-based overexpression of these miRNAs represents a versatile tool for engineering N-linked galactosylation to achieve favorable phenotypes in cell lines for biopharmaceutical production.


Assuntos
MicroRNAs , Animais , Cricetinae , MicroRNAs/genética , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Células CHO , Cricetulus , Glicosilação
11.
Biotechnol Bioeng ; 121(2): 524-534, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37902645

RESUMO

In the biotechnology industry, ensuring the health and viability of mammalian cells, especially Chinese Hamster Ovary (CHO) cells, plays a significant role in the successful production of therapeutic agents. These cells are typically cultivated in aerated bioreactors, where they encounter fluid stressors from rapidly deforming bubbles. These stressors can disrupt essential biological processes and potentially lead to cell death. However, the impact of these transient, elevated stressors on cell viability remains elusive. In this study, we first employ /cgqamicrofluidics to expose CHO cells near to bubbles undergoing pinch-off, subsequently collecting and assaying the cells to quantify the reduction in viability. Observing a significant impact, we set out to understand this phenomenon. We leverage computational fluid dynamics and numerical particle tracking to map the stressor field history surrounding a rapidly deforming bubble. Separately, we expose CHO cells to a known stressor level in a flow constriction device, collecting and assaying the cells to quantify the reduction in viability. By integrating the numerical data and results from the flow constriction device experiments, we develop a predictive model for cell viability reduction. We validate this model by comparing its predictions to the earlier microfluidic results, observing good agreement. Our findings provide critical insights into the relationship between bubble-induced fluid stressors and mammalian cell viability, with implications for bioreactor design and cell culture protocol optimization in the biotechnology sector.


Assuntos
Biotecnologia , Microbolhas , Cricetinae , Animais , Cricetulus , Sobrevivência Celular , Células CHO , Reatores Biológicos
12.
Biotechnol Bioeng ; 121(1): 329-340, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37743807

RESUMO

A large number of companies observe polysorbate (PS) degradation and associated (sub-)visible particle formation in biological drug formulations, which compromise the stability of the drug product, ultimately posing a risk toward delivering innovative medicines to patients. The main culprits of PS degradation are hydrolytic host cell proteins (HCPs) originating from the production cell lines, which are mostly Chinese hamster ovary (CHO) cell derived. Here, a small portion of particularly difficult-to-remove HCPs-mainly lipases-cause hydrolytic cleavage of PS resulting in the accumulation of free fatty acid aggregates/particles. One possible mitigation strategy is the removal of such critical HCPs in the production cell line. Multigene regulation can be achieved via microRNAs (miRNAs) thereby serving as a smart tool to reduce the expression of different target genes using a single miRNA. To enable a tailored gene regulation of multiple specific target lipases self-designed and non-naturally occurring artificial miRNAs (amiRNA) can be designed. Based on micro-conserved regions in the mRNA sequence of two sets of target HCPs, we provide a proof-of-concept for a simultaneous multi-lipase knockdown in CHO cells using single amiRNAs. By this, we were not only able to reduce PS degradation but laid the foundation to expand this tool to other areas of cell line phenotype engineering.


Assuntos
MicroRNAs , Cricetinae , Animais , Humanos , Cricetulus , MicroRNAs/genética , Células CHO , Polissorbatos , Lipase , Técnicas de Silenciamento de Genes
13.
Biotechnol Bioeng ; 121(1): 395-402, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37902721

RESUMO

The gene therapy field has advanced in recent years with five recombinant adeno-associated virus (rAAV) based products winning Food and Drug Administration (FDA) approval. As the number of therapeutic applications and overall production demands for rAAV increase, it is valuable to evaluate rAAV production in different production cells. Chinese hamster ovary (CHO) cells have been a robust host for biomolecule manufacturing for more than 35 years. However, there is no report to our knowledge describing the use of CHO cells for rAAV production. In this study, we examined the ability of CHO cells to produce rAAV using a transient plasmid transfection approach. Our results demonstrated that CHO is capable of producing rAAV with detectable viral fundamental components including viral RNAs, proteins, and rAAV viral particles. We identified the expression of cap proteins as one of the limiting factors for rAAV production in CHO cells. We therefore added an additional cytomegalovirus (CMV)-Cap plasmid to the CHO transfection. After increasing cap protein expression, we detected rAAV titers as high as 3 × 108 viral genomes for every 2 × 109 capsids in CHO cells using a quintuple transfection method (standard AAV2 Rep/Cap, helper, gene of interest plasmids, plus CMV-E1, and CMV-Cap plasmids) with comparable full particle percent (average 15%) to that of human embryo kidney (HEK)-derived rAAV. Our study provides a foundation for potential rAAV production in CHO cells.


Assuntos
Infecções por Citomegalovirus , Vetores Genéticos , Animais , Cricetinae , Humanos , Cricetulus , Células CHO , Dependovirus/genética , Plasmídeos/genética
14.
Biotechnol Bioeng ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978356

RESUMO

Traditional Chinese hamster ovary (CHO) cell line development is based on random integration (RI) of transgene that causes clonal variation and subsequent large-scale clone screening. Therefore, site-specific integration (SSI) of transgenes into genomic hot spots has recently emerged as an alternative method for cell line development. However, the specific mechanisms underlying hot spot site formation remain unclear. In this study, we aimed to generate landing pad (LP) cell lines via the RI of transgenes encoding fluorescent reporter proteins flanked by recombination sites to facilitate recombinase-mediated cassette exchange. The RI-based LP cell line expressing high reporter levels with spontaneous C12orf35 locus deletion exhibited similar reporter fluorescent protein levels compared to targeted integrants with an identical reporter LP construct at the CHO genome hot spot, the C12orf35 locus. Additionally, Resf1, a C12orf35 locus gene, knockout (KO) in the RI-based LP cell line with conserved C12orf35 increased reporter expression levels, comparable to those in cell lines with C12orf35 locus disruption. These results indicate that the effect of SSI into the C12orf35 locus, a genomic hot spot, on high-level transgene expression was caused by C12orf35 disruption. In contrast to C12orf35 KO, KO at other well-known hot spot sites at specific loci of genes, including Fer1L4, Hprt1, Adgrl4, Clcc1, Dop1b, and Ddc, did not increase transgene expression. Overall, our findings suggest that C12orf35 is a promising engineering target and a hot spot for SSI-based cell line development.

15.
Biotechnol Bioeng ; 121(9): 2848-2867, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39138873

RESUMO

The fast-growing Chinese hamster lung (CHL)-YN cell line was recently developed for monoclonal antibody production. In this study, we applied a serum-free fed-batch cultivation process to immunoglobulin (Ig)G1-producing CHL-YN cells, which were then used to design a dynamic glucose supply system to stabilize the extracellular glucose concentration based on glucose consumption. Glucose consumption of the cultures rapidly oscillated following three phases of glutamine metabolism: consumption, production, and re-consumption. Use of the dynamic glucose supply prolonged the viability of the CHL-YN-IgG1 cell cultures and increased IgG1 production. Liquid chromatography with tandem mass spectrometry-based target metabolomics analysis of the extracellular metabolites during the first glutamine shift was conducted to search for depleted compounds. The results suggest that the levels of four amino acids, namely arginine, aspartate, methionine, and serine, were sharply decreased in CHL-YN cells during glutamine production. Supporting evidence from metabolic and gene expression analyses also suggest that CHL-YN cells acquired ornithine- and cystathionine-production abilities that differed from those in Chinese hamster ovary-K1 cells, potentially leading to proline and cysteine biosynthesis.


Assuntos
Anticorpos Monoclonais , Cricetulus , Glucose , Animais , Glucose/metabolismo , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/metabolismo , Cricetinae , Linhagem Celular , Meios de Cultura Livres de Soro , Metabolômica/métodos , Pulmão/metabolismo , Pulmão/citologia , Metaboloma , Imunoglobulina G/metabolismo , Células CHO , Técnicas de Cultura Celular por Lotes/métodos , Glutamina/metabolismo
16.
Biotechnol Bioeng ; 121(9): 2907-2923, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38924052

RESUMO

Continuously secreted by all cell types, extracellular vesicles (EVs) are small membrane-bound structures which shuttle bioactive cargo between cells across their external environment. Their central role as natural molecular messengers and ability to cross biological barriers has garnered significant attention in the use of EVs as therapeutic delivery vehicles. Still, harnessing the potential of EVs is faced with many obstacles. A cell line engineering approach can be used to exploit EVs to encapsulate a bespoke cargo of interest. However, full details regarding native EV-loading mechanisms remain under debate, making this a challenge. While Chinese hamster ovary (CHO) cells are well known to be the preferred host for recombinant therapeutic protein production, their application as an EV producer cell host has been largely overlooked. In this study, we engineered CHO DG44 cells to produce custom EVs with bespoke cargo. To this end, genetic constructs employing split green fluorescent protein technology were designed for tagging both CD81 and protein cargoes to enable EV loading via self-assembling activity. To demonstrate this, NanoLuc and mCherry were used as model reporter cargoes to validate engineered loading into EVs. Experimental findings indicated that our custom EV approach produced vesicles with up to 15-fold greater cargo compared with commonly used passive loading strategies. When applied to recipient cells, we observed a dose-dependent increase in cargo activity, suggesting successful delivery of engineered cargo via our custom CHO EVs.


Assuntos
Cricetulus , Vesículas Extracelulares , Animais , Células CHO , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/genética , Cricetinae , Engenharia Celular/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biossíntese
17.
Biotechnol Bioeng ; 121(4): 1244-1256, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38192095

RESUMO

During the scale-up of biopharmaceutical production processes, insufficiently predictable performance losses may occur alongside gradients and heterogeneities. To overcome such performance losses, tools are required to explain, predict, and ultimately prohibit inconsistencies between laboratory and commercial scale. In this work, we performed CHO fed-batch cultivations in the single multicompartment bioreactor (SMCB), a new scale-down reactor system that offers new access to study large-scale heterogeneities in mammalian cell cultures. At volumetric power inputs of 20.4-1.5 W m-3, large-scale characteristics like long mixing times and dissolved oxygen (DO) heterogeneities were mimicked in the SMCB. Compared to a reference bioreactor (REFB) set-up, the conditions in the SMCB provoked an increase in lactate accumulation of up to 87%, an increased glucose uptake, and reduced viable cell concentrations in the stationary phase. All are characteristic for large-scale performance. The unique possibility to distinguish between the effects of changing power inputs and observed heterogeneities provided new insights into the potential reasons for altered product quality attributes. Apparently, the degree of galactosylation in the evaluated glycan patterns changed primarily due to the different power inputs rather than the provoked heterogeneities. The SMCB system could serve as a potent tool to provide new insights into scale-up behavior and to predict cell line-specific drawbacks at an early stage of process development.


Assuntos
Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Animais , Cricetinae , Linhagem Celular , Células CHO , Cricetulus , Oxigênio
18.
Biotechnol Bioeng ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659198

RESUMO

Chinese hamster ovary (CHO) cells are widely used to manufacture biopharmaceuticals, most of all monoclonal antibodies (mAbs). Some CHO cell lines exhibit production instability, where the productivity of the cells decreases as a function of time in culture. To counter this, we designed a passaging strategy that, rather than maximizing the time spent in log-growth phase, mimics the first 7 days of a fed-batch production process. Cultures passaged using this method had lower net growth rates and were more oxidative throughout 6 weeks of passaging. Fed-batch cultures inoculated by cells passaged using this method had increased net growth rates, oxidative metabolism, and volumetric productivity compared to cells passaged using a conventional strategy. Cells from unstable cell lines passaged by this new method produced 80%-160% more mAbs per unit volume than cells passaged by a conventional method. This new method, named Super7, provides the ability to mitigate the impact of production instability in CHO-K1 cell lines without a need for further cell line creation, genetic engineering, or medium development.

19.
Biotechnol Bioeng ; 121(2): 696-709, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994547

RESUMO

Intensified fed-batch (IFB), a popular cell culture intensification strategy, has been widely used for productivity improvement through high density inoculation followed by fed-batch cultivation. However, such an intensification strategy may counterproductively induce rapidly progressing cell apoptosis and difficult-to-sustain productivity. To improve culture performance, we developed a novel cell culture process intermittent-perfusion fed-batch (IPFB) which incorporates one single or multiple cycles of intermittent perfusion during an IFB process for better sustained cellular and metabolic behaviors and notably improved productivity. Unlike continuous perfusion or other semi-continuous processes such as hybrid perfusion fed-batch with only early-stage perfusion, IPFB applies limited times of intermittent perfusion in the mid-to-late stage of production and still inherits bolus feedings on nonperfusion days as in a fed-batch culture. Compared to IFB, an average titer increase of ~45% was obtained in eight recombinant CHO cell lines studied. Beyond IPFB, ultra-intensified IPFB (UI-IPFB) was designed with a markedly elevated seeding density of 20-80 × 106 cell/mL, achieved through the conventional alternating tangential flow filtration (ATF) perfusion expansion followed with a cell culture concentration step using the same ATF system. With UI-IPFB, up to ~6 folds of traditional fed-batch and ~3 folds of IFB productivity were achieved. Furthermore, the application grounded in these two novel processes showed broad-based feasibility in multiple cell lines and products of interest, and was proven to be effective in cost of goods reduction and readily scalable to a larger scale in existing facilities.


Assuntos
Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Cricetinae , Animais , Cricetulus , Células CHO , Perfusão
20.
Biotechnol Bioeng ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101569

RESUMO

Transient gene expression (TGE) in Chinese hamster ovary (CHO) cells offers a route to accelerate biologics development by delivering material weeks to months earlier than what is possible with conventional cell line development. However, low productivity, inconsistent product quality profiles, and scalability challenges have prevented its broader adoption. In this study, we develop a scalable CHO-based TGE system achieving 1.9 g/L of monoclonal antibody in an unmodified host. We integrated continuous flow-electroporation and alternate tangential flow (ATF) perfusion to enable an end-to-end closed system from N-1 perfusion to fed-batch 50-L bioreactor production. Optimization of both the ATF operation for three-in-one application-cell growth, buffer exchange, and cell mass concentration-and the flow-electroporation process, led to a platform for producing biotherapeutics using transiently transfected cells. We demonstrate scalability up to 50-L bioreactor, maintaining a titer over 1 g/L. We also show comparable quality between both transiently and stably produced material, and consistency across batches. The results confirm that purity, charge variants and N-glycan profiles are similar. Our study demonstrates the potential of CHO-based TGE platforms to accelerate biologics process development timelines and contributes evidence supporting its feasibility for manufacturing early clinical material, aiming to strengthen endorsement for TGE's wider implementation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA