Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Glycoconj J ; 41(1): 47-55, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38224414

RESUMO

The Streptococcus pneumoniae bacteria has over 100 known serotypes that display a continuous change in prevalence by patients' age and geographical location and therefore necessitate continued efforts toward development of new vaccines with broader protection. Glycoconjugate vaccines have been instrumental in reducing global morbidity and mortality caused by Streptococcus pneumoniae infections. In these vaccines, the bacterial polysaccharide is conjugated to a carrier protein to enhance immunogenicity. To ensure well defined immunogenicity and stability of conjugated vaccines, reliable quantification of non-conjugated (free) polysaccharide is a critical, albeit challenging step during vaccine clinical dosing, release and stability monitoring. Multivalent preparations of Cross-reactive material 197 (CRM197)- conjugated pneumococcal polysaccharide materials often contain only nanogram levels of each individual free polysaccharide at final container concentrations. We have developed a novel method for the separation of free polysaccharides from conjugated material that requires no sample derivatization, employing instead an approach of quantitative immunoprecipitation of CRM197 with 3 different monoclonal antibodies and magnetic beads. A mix of antibodies against both linear and conformational epitopes enables successful removal of conjugates regardless of the protein folded state. The remaining free polysaccharide is subsequently measured in a serotype-specific ELISA.


Assuntos
Polissacarídeos Bacterianos , Streptococcus pneumoniae , Humanos , Sorogrupo , Vacinas Conjugadas , Vacinas Pneumocócicas , Anticorpos Antibacterianos
2.
Bioorg Med Chem ; 100: 117615, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38342079

RESUMO

sTF (sialyl-Thomsen-Friedenreich) is a type of tumor-associated carbohydrate antigens (TACAs) and is highly expressed in various human malignancies. To validate if sTF could be a valuable molecular target for future cancer vaccine development, in this work the sTF antigen was prepared by adopting a strategy combining chemical and enzymatic methods, and then was covalently conjugated to a carrier protein, CRM197. The preliminary immunological evaluation, performed on BALB/c mice, revealed that the sTF-CRM197 conjugate elicited high titers of specific IgG antibodies. FACS experiments showed that the antisera induced by sTF-CRM197 conjugate could specifically recognize and bind to sTF-positive cancer cells T-47D. Furthermore, the conjugate mediated effective and specific antibody-mediated complement-dependent cytotoxicity (CDC).


Assuntos
Anticorpos , Antígenos Glicosídicos Associados a Tumores , Animais , Camundongos , Humanos , Antígenos Glicosídicos Associados a Tumores/química , Proteínas de Bactérias/química
3.
Biotechnol Lett ; 44(11): 1313-1322, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36161539

RESUMO

OBJECTIVES: The aim of the present work was to identify a time-saving, effective, and low-cost strategy to produce in Escherichia coli a protein chimera representing a fusion anti-SARS-CoV-2 candidate vaccine, consisting of immunogenic and antigenic moieties. RESULTS: We overexpressed in E. coli BL21(DE3) a synthetic gene coding for CRM197-RBD, and the target protein was detected in inclusion bodies. CRM197-RBD was solubilized with 1 % (w/v) of the anionic detergent N-lauroylsarcosine (sarkosyl), the removal of which from the protein solution was conveniently accomplished with Amberlite XAD-4. The detergent-free CRM197-RBD was then separated from contaminating DNA using polyethylenimine (PEI), and finally purified from PEI by salting out with ammonium sulfate. Structural (CD spectrum) and functional (DNase activity) assays revealed that the CRM197-RBD chimera featured a native and active conformation. Remarkably, we determined a yield of purified CRM197-RBD equal to 23 mg per litre of culture. CONCLUSIONS: To produce CRM197-RBD, we devised the use of sarkosyl as an alternative to urea to solubilize the target protein from E. coli inclusion bodies, and the easy removal of sarkosyl by means of Amberlite XAD-4.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19/biossíntese , Escherichia coli , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
4.
Biochem Biophys Res Commun ; 558: 79-85, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33906110

RESUMO

During 2020, the COVID-19 pandemic affected almost 108 individuals. Quite a number of vaccines against COVID-19 were therefore developed, and a few recently received authorization for emergency use. Overall, these vaccines target specific viral proteins by antibodies whose synthesis is directly elicited or indirectly triggered by nucleic acids coding for the desired targets. Among these targets, the receptor binding domain (RBD) of COVID-19 spike protein (SP) does frequently occur in the repertoire of candidate vaccines. However, the immunogenicity of RBD per se is limited by its low molecular mass, and by a structural rearrangement of full-length SP accompanied by the detachment of RBD. Here we show that the RBD of COVID-19 SP can be conveniently produced in Escherichia coli when fused to a fragment of CRM197, a variant of diphtheria toxin currently used for a number of conjugated vaccines. In particular, we show that the CRM197-RBD chimera solubilized from inclusion bodies can be refolded and purified to a state featuring the 5 native disulphide bonds of the parental proteins, the competence in binding angiotensin-converting enzyme 2, and a satisfactory stability at room temperature. Accordingly, our observations provide compulsory information for the development of a candidate vaccine directed against COVID-19.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Escherichia coli , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/isolamento & purificação , Sequência de Bases , Vacinas contra COVID-19/química , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Escherichia coli/genética , Escherichia coli/metabolismo , Corpos de Inclusão/química , Corpos de Inclusão/metabolismo , Espectrometria de Massas , Modelos Moleculares , Redobramento de Proteína , Estabilidade Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , SARS-CoV-2/química , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/biossíntese , Glicoproteína da Espícula de Coronavírus/isolamento & purificação , Temperatura , Fatores de Tempo
5.
Appl Microbiol Biotechnol ; 105(4): 1683-1692, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33511443

RESUMO

Diphtheria and tetanus toxoids and acellular pertussis (DTaP) vaccines were widely used since 1940s. The exceptional success of childhood vaccination is undisputed. However, the anti-diphtheria and tetanus antibody will decrease with the increase of age in human body. A boosting vaccine for tetanus and diphtheria in adult is recommended by WHO. Recombinant protein vaccine has the advantages of single component and high safety, which is one of the directions to develop boosting vaccines. Therefore, in this study, we evaluated a recombinant TTc and CRM197 combination vaccine (RTCV) that uses the fragment C (TTc) of tetanus toxin and the cross-reacting material 197 (CRM197) of the diphtheria toxin mutant. Our results displayed that RTCV (composed of 10 µg/mL TTc, 20 µg/mL CRM197 antigens, and 500 µg/mL aluminum adjuvants) could induce high levels of IgG and IgG1 antibody in mice, which were similar as those induced by DTaP. These results will provide technical support for a novel boosting vaccine against diphtheria and tetanus. KEY POINTS: • We successfully expressed CRM197 protein in E. coli BL21 (DE3) using pET26b (+) vector. • The anti-TTc and anti-CRM197 antibody titer (IgG) of RTCV was similar with DTaP.


Assuntos
Escherichia coli , Toxina Tetânica , Animais , Anticorpos Antibacterianos , Proteínas de Bactérias , Escherichia coli/genética , Imunização Secundária , Camundongos , Toxina Tetânica/genética , Vacinas Combinadas
6.
Biologicals ; 72: 1-9, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34247915

RESUMO

Shigellosis, a diarrheal disorder caused by an entero-invasive bacterium Shigella, is a major concern among children often leading to mortality. As most of these strains have developed universal antibiotic resistance, the development of a vaccine is crucial in combating the infection. The O-specific polysaccharide (O-PSs) from S. flexneri type 2a is considered to be the major disease-causing antigen in shigellosis. Therefore, the O-PSs conjugated with carrier proteins, can serve as a potential high molecular weight vaccine candidate. Accordingly, in the present study, O-PS extracted from S. flexneri 2a is conjugated with Cross-Reactive Material (CRM197), a non-toxic mutant of diphtheria toxin. We derivatized CRM197 and O-PS separately with adipic acid dihydrazide (ADH) and reacted with their counterparts to probe the conjugation efficacy. Among the two strategies, the CRM197-ADH treated with O-PS has yielded a stable glycoconjugate of 311 kDa. The conjugation efficiency has been probed by estimating the free protein, free O-PS and O-PS:CRM197 ratio using slot-blot, size exclusion and high-performance anion exchange chromatography techniques. The conjugate exhibited enhanced shelf-life of three months. The cytotoxicity studies with Vero/MRC-5 cells have confirmed the non-toxicity of the conjugate, which makes the glycoconjugate a potential vaccine candidate for shigellosis.


Assuntos
Disenteria Bacilar , Glicoconjugados , Antígenos O , Vacinas contra Shigella/imunologia , Shigella flexneri , Animais , Chlorocebus aethiops , Disenteria Bacilar/prevenção & controle , Vacinas Conjugadas , Células Vero
7.
Glycoconj J ; 37(5): 611-622, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32535667

RESUMO

Conjugation chemistry is one of the main parameters affecting immunogenicity of glycoconjugate vaccines and a rational approach toward a deeper understanding of their mechanism of action will greatly benefit from highly-defined and well-characterized structures. Herein, different conjugation methods were investigated with the aim of controlling glycosylation site and glycosylation density on the carrier protein. S. Typhimurium lipopolysaccharide O-Antigen and CRM197 carrier protein were used as models. In particular, thiol and click chemistry were examined, both involving the linkage of the terminal reducing sugar unit of the O-Antigen chain to different amino acids on the carrier protein. Thiol chemistry allowed O-Antigen conjugation only when the carrier protein was activated on the lysines and with a relative high number of linkers, while click chemistry allowed conjugate generation even when just one position on the protein was activated and to both lysine and tyrosine sites. The study highlights click chemistry as a leading approach for the synthesis of well-defined glycoconjugates, useful to investigate the relationship between conjugate design and immune response.


Assuntos
Proteínas de Transporte/química , Glicoconjugados/química , Compostos de Sulfidrila/química , Vacinas/química , Proteínas de Bactérias/química , Proteínas de Bactérias/uso terapêutico , Proteínas de Transporte/uso terapêutico , Química Click , Glicoconjugados/biossíntese , Glicoconjugados/imunologia , Glicoconjugados/uso terapêutico , Humanos , Lipopolissacarídeos/química , Lipopolissacarídeos/imunologia , Antígenos O/química , Antígenos O/imunologia , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Infecções por Salmonella/prevenção & controle , Salmonella typhimurium/química , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , Compostos de Sulfidrila/uso terapêutico , Vacinas/biossíntese , Vacinas/imunologia , Vacinas/uso terapêutico
8.
J Sep Sci ; 43(14): 2880-2888, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32388927

RESUMO

In this study, a solid-phase extraction with liquid chromatography and tandem mass spectrometry method was developed to determine the degree of glycosylation of glycosylation sites and the ratio of free carrier protein to total carrier protein for glycoconjugate vaccines. To remove and enrich the glycosylated peptides, a solid-phase extraction method was developed, optimized, and hyphenated to liquid chromatography-tandem mass spectrometry. The developed solid-phase extraction with liquid chromatography-tandem mass spectrometry method was shown to possess a wide linear dynamic range (0.03-100 µg/mL), a high sensitivity (0.03 µg/mL for CRM197), good interday and intra-day precision (relative standard deviation of peak area < 3.3%), and good recoveries from vaccine matrix (90-105%). Finally, the method was utilized to determine the degree of glycosylation and free carrier protein to total carrier protein ratio for pneumococcal conjugate vaccines and meningococcal vaccines. For quality evaluation of glycoconjugate vaccines, the method could provide more information than the traditional size exclusion chromatography method. Fourteen and twelve reported glycosylation sites for CRM197- and tetanus toxin-based vaccines can be detected, respectively.


Assuntos
Glicoconjugados/análise , Vacinas/análise , Cromatografia Líquida , Glicoconjugados/metabolismo , Glicosilação , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Vacinas/metabolismo
9.
Arch Toxicol ; 94(5): 1753-1761, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32266418

RESUMO

Diphtheria toxin (DT) efficiently inhibits protein synthesis in human cells, resulting in severe disease diphtheria. The sensitivity towards DT varies between mammalian species. Mice and rats are resistant to DT. However, the reason underlying this insensitivity is controversially discussed and not well understood. Therefore, we investigated the steps of DT uptake, i.e. receptor binding and internalization into mouse J774A.1 macrophages and primary rat fibroblasts. We exploited the non-toxic DT-mutant cross-reacting material 197 (CRM197) and three additional receptor binding-deficient mutants (250 nM each) to investigate binding to cell surface and internalization into murine cells via flow cytometry and stimulated emission depletion (STED) super-resolution optical microscopy. Dual-color STED imaging unveiled CRM197 interacting with the murine precursor of the heparin-binding epidermal growth factor-like growth factor (HB-EGF). Moreover, we identified CRM197's transmembrane domain as an additional HB-EGF binding site, which is also involved in the receptor-mediated internalization into murine cells. However, we do not find evidence for translocation of the catalytically active subunit (DTA) into the cytosol when 250 nM DT were applied. In conclusion, we provide evidence that the resistance of murine cells to DT is caused by an insufficiency of DTA to escape from endosomes and reach the cytosol. Possibly, a higher affinity interaction of DT and the HB-EGF is required for translocation, which highlights the role of the receptor in the endosomes during the translocation step. We extend the current knowledge about cellular uptake of the medically relevant DT and CRM197.


Assuntos
Proteínas de Bactérias , Toxina Diftérica/toxicidade , Sequência de Aminoácidos , Animais , Sítios de Ligação , Fator de Crescimento Epidérmico , Fibroblastos , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Humanos , Camundongos , Microscopia , Ligação Proteica , Ratos , Receptores de Superfície Celular
10.
J Infect Dis ; 220(1): 105-115, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-30778554

RESUMO

BACKGROUND: Group B streptococcus (GBS) causes serious diseases in newborn infants, often resulting in lifelong neurologic impairments or death. Prophylactic vaccination of pregnant women prior to delivery could provide comprehensive protection, as early onset and late-onset disease and maternal complications potentially could be addressed. METHODS: Capsular polysaccharide conjugate vaccine GBS6 was designed using surveillance data yielded by whole-genome sequencing of a global collection of recently recovered GBS isolates responsible for invasive neonatal GBS disease. Capsular polysaccharides were isolated, oxidized using sodium periodate, and conjugated to CRM197 by reductive amination in dimethyl sulfoxide. Immune responses in mice and rhesus macaques were measured in a multiplex Luminex immunoglobulin G (IgG) assay and opsonophagocytic activity assays. RESULTS: The optimized conjugates were immunogenic, alone and in combination, in mice and rhesus macaques, inducing IgG antibodies that mediated opsonophagocytic killing. Active immunization of murine dams with GBS6 prior to mating resulted in serotype-specific protection of pups from a lethal challenge with GBS. Protection following passive administration of serotype-specific IgG monoclonal antibodies to dams demonstrated conclusively that anticapsular polysaccharide IgG alone is sufficient for protection. CONCLUSIONS: The findings support the ongoing clinical evaluation of maternal GBS6 vaccination as a potential alternative method to prevent GBS disease in infants.


Assuntos
Animais Recém-Nascidos/imunologia , Imunidade Materno-Adquirida/imunologia , Polissacarídeos Bacterianos/imunologia , Infecções Estreptocócicas/imunologia , Vacinas Estreptocócicas/imunologia , Streptococcus/imunologia , Vacinas Conjugadas/imunologia , Animais , Animais Recém-Nascidos/microbiologia , Anticorpos Antibacterianos/imunologia , Feminino , Imunização/métodos , Imunoglobulina G/imunologia , Macaca mulatta/imunologia , Macaca mulatta/microbiologia , Camundongos , Sorogrupo , Infecções Estreptocócicas/microbiologia , Vacinação/métodos
11.
Pharm Res ; 35(4): 81, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29508082

RESUMO

PURPOSE: The purpose was to evaluate DSF for high throughput screening of protein thermal stability (unfolding/ aggregation) across a wide range of formulations. Particular focus was exploring PROTEOSTAT® - a commercially available fluorescent rotor dye - for detection of aggregation in surfactant containing formulations. Commonly used hydrophobic dyes (e.g. SYPRO™ Orange) interact with surfactants, complicating DSF measurements. METHODS: CRM197 formulations were prepared and analyzed in standard 96-well plate rT-PCR system, using SYPRO™ Orange and PROTEOSTAT® dyes. Orthogonal techniques (DLS and IPF) are employed to confirm unfolding/aggregation in selected formulations. Selected formulations are subjected to non-thermal stresses (stirring and shaking) in plate based format to characterize aggregation with PROTEOSTAT®. RESULTS: Agreement is observed between SYPRO™ Orange (unfolding) and PROTEOSTAT® (aggregation) DSF melt temperatures across wide range of non-surfactant formulations. PROTEOSTAT® can clearly detect temperature induced aggregation in low concentration (0.2 mg/mL) CRM197 formulations containing surfactant. PROTEOSTAT® can be used to explore aggregation due to non-thermal stresses in plate based format amenable to high throughput screening. CONCLUSIONS: DSF measurements with complementary extrinsic dyes (PROTEOSTAT®, SYPRO™ Orange) are suitable for high throughput screening of antigen thermal stability, across a wide range of relevant formulation conditions - including surfactants -with standard, plate based rT-PCR instrumentation.


Assuntos
Varredura Diferencial de Calorimetria/métodos , Corantes Fluorescentes/química , Fluorometria/métodos , Ensaios de Triagem em Larga Escala/métodos , Proteínas de Bactérias/química , Difusão Dinâmica da Luz , Estabilidade Proteica , Tensoativos/química
12.
Mol Med ; 22: 841-849, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27900387

RESUMO

Strategies aimed at reducing cerebral accumulation of the amyloid-ß (Aß) peptides have therapeutic potential in Alzheimer's disease (AD). Aß immunization has proven to be effective at promoting Aß clearance in animal models but adverse effects have hampered its clinical evaluation. The first anti-Aß immunization clinical trial, which assessed a full-length Aß1-42 vaccine, increased the risk of encephalitis most likely because of autoimmune pro-inflammatory T helper 1 (Th1) response against all forms of Aß. Immunization against less abundant but potentially more pathologically relevant Aß products, such as N-terminally-truncated pyroglutamate-3 Aß (AßpE3), could provide efficacy and improve tolerability in Aß immunotherapy. Here, we describe a selective vaccine against AßpE3, which uses the diphtheria toxin mutant CRM197 as carrier protein for epitope presentation. CRM197 is currently used in licensed vaccines and has demonstrated excellent immunogenicity and safety in humans. In mice, our AßpE3:CRM197 vaccine triggered the production of specific anti-AßpE3 antibodies that did not cross-react with Aß1-42, non-cyclized AßE3, or N-terminally-truncated pyroglutamate-11 Aß (AßpE11). AßpE3:CRM197 antiserum strongly labeled AßpE3 in insoluble protein extracts and decorated cortical amyloid plaques in human AD brains. Anti-AßpE3 antibodies were almost exclusively of the IgG1 isotype, suggesting an anti-inflammatory Th2 response bias to the AßpE3:CRM197 vaccine. To the best of our knowledge, this study shows for the first time that CRM197 has potential as a safe and suitable vaccine carrier for active and selective immunization against specific protein sequence modifications or conformations, such as AßpE3.

13.
Anal Biochem ; 534: 19-23, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28666777

RESUMO

Maurice is a new instrument that can perform imaged capillary isoelectric focusing (icIEF). The standard detection for icIEF is UV absorbance at 280 nm, which limits its application to high protein concentration samples and non-complex samples. Here we describe an icIEF instrument with fluorescence detection. We demonstrate the advantage of using either icIEF with fluorescence detection or quantitative Western Blot to measure diphtheria toxin mutant CRM197 protein titer in crude cell lysates and purified samples. These two techniques have great potentials to become standard methods to analyze protein titers in crude cell lysate or other complex samples types.


Assuntos
Proteínas de Bactérias/análise , Fluorescência , Focalização Isoelétrica , Western Blotting , Eletroforese Capilar , Espectrometria de Fluorescência
14.
Bioorg Med Chem ; 25(21): 5968-5974, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28967465

RESUMO

Mycobacterium tuberculosis (Mtb) is a serious fatal pathogen that causes tuberculosis (TB). Effective vaccination is urgently needed to deal with the serious threat from TB. Mtb-secreted protein antigens are important virulence determinants of Mtb with poor immunogenicity. Adjuvants and antigen delivery systems are thus highly desired to improve the immunogenicity of protein antigens. Inulin is a biocompatible polysaccharide (PS) adjuvant that can stimulate a strong cellular and humoral immunity. Bacterial capsular PS and haptens have been conjugated with cross-reacting material 197 (CRM197) to improve their immunogenicity. CFP10 and TB10.4 were two Mtb-secreted immunodominant protein antigens. A CFP10-TB10.4 fusion protein (CT) was used as the antigen for covalent conjugation with the CRM197-inulin conjugate (CRM-inu). The resultant conjugate (CT-CRM-inu) elicited high CT-specific IgG titers, stimulated splenocyte proliferation and provoked the secretion of Th1-type and Th2-type cytokines. Conjugation with CRM-inu significantly prolonged the systemic circulation of CT and exposure to the immune system. Moreover, CT-CRM-inu showed no apparent toxicity to cardiac, hepatic and renal functions. Thus, conjugation of CT with CRM-inu provided an effective strategy for development of protein-based vaccines against Mtb infection.


Assuntos
Adjuvantes Imunológicos , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Imunogenicidade da Vacina/imunologia , Inulina/imunologia , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética
15.
Appl Microbiol Biotechnol ; 100(14): 6319-6330, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27020286

RESUMO

CRM197 is the diphtheria toxin mutant used in many conjugate vaccines. A fusion CRM197 (fCRM197) containing all the tags conferred by the pET32a vector was produced as a soluble protein in Escherichia coli co-expressing several chaperone proteins in conjunction with low temperature cultivation. Trigger factor (Tf) enhanced formation of soluble fCRM197 (150.69 ± 8.95 µg/mL) to a greater degree than other chaperones when fCRM197 expression was induced at 25 °C for 12 h. However, prolonged cultivation resulted in a progressive reduction of fCRM197 accumulation. In contrast, at 15 °C cells, with or without Tf, fCRM197 accumulated to the highest level at 48 h (153.70 ± 13.14 µg/mL and 150.07 ± 8.13 µg/mL, respectively). Transmission electron microscopy (TEM) demonstrated that the formation of inclusion protein as well as cell lysis was reduced in cultures grown at 15 °C. Cell viability was substantially reduced in cells expressing Tf, compared to cultures without Tf, when fCRM197 was induced at 25 °C. The viability of Tf-expressing cells was enhanced when cultured at 15 °C. Both purified fCRM197 and CRM197 efficiently digested lambda DNA (λDNA) at 37 °C (92.78 and 97.45 %, respectively). Digestion efficiency of fCRM197 and CRM197 was reduced at 25 °C (80.80 and 62.73 %, respectively) and at 15 °C (7.34 and 24.79 %, respectively). These results demonstrating nuclease activity, enhanced cell lysis, and reduced cell viability are consistent with the finding of lower fCRM197 yield when cultivation and induction times were prolonged at 25 °C. The present work provides a procedure for the high-level production of soluble fCRM197 using E. coli as a heterologous host.


Assuntos
Proteínas de Bactérias/biossíntese , Escherichia coli/genética , Chaperonas Moleculares/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas de Bactérias/genética , Temperatura Baixa , Meios de Cultura/química , Toxina Diftérica/genética , Toxina Diftérica/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Viabilidade Microbiana , Microscopia Eletrônica de Transmissão , Chaperonas Moleculares/genética , Proteínas Recombinantes/genética
16.
Anal Biochem ; 478: 33-9, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25813208

RESUMO

Simple Western is a new technology that allows for the separation, blotting, and detection of proteins similar to a traditional Western except in a capillary format. Traditionally, identity assays for biological products are performed using either an enzyme-linked immunosorbent assay (ELISA) or a manual dot blot Western. Both techniques are usually very tedious, labor-intensive, and complicated for multivalent vaccines, and they can be difficult to transfer to other laboratories. An advantage this capillary Western technique has over the traditional manual dot blot Western method is the speed and the automation of electrophoresis separation, blotting, and detection steps performed in 96 capillaries. This article describes details of the development of an automated identity assay for a 15-valent pneumococcal conjugate vaccine, PCV15-CRM197, using capillary Western technology.


Assuntos
Western Blotting/métodos , Vacinas Pneumocócicas/química , Vacinas Conjugadas/química , Animais , Proteínas de Bactérias/química , Ensaio de Imunoadsorção Enzimática , Humanos , Infecções Pneumocócicas/prevenção & controle
17.
Mol Pharm ; 12(10): 3672-84, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26312414

RESUMO

Drugs can be targeted to the brain using polymeric nanoparticles (NPs) engineered on their surface with ligands able to allow crossing of the blood-brain barrier (BBB). This article aims to investigate the BBB crossing efficiency of polymeric poly lactide-co-glycolide (PLGA) NPs modified with a mutated form of diphtheria toxin (CRM197) in comparison with the results previously obtained using PLGA NPs modified with a glycopeptide (g7-NPs). Different kinds of NPs, covalently coupled PLGA with different fluorescent probes (DY405, rhodamine-B base and DY675) and different ligands (g7 and CRM197) were tested in vivo to assess their behavior and trafficking. The results highlighted the possibility to distinguish the different kinds of simultaneously administered NPs and to emphasize that CRM-197 modified NPs and g7-NPs can cross the BBB at a similar extent. The analysis of BBB crossing and of the neuronal tropism of CRM197 modified NPs, along with their BBB crossing pathways were also developed. In vivo pharmacological studies performed on CRM197 engineered NPs, loaded with loperamide, underlined their ability as drug carriers to the CNS.


Assuntos
Proteínas de Bactérias/metabolismo , Barreira Hematoencefálica/metabolismo , Toxina Diftérica/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/uso terapêutico , Animais , Proteínas de Bactérias/farmacocinética , Barreira Hematoencefálica/microbiologia , Toxina Diftérica/genética , Loperamida/metabolismo , Camundongos , Microscopia Confocal , Nanopartículas/metabolismo , Nociceptividade/efeitos dos fármacos
18.
Methods Mol Biol ; 2762: 139-148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315364

RESUMO

Reductive amination is a relatively simple and convenient strategy for coupling purified polysaccharides to carrier proteins. Following their synthesis, glycoconjugates can be used to assess the protective capacity of specific microbial polysaccharides in animal models of infection and/or to produce polyclonal antiserum and monoclonal antibodies for a variety of immune assays. Here, we describe a reproducible method for chemically activating the 6-deoxyheptan capsular polysaccharide (CPS) from Burkholderia pseudomallei and covalently linking it to recombinant CRM197 diphtheria toxin mutant (CRM197) to produce the glycoconjugate, CPS-CRM197. Similar approaches can also be used to couple other types of polysaccharides to CRM197 with little to no modification of the protocol.


Assuntos
Burkholderia pseudomallei , Polissacarídeos , Animais , Aminação , Glicoconjugados , Vacinas Conjugadas
19.
Cureus ; 16(3): e56454, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38650789

RESUMO

Typhoid fever has the highest disease burden in countries in low- and middle-income countries, primarily located in Asia and Sub-Saharan Africa. Previous typhoid vaccines such as the live attenuated typhoid (Ty21a) vaccine and Vi (virulence) capsular polysaccharide vaccine had the limitation that they could not be administered with other standard childhood immunizations and were ineffective in children under two years of age. To address these shortcomings of the previous vaccines, typhoid conjugate vaccines (TCVs) were developed and prequalified by the World Health Organization. Cross-reacting material and tetanus toxoid are widely used as carrier proteins in TCVs. According to various studies, TCV has higher efficacy, has a more extended protection period, and is safe and immunogenic in infants as young as six months. This review article aims to comprehensively appraise the data available on TCVs' efficacy, duration of protection, safety, and immunogenicity in endemic regions.

20.
Syst Biol Reprod Med ; 70(1): 131-138, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38833557

RESUMO

Gonadotropin-releasing hormone (GnRH) vaccines have been successfully used for the inhibition of gonadal development and function, but current GnRH-based vaccines often present variability in the response. Cross-reactive material 197 (CRM197) has been used as carrier molecules to enhance an immune response to associated antigens. So, the synthetic mammalian tandem-repeated GnRH hexamer (GnRH6) gene was integrated into the expression plasmid pET-21a. Recombinant GnRH6-CRM197 protein was subsequently overexpressed in Escherichia coli strain BL21 and purified through Nickel column affinity chromatography and the antigenicity and biological effects of GnRH6-CRM197 were evaluated in rats. Sixteen 4-month-old adult male rats were randomly divided into two groups: the GnRH6-CRM197 group (n = 8) and the control group (n = 8). The GnRH6-CRM197 group rats were subcutaneously immunized with 100 µg of GnRH6-CRM197, administered thrice at 2-week intervals with GnRH6-CRM197.The control group received only a white oil adjuvant. Following the initial immunization, the weights of animals were recorded, and blood samples were collected from the orbital sinus at 4, 4.5, 5, 5.5, 6, 6.5, and 7 months. Serum antibody titers and testosterone concentrations were quantified using ELISA and CLIA, respectively. Additionally, testicular tissues were collected for morphological examination. The results revealed a significant increase in serum GnRH antibody titers (p < 0.05), but a significant decrease in serum testosterone concentrations (p < 0.05), and the weight, length, width, and girth of the testis, and the number of spermatogonia cells, spermatocytes, and sperm cells in the immunized rats. Furthermore, seminiferous tubules revealed significant atrophy and no sperm were observed in the immunized animals. Thus, GnRH6-CRM197 may be an effective antigen and a potential immunocastration vaccine.


Assuntos
Hormônio Liberador de Gonadotropina , Animais , Masculino , Hormônio Liberador de Gonadotropina/imunologia , Ratos , Testículo/efeitos dos fármacos , Testosterona/sangue , Ratos Sprague-Dawley , Imunização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA