Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Geochem Health ; 45(2): 507-523, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35022880

RESUMO

Climate change is a global challenge that is accelerated by contamination with hazardous substances like arsenic (As), posing threat to the agriculture, ecosystem and human health. Here, we explored the impact of various ameliorants on geochemical distribution of As in two soils with contrasting textures (sandy clay loam (Khudpur Village) and clay loam (Mattital Village)) under paddy soil conditions and their influence on the CO2-carbon efflux. The exchangeable As pool in clay loam soil increased as: lignite (0.4%) < biogas slurry (6%) < cow dung (9%), and < biochar (20%). However, in the sandy clay loam soil exchangeable soil As pool was found to be maximum with farmyard manure followed by biogas slurry, biochar and cow dung (17%, 14%, 13% and 7%, respectively). Interestingly, in the sandy clay loam soil the percentage As distribution in organic fraction was: biochar (38%) > cow dung (33%) > biogas slurry (23%) > sugarcane bagasse (22%) > farmyard manure (21%) that was higher compared to the clay loam soil (< 6% for all the amendments). In addition to the highest As immobilization by biochar in sandy clay loam soil, it also led to the lowest CO2-carbon efflux (1470 CO2-C mg kg-1) among all the organic/inorganic amendments. Overall, the current study advances our understanding on the pivotal role of organic amendments, notably biochar, in immobilizing As under paddy soil conditions with low (CO2) carbon loss, albeit it is dependent on soil and ameliorant types.


Assuntos
Arsênio , Saccharum , Humanos , Solo/química , Carbono , Argila/química , Celulose , Dióxido de Carbono , Esterco , Ecossistema , Biocombustíveis , Carvão Vegetal/química , Areia
2.
Environ Geochem Health ; 41(4): 1705-1722, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28424945

RESUMO

A 30-day incubation experiment was conducted using a heavy metal-contaminated mined soil amended with date palm feedstock (FS) and its derivative biochars (BCs) at three pyrolysis temperatures of 300 (BC-300), 500 (BC-500), and 700 °C (BC-700) with different application rates (0.0, 5, 15, and 30 g kg-1) to investigate their short-term effects on soil respiration (CO2-C efflux), microbial biomass carbon (MBC), soil organic carbon (SOC), mobile fraction of heavy metals (Cd, Cu, Pb, Zn, Mn, and Fe), pH, and electrical conductivity (EC). The results showed that FS and BC-300 with increasing addition rate significantly reduced soil pH, whereas SOC, CO2-C efflux, and soil MBC were increased compared to the control. On the contrary, BC-500 and BC-700 increased soil pH at early stage of incubation and have small or no effects on SOC, CO2-C efflux, and MBC. Based on the results, the date palm biochars exhibited much lower cumulative CO2-C efflux than feedstock, even with low-temperature biochar, indicating that BCs have C sequestration potential. Applying BC-700 at 15 and 30 g kg-1 significantly reduced cumulative CO2-C efflux by 21.8 and 45.4% compared to the control, respectively. The incorporation of FS into contaminated soil significantly increased the mobile content of Cd and Mn, but decreased the mobile content of Cu. However, BC-300 significantly reduced the mobile content of Cd, Cu, Pb, and Zn. It could be concluded that low-temperature biochar could be used as a soil amendment for reducing heavy metal mobility in mining contaminated soil in addition to minimize soil CO2-C efflux.


Assuntos
Carvão Vegetal/química , Metais Pesados/química , Phoeniceae/química , Microbiologia do Solo , Poluentes do Solo/química , Biomassa , Carbono/metabolismo , Carvão Vegetal/análise , Carvão Vegetal/metabolismo , Condutividade Elétrica , Recuperação e Remediação Ambiental/métodos , Concentração de Íons de Hidrogênio , Metais Pesados/análise , Mineração , Pirólise , Solo/química , Poluentes do Solo/análise , Temperatura , Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA