Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.448
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 35: 199-228, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28142322

RESUMO

Commensal microorganisms (the microbiota) live on all the surface barriers of our body and are particularly abundant and diverse in the distal gut. The microbiota and its larger host represent a metaorganism in which the cross talk between microbes and host cells is necessary for health, survival, and regulation of physiological functions locally, at the barrier level, and systemically. The ancestral molecular and cellular mechanisms stemming from the earliest interactions between prokaryotes and eukaryotes have evolved to mediate microbe-dependent host physiology and tissue homeostasis, including innate and adaptive resistance to infections and tissue repair. Mostly because of its effects on metabolism, cellular proliferation, inflammation, and immunity, the microbiota regulates cancer at the level of predisposing conditions, initiation, genetic instability, susceptibility to host immune response, progression, comorbidity, and response to therapy. Here, we review the mechanisms underlying the interaction of the microbiota with cancer and the evidence suggesting that the microbiota could be targeted to improve therapy while attenuating adverse reactions.


Assuntos
Imunidade Inata , Imunoterapia/métodos , Mucosa Intestinal/imunologia , Microbiota/imunologia , Neoplasias/imunologia , Imunidade Adaptativa , Animais , Antineoplásicos/uso terapêutico , Carcinogênese , Humanos , Inflamação , Neoplasias/microbiologia , Neoplasias/terapia , Cicatrização
2.
Immunity ; 55(9): 1594-1608.e6, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36029766

RESUMO

Tumor-induced host wasting and mortality are general phenomena across species. Many groups have previously demonstrated endocrinal impacts of malignant tumors on host wasting in rodents and Drosophila. Whether and how environmental factors and host immune response contribute to tumor-associated host wasting and survival, however, are largely unknown. Here, we report that flies bearing malignant yki3SA-gut tumors exhibited the exponential increase of commensal bacteria, which were mostly acquired from the environment, and systemic IMD-NF-κB activation due to suppression of a gut antibacterial amidase PGRP-SC2. Either gut microbial elimination or specific IMD-NF-κB blockade in the renal-like Malpighian tubules potently improved mortality of yki3SA-tumor-bearing flies in a manner independent of host wasting. We further indicate that renal IMD-NF-κB activation caused uric acid (UA) overload to reduce survival of tumor-bearing flies. Therefore, our results uncover a fundamental mechanism whereby gut commensal dysbiosis, renal immune activation, and UA imbalance potentiate tumor-associated host death.


Assuntos
NF-kappa B , Neoplasias , Animais , Proteínas de Transporte , Drosophila , Homeostase , NF-kappa B/metabolismo , Ácido Úrico
3.
CA Cancer J Clin ; 70(5): 375-403, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32683683

RESUMO

Despite tremendous gains in the molecular understanding of exocrine pancreatic cancer, the prognosis for this disease remains very poor, largely because of delayed disease detection and limited effectiveness of systemic therapies. Both incidence rates and mortality rates for pancreatic cancer have increased during the past decade, in contrast to most other solid tumor types. Recent improvements in multimodality care have substantially improved overall survival, local control, and metastasis-free survival for patients who have localized tumors that are amenable to surgical resection. The widening gap in prognosis between patients with resectable and unresectable or metastatic disease reinforces the importance of detecting pancreatic cancer sooner to improve outcomes. Furthermore, the developing use of therapies that target tumor-specific molecular vulnerabilities may offer improved disease control for patients with advanced disease. Finally, the substantial morbidity associated with pancreatic cancer, including wasting, fatigue, and pain, remains an under-addressed component of this disease, which powerfully affects quality of life and limits tolerance to aggressive therapies. In this article, the authors review the current multidisciplinary standards of care in pancreatic cancer with a focus on emerging concepts in pancreatic cancer detection, precision therapy, and survivorship.


Assuntos
Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/terapia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/terapia , Equipe de Assistência ao Paciente , Carcinoma Ductal Pancreático/mortalidade , Quimioterapia Adjuvante , Tomada de Decisão Clínica , Ensaios Clínicos como Assunto , Detecção Precoce de Câncer , Predisposição Genética para Doença , Humanos , Estadiamento de Neoplasias , Pâncreas/diagnóstico por imagem , Pâncreas/patologia , Pancreatectomia , Neoplasias Pancreáticas/mortalidade , Radioterapia Adjuvante , Fatores de Risco , Padrão de Cuidado
4.
EMBO Rep ; 25(4): 1835-1858, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429578

RESUMO

Cancer cachexia is a tumour-induced wasting syndrome, characterised by extreme loss of skeletal muscle. Defective mitochondria can contribute to muscle wasting; however, the underlying mechanisms remain unclear. Using a Drosophila larval model of cancer cachexia, we observed enlarged and dysfunctional muscle mitochondria. Morphological changes were accompanied by upregulation of beta-oxidation proteins and depletion of muscle glycogen and lipid stores. Muscle lipid stores were also decreased in Colon-26 adenocarcinoma mouse muscle samples, and expression of the beta-oxidation gene CPT1A was negatively associated with muscle quality in cachectic patients. Mechanistically, mitochondrial defects result from reduced muscle insulin signalling, downstream of tumour-secreted insulin growth factor binding protein (IGFBP) homologue ImpL2. Strikingly, muscle-specific inhibition of Forkhead box O (FOXO), mitochondrial fusion, or beta-oxidation in tumour-bearing animals preserved muscle integrity. Finally, dietary supplementation with nicotinamide or lipids, improved muscle health in tumour-bearing animals. Overall, our work demonstrates that muscle FOXO, mitochondria dynamics/beta-oxidation and lipid utilisation are key regulators of muscle wasting in cancer cachexia.


Assuntos
Neoplasias do Colo , Proteínas de Drosophila , Insulinas , Camundongos , Animais , Humanos , Caquexia/etiologia , Caquexia/metabolismo , Drosophila/metabolismo , Dinâmica Mitocondrial , Atrofia Muscular/patologia , Músculo Esquelético/metabolismo , Neoplasias do Colo/metabolismo , Insulinas/metabolismo , Lipídeos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
5.
EMBO Rep ; 25(6): 2592-2609, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38671295

RESUMO

Various cytokines have been implicated in cancer cachexia. One such cytokine is IL-6, deemed as a key cachectic factor in mice inoculated with colon carcinoma 26 (C26) cells, a widely used cancer cachexia model. Here we tested the causal role of IL-6 in cancer cachexia by knocking out the IL-6 gene in C26 cells. We found that the growth of IL-6 KO tumors was dramatically delayed. More strikingly, while IL-6 KO tumors eventually reached the similar size as wild-type tumors, cachexia still took place, despite no elevation in circulating IL-6. In addition, the knockout of leukemia inhibitory factor (LIF), another IL-6 family cytokine proposed as a cachectic factor in the model, also affected tumor growth but not cachexia. We further showed an increase in the infiltration of immune cell population in the IL-6 KO tumors compared with wild-type controls and the defective IL-6 KO tumor growth was rescued in immunodeficient mice while cachexia was not. Thus, IL-6 promotes tumor growth by facilitating immune evasion but is dispensable for cachexia.


Assuntos
Caquexia , Interleucina-6 , Camundongos Knockout , Animais , Camundongos , Caquexia/patologia , Caquexia/genética , Caquexia/metabolismo , Caquexia/etiologia , Caquexia/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/imunologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Evasão da Resposta Imune , Interleucina-6/metabolismo , Interleucina-6/genética , Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/genética
6.
Proc Natl Acad Sci U S A ; 120(34): e2215095120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37585460

RESUMO

Cancer cachexia, and its associated complications, represent a large and currently untreatable roadblock to effective cancer management. Many potential therapies have been proposed and tested-including appetite stimulants, targeted cytokine blockers, and nutritional supplementation-yet highly effective therapies are lacking. Innovative approaches to treating cancer cachexia are needed. Members of the Kruppel-like factor (KLF) family play wide-ranging and important roles in the development, maintenance, and metabolism of skeletal muscle. Within the KLF family, we identified KLF10 upregulation in a multitude of wasting contexts-including in pancreatic, lung, and colon cancer mouse models as well as in human patients. We subsequently interrogated loss-of-function of KLF10 as a potential strategy to mitigate cancer associated muscle wasting. In vivo studies leveraging orthotopic implantation of pancreas cancer cells into wild-type and KLF10 KO mice revealed significant preservation of lean mass and robust suppression of pro-atrophy muscle-specific ubiquitin ligases Trim63 and Fbxo32, as well as other factors implicated in atrophy, calcium signaling, and autophagy. Bioinformatics analyses identified Transforming growth factor beta (TGF-ß), a known inducer of KLF10 and cachexia promoting factor, as a key upstream regulator of KLF10. We provide direct in vivo evidence that KLF10 KO mice are resistant to the atrophic effects of TGF-ß. ChIP-based binding studies demonstrated direct binding to Trim63, a known wasting-associated atrogene. Taken together, we report a critical role for the TGF-ß/KLF10 axis in the etiology of pancreatic cancer-associated muscle wasting and highlight the utility of targeting KLF10 as a strategy to prevent muscle wasting and limit cancer-associated cachexia.


Assuntos
Neoplasias Pancreáticas , Fator de Crescimento Transformador beta , Humanos , Camundongos , Animais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Caquexia/genética , Atrofia Muscular/genética , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Músculo Esquelético/metabolismo , Fatores de Transcrição de Resposta de Crescimento Precoce/genética , Fatores de Transcrição de Resposta de Crescimento Precoce/metabolismo
7.
Clin Microbiol Rev ; : e0004523, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940505

RESUMO

SUMMARYThe gut microbiota is a major factor contributing to the regulation of energy homeostasis and has been linked to both excessive body weight and accumulation of fat mass (i.e., overweight, obesity) or body weight loss, weakness, muscle atrophy, and fat depletion (i.e., cachexia). These syndromes are characterized by multiple metabolic dysfunctions including abnormal regulation of food reward and intake, energy storage, and low-grade inflammation. Given the increasing worldwide prevalence of obesity, cachexia, and associated metabolic disorders, novel therapeutic strategies are needed. Among the different mechanisms explaining how the gut microbiota is capable of influencing host metabolism and energy balance, numerous studies have investigated the complex interactions existing between nutrition, gut microbes, and their metabolites. In this review, we discuss how gut microbes and different microbiota-derived metabolites regulate host metabolism. We describe the role of the gut barrier function in the onset of inflammation in this context. We explore the importance of the gut-to-brain axis in the regulation of energy homeostasis and glucose metabolism but also the key role played by the liver. Finally, we present specific key examples of how using targeted approaches such as prebiotics and probiotics might affect specific metabolites, their signaling pathways, and their interactions with the host and reflect on the challenges to move from bench to bedside.

8.
EMBO J ; 40(18): e107336, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34309071

RESUMO

During tumor growth-when nutrient and anabolic demands are high-autophagy supports tumor metabolism and growth through lysosomal organelle turnover and nutrient recycling. Ras-driven tumors additionally invoke non-autonomous autophagy in the microenvironment to support tumor growth, in part through transfer of amino acids. Here we uncover a third critical role of autophagy in mediating systemic organ wasting and nutrient mobilization for tumor growth using a well-characterized malignant tumor model in Drosophila melanogaster. Micro-computed X-ray tomography and metabolic profiling reveal that RasV12 ; scrib-/- tumors grow 10-fold in volume, while systemic organ wasting unfolds with progressive muscle atrophy, loss of body mass, -motility, -feeding, and eventually death. Tissue wasting is found to be mediated by autophagy and results in host mobilization of amino acids and sugars into circulation. Natural abundance Carbon 13 tracing demonstrates that tumor biomass is increasingly derived from host tissues as a nutrient source as wasting progresses. We conclude that host autophagy mediates organ wasting and nutrient mobilization that is utilized for tumor growth.


Assuntos
Autofagia , Metabolismo Energético , Neoplasias/etiologia , Neoplasias/metabolismo , Nutrientes/metabolismo , Animais , Autofagia/genética , Caquexia/diagnóstico por imagem , Caquexia/etiologia , Caquexia/patologia , Modelos Animais de Doenças , Progressão da Doença , Drosophila melanogaster , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Neoplasias/complicações
9.
EMBO Rep ; 24(12): e57695, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38014610

RESUMO

In this study, we found that in the adipose tissue of wildtype animals, insulin and TGF-ß signalling converge via a BMP antagonist short gastrulation (sog) to regulate ECM remodelling. In tumour bearing animals, Sog also modulates TGF-ß signalling to regulate ECM accumulation in the fat body. TGF-ß signalling causes ECM retention in the fat body and subsequently depletes muscles of fat body-derived ECM proteins. Activation of insulin signalling, inhibition of TGF-ß signalling, or modulation of ECM levels via SPARC, Rab10 or Collagen IV in the fat body, is able to rescue tissue wasting in the presence of tumour. Together, our study highlights the importance of adipose ECM remodelling in the context of cancer cachexia.


Assuntos
Caquexia , Neoplasias , Animais , Caquexia/etiologia , Caquexia/metabolismo , Drosophila , Insulina , Corpo Adiposo/metabolismo , Tecido Adiposo/metabolismo , Fator de Crescimento Transformador beta , Neoplasias/complicações
10.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35210363

RESUMO

Cancer-associated cachexia (CAC) is a hypermetabolic syndrome characterized by unintended weight loss due to the atrophy of adipose tissue and skeletal muscle. A phenotypic switch from white to beige adipocytes, a phenomenon called browning, accelerates CAC by increasing the dissipation of energy as heat. Addressing the mechanisms of white adipose tissue (WAT) browning in CAC, we now show that cachexigenic tumors activate type 2 immunity in cachectic WAT, generating a neuroprotective environment that increases peripheral sympathetic activity. Increased sympathetic activation, in turn, results in increased neuronal catecholamine synthesis and secretion, ß-adrenergic activation of adipocytes, and induction of WAT browning. Two genetic mouse models validated this progression of events. 1) Interleukin-4 receptor deficiency impeded the alternative activation of macrophages, reduced sympathetic activity, and restrained WAT browning, and 2) reduced catecholamine synthesis in peripheral dopamine ß-hydroxylase (DBH)-deficient mice prevented cancer-induced WAT browning and adipose atrophy. Targeting the intraadipose macrophage-sympathetic neuron cross-talk represents a promising therapeutic approach to ameliorate cachexia in cancer patients.


Assuntos
Tecido Adiposo Marrom/patologia , Caquexia/patologia , Comunicação Celular , Neoplasias/complicações , Neurônios/patologia , Sistema Nervoso Simpático/patologia , Animais , Caquexia/etiologia , Caquexia/metabolismo , Expressão Gênica , Xenoenxertos , Humanos , Camundongos , Neoplasias/metabolismo , Receptores Adrenérgicos beta/metabolismo , Termogênese
11.
Proc Natl Acad Sci U S A ; 119(43): e2200215119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252004

RESUMO

Cancer cachexia is a lethal metabolic syndrome featuring muscle wasting with preferential loss of fast-twitching muscle mass through an undefined mechanism. Here, we show that cancer induces muscle wasting by selectively degrading myosin heavy chain (MHC) subtypes IIb and IIx through E3 ligase UBR2-mediated ubiquitylation. Induction of MHC loss and atrophy in C2C12 myotubes and mouse tibialis anterior (TA) by murine cancer cells required UBR2 up-regulation by cancer. Genetic gain or loss of UBR2 function inversely altered MHC level and muscle mass in TA of tumor-free mice. UBR2 selectively interacted with and ubiquitylated MHC-IIb and MHC-IIx through its substrate recognition and catalytic domain, respectively, in C2C12 myotubes. Elevation of UBR2 in muscle of tumor-bearing or free mice caused loss of MHC-IIb and MHC-IIx but not MHC-I and MHC-IIa or other myofibrillar proteins, including α-actin, troponin, tropomyosin, and tropomodulin. Muscle-specific knockout of UBR2 spared KPC tumor-bearing mice from losing MHC-IIb and MHC-IIx, fast-twitching muscle mass, cross-sectional area, and contractile force. The rectus abdominis (RA) muscle of patients with cachexia-prone cancers displayed a selective reduction of MHC-IIx in correlation with higher UBR2 levels. These data suggest that UBR2 is a regulator of MHC-IIb/IIx essential for cancer-induced muscle wasting, and that therapeutic interventions can be designed by blocking UBR2 up-regulation by cancer.


Assuntos
Caquexia , Cadeias Pesadas de Miosina , Neoplasias , Ubiquitina-Proteína Ligases , Animais , Camundongos , Actinas/metabolismo , Caquexia/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Neoplasias/complicações , Neoplasias/genética , Neoplasias/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Tropomodulina/metabolismo , Tropomiosina/metabolismo , Troponina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
Annu Rev Physiol ; 83: 127-151, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33228454

RESUMO

GDF15 is a cell activation and stress response cytokine of the glial cell line-derived neurotrophic factor family within the TGF-ß superfamily. It acts through a recently identified orphan member of the GFRα family called GFRAL and signals through the Ret coreceptor. Cell stress and disease lead to elevated GDF15 serum levels, causing anorexia, weight loss, and alterations to metabolism, largely by actions on regions of the hindbrain. These changes restore homeostasis and, in the case of obesity, cause a reduction in adiposity. In some diseases, such as advanced cancer, serum GDF15 levels can rise by as much as 10-100-fold, leading to an anorexia-cachexia syndrome, which is often fatal. This review discusses how GDF15 regulates appetite and metabolism, the role it plays in resistance to obesity, and how this impacts diseases such as diabetes, nonalcoholic fatty liver disease, and anorexia-cachexia syndrome. It also discusses potential therapeutic applications of targeting the GDF15-GFRAL pathway and lastly suggests some potential unifying hypotheses for its biological role.


Assuntos
Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Doenças Metabólicas/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos
13.
Am J Physiol Cell Physiol ; 326(4): C1226-C1236, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38406827

RESUMO

Cancer and chemotherapy induce a severe loss of muscle mass (known as cachexia), which negatively impact cancer treatment and patient survival. The aim of the present study was to investigate whether cannabidiol (CBD) administration may potentially antagonize the effects of cisplatin in inducing muscle atrophy, using a model of myotubes in culture. Cisplatin treatment resulted in a reduction of myotube diameter (15.7 ± 0.3 vs. 22.2 ± 0.5 µm, P < 0.01) that was restored to control level with 5 µM CBD (20.1 ± 0.4 µM, P < 0.01). Protein homeostasis was severely altered with a ≈70% reduction in protein synthesis (P < 0.01) and a twofold increase in proteolysis (P < 0.05) in response to cisplatin. Both parameters were dose dependently restored by CBD cotreatment. Cisplatin treatment was associated with increased thiobarbituric acid reactive substances (TBARS) content (0.21 ± 0.03 to 0.48 ± 0.03 nmol/mg prot, P < 0.05), catalase activity (0.24 ± 0.01 vs. 0.13 ± 0.02 nmol/min/µg prot, P < 0.01), whereas CBD cotreatment normalized TBARS content to control values (0.22 ± 0.01 nmol/mg prot, P < 0.01) and reduced catalase activity (0.17 ± 0.01 nmol/min/µg prot, P < 0.05). These changes were associated with increased mRNA expression of GPX1, SOD1, SOD2, and CAT mRNA expression in response to cisplatin (P < 0.01), which was corrected by CBD cotreatment (P < 0.05). Finally, cisplatin treatment increased the mitochondrial protein content of NDUFB8, UQCRC2, COX4, and VDAC1 (involved in mitochondrial respiration and apoptosis), and CBD cotreatment restored their expression to control values. Altogether, our results demonstrated that CBD antagonize the cisplatin-induced C2C12 myotube atrophy and could be used as an adjuvant in the treatment of cancer cachexia to help maintain muscle mass and improve patient quality of life.NEW & NOTEWORTHY In an in vitro model, cisplatin treatment led to myotube atrophy associated with dysregulation of protein homeostasis and increased oxidative stress, resulting in increased apoptosis. Cotreatment with cannabidiol was able to prevent this phenotype by promoting protein homeostasis and reducing oxidative stress.


Assuntos
Canabidiol , Neoplasias , Humanos , Cisplatino/toxicidade , Canabidiol/farmacologia , Canabidiol/metabolismo , Canabidiol/uso terapêutico , Caquexia/metabolismo , Catalase/metabolismo , Qualidade de Vida , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/prevenção & controle , Atrofia Muscular/tratamento farmacológico , Estresse Oxidativo , Neoplasias/metabolismo , RNA Mensageiro/metabolismo
14.
Am J Physiol Cell Physiol ; 326(3): C866-C879, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284122

RESUMO

Prevention/management of cachexia remains a critical issue in muscle wasting conditions. The branched-chain amino acids (BCAA) have anabolic properties in skeletal muscle, but their use in treating cachexia has minimal benefits. This may be related to altered BCAA metabolism consequent to the use of chemotherapy, a main cancer treatment. Since this topic is minimally studied, we investigated the effect of chemotherapy on BCAA concentrations, transporter expression, and their metabolism. L6 myotubes were treated with vehicle (1.4 µL/mL DMSO) or a chemotherapy drug cocktail, FOLFIRI [CPT-11 (20 µg/mL), leucovorin (10 µg/mL), and 5-fluorouracil (50 µg/mL)] for 24-48 h. Chemotherapy reduced myotube diameter (-43%), myofibrillar protein content (-50%), and phosphorylation of the mechanistic target of rapamycin complex 1 (mTORC1) substrate S6K1thr389 (-80%). Drug-treated myotubes exhibited decreased BCAA concentrations (-52%) and expression of their transporter, L-type amino acid transporter 1 (LAT1; -67%). BCAA transaminase BCAT2 level was increased, but there was a reduction in PP2CM (-54%), along with increased inhibitory phosphorylation of BCKD-E1αser293 (+98%), corresponding with decreased BCKD enzyme activity (-23%) in chemotherapy-treated myotubes. Decreases in BCAA concentrations were a later response, preceded by decreases in LAT1 and BCKD activity. Although supplementation with the BCAA restored myotube BCAA levels, it had minimal effects on preventing the loss of myofibrillar proteins. However, RNAi-mediated depletion of neural precursor cell-expressed developmentally downregulated gene 4 (NEdd4), the protein ligase responsible for ubiquitin-dependent degradation of LAT1, attenuated the effects of chemotherapy on BCAA concentrations, anabolic signaling, protein synthesis, and myofibrillar protein abundance. Thus, if our findings are validated in preclinical models, interventions regulating muscle amino acid transporters might represent a promising strategy to treat cachexia.NEW & NOTEWORTHY This is the first study to attenuate chemotherapy-induced myotube atrophy by manipulating a BCAA transporter. Our findings suggest that positive regulation of amino acid transporters may be a promising strategy to treat cachexia.


Assuntos
Aminoácidos de Cadeia Ramificada , Caquexia , Humanos , Aminoácidos de Cadeia Ramificada/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Sistemas de Transporte de Aminoácidos , Atrofia
15.
Am J Physiol Cell Physiol ; 326(5): C1520-C1542, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557354

RESUMO

Cancer cachexia is the result of complex interorgan interactions initiated by cancer cells and changes in patient behavior such as decreased physical activity and energy intake. Therefore, it is crucial to distinguish between the direct and indirect effects of cancer cells on muscle mass regulation and bioenergetics to identify novel therapeutic targets. In this study, we investigated the direct effects of Colon-26 cancer cells on the molecular regulating machinery of muscle mass and its bioenergetics using a coculture system with C2C12 myotubes. Our results demonstrated that coculture with Colon-26 cells induced myotube atrophy and reduced skeletal muscle protein synthesis and its regulating mechanistic target of rapamycin complex 1 signal transduction. However, we did not observe any activating effects on protein degradation pathways including ubiquitin-proteasome and autophagy-lysosome systems. From a bioenergetic perspective, coculture with Colon-26 cells decreased the complex I-driven, but not complex II-driven, mitochondrial ATP production capacity, while increasing glycolytic enzyme activity and glycolytic metabolites, suggesting a shift in energy metabolism toward glycolysis dominance. Gene expression profiling by RNA sequencing showed that the increased activity of glycolytic enzymes was consistent with changes in gene expression. However, the decreased ATP production capacity of mitochondria was not in line with the gene expression. The potential direct interaction between cancer cells and skeletal muscle cells revealed in this study may contribute to a better fundamental understanding of the complex pathophysiology of cancer cachexia.NEW & NOTEWORTHY We explored the potential direct interplay between colon cancer cells (Colon-26) and skeletal muscle cells (C2C12 myotubes) employing a noncontact coculture experimental model. Our findings reveal that coculturing with Colon-26 cells substantially impairs the protein synthesis rate, concurrently instigating a metabolic shift toward glycolytic dominance in C2C12 myotubes. This research unveils critical insights into the intricate cellular cross talk underpinning the complex pathophysiology of cancer cachexia.


Assuntos
Caquexia , Técnicas de Cocultura , Neoplasias do Colo , Metabolismo Energético , Glicólise , Fibras Musculares Esqueléticas , Fibras Musculares Esqueléticas/metabolismo , Animais , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Camundongos , Linhagem Celular Tumoral , Caquexia/metabolismo , Caquexia/patologia , Biossíntese de Proteínas , Humanos , Transdução de Sinais , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/biossíntese
16.
J Proteome Res ; 23(7): 2452-2473, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965921

RESUMO

Cancer cachexia is an involuntary loss of body weight, mostly of skeletal muscle. Previous research favors the existence of a microbiota-muscle crosstalk, so the aim of the study was to evaluate the impact of microbiota alterations induced by antibiotics on skeletal muscle proteins expression. Skeletal muscle proteome changes were investigated in control (CT) or C26 cachectic mice (C26) with or without antibiotic treatment (CT-ATB or C26-ATB, n = 8 per group). Muscle protein extracts were divided into a sarcoplasmic and myofibrillar fraction and then underwent label-free liquid chromatography separation, mass spectrometry analysis, Mascot protein identification, and METASCAPE platform data analysis. In C26 mice, the atrogen mafbx expression was 353% higher than CT mice and 42.3% higher than C26-ATB mice. No effect on the muscle protein synthesis was observed. Proteomic analyses revealed a strong effect of antibiotics on skeletal muscle proteome outside of cachexia, with adaptative processes involved in protein folding, growth, energy metabolism, and muscle contraction. In C26-ATB mice, proteome adaptations observed in CT-ATB mice were blunted. Differentially expressed proteins were involved in other processes like glucose metabolism, oxidative stress response, and proteolysis. This study confirms the existence of a microbiota-muscle axis, with a muscle response after antibiotics that varies depending on whether cachexia is present.


Assuntos
Antibacterianos , Caquexia , Músculo Esquelético , Proteoma , Caquexia/metabolismo , Caquexia/microbiologia , Animais , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/efeitos adversos , Proteoma/metabolismo , Proteoma/análise , Camundongos , Neoplasias/metabolismo , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Proteínas Musculares/metabolismo , Masculino , Proteômica/métodos , Microbiota/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos
17.
Physiology (Bethesda) ; 38(4): 0, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37222464

RESUMO

Proliferating cancer cells secrete a multitude of factors impacting metabolism, interorgan communication, and tumor progression. The distribution of tumor-derived factors to distant organs occurs via the circulation, which provides an extensive reactive surface lined by endothelial cells. Primary tumor-derived proteins impact cancer progression by modulating endothelial cell activation at the (pre-)metastatic niche, which affects tumor cell dissemination as well as the outgrowth of seeded metastatic cells into overt tumors. In addition, new insight indicates that endothelial cell signaling contributes to metabolic symptoms of cancer, including cancer-associated cachexia, opening a new field of vascular metabolism research. This review addresses how tumor-derived factors systemically affect endothelial cell signaling and activation and impact distant organs as well as tumor progression.


Assuntos
Caquexia , Células Endoteliais , Humanos , Transdução de Sinais , Proteínas de Neoplasias
18.
Cancer Sci ; 115(3): 715-722, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38254286

RESUMO

Cancer cachexia is a complex, multifaceted condition that negatively impacts the health, treatment efficacy, and economic status of cancer patients. The management of cancer cachexia is an essential clinical need. Cancer cachexia is currently defined mainly according to the severity of weight loss and sarcopenia (i.e., macrosymptoms). However, such macrosymptoms may be insufficient to give clinicians clues on how to manage this condition as these symptoms appear at the late stage of cancer. We need to understand earlier events during the progression of cancer cachexia so as not to miss a clinical opportunity to control this complex syndrome. Recent research indicates that cancer-induced changes in the host are much wider than previously recognized, including disruption of liver function and the immune system. Furthermore, such changes are observed before the occurrence of visible distant metastases (i.e., in early, localized cancers). In light of these findings, we propose to expand the definition of cancer cachexia to include all cancer-induced changes to host physiology, including changes caused by early, localized cancers. This new definition of cancer cachexia can provide a new perspective on this topic, which can stimulate the research and development of novel cancer cachexia therapies.


Assuntos
Neoplasias , Sarcopenia , Humanos , Caquexia/etiologia , Neoplasias/complicações , Redução de Peso , Sarcopenia/etiologia , Resultado do Tratamento
19.
Apoptosis ; 29(5-6): 663-680, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38598070

RESUMO

Cancer cachexia-associated muscle wasting as a multifactorial wasting syndrome, is an important factor affecting the long-term survival rate of tumor patients. Photobiomodulation therapy (PBMT) has emerged as a promising tool to cure and prevent many diseases. However, the effect of PBMT on skeletal muscle atrophy during cancer progression has not been fully demonstrated yet. Here, we found PBMT alleviated the atrophy of myotube diameter induced by cancer cells in vitro, and prevented cancer-associated muscle atrophy in mice bearing tumor. Mechanistically, the alleviation of muscle wasting by PBMT was found to be involved in inhibiting E3 ubiquitin ligases MAFbx and MuRF-1. In addition, transcriptomic analysis using RNA-seq and GSEA revealed that PI3K/AKT pathway might be involved in PBMT-prevented muscle cachexia. Next, we showed the protective effect of PBMT against muscle cachexia was totally blocked by AKT inhibitor in vitro and in vivo. Moreover, PBMT-activated AKT promoted FoxO3a phosphorylation and thus inhibiting the nucleus entry of FoxO3a. Lastly, in cisplatin-treated muscle cachexia model, PBMT had also been shown to ameliorate muscle atrophy through enhancing PI3K/AKT pathway to suppress MAFbx and MuRF-1 expression. These novel findings revealed that PBMT could be a promising therapeutic approach in treating muscle cachexia induced by cancer.


Assuntos
Caquexia , Proteína Forkhead Box O3 , Doenças Musculares , Neoplasias , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Síndrome de Emaciação , Caquexia/etiologia , Caquexia/metabolismo , Caquexia/terapia , Doenças Musculares/etiologia , Doenças Musculares/metabolismo , Doenças Musculares/terapia , Neoplasias/complicações , Redes e Vias Metabólicas , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Síndrome de Emaciação/etiologia , Síndrome de Emaciação/metabolismo , Síndrome de Emaciação/terapia , Animais , Modelos Animais de Doenças , Camundongos , Linhagem Celular , Masculino , Camundongos Endogâmicos BALB C , Perfilação da Expressão Gênica
20.
Am J Physiol Heart Circ Physiol ; 326(6): H1515-H1537, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639740

RESUMO

Cardiovascular disease (CVD) and cancer are the leading causes of mortality worldwide. Although generally thought of as distinct diseases, the intersectional overlap between CVD and cancer is increasingly evident in both causal and mechanistic relationships. The field of cardio-oncology is largely focused on the cardiotoxic effects of cancer therapies (e.g., chemotherapy, radiation). Furthermore, the cumulative effects of cardiotoxic therapy exposure and the prevalence of CVD risk factors in patients with cancer lead to long-term morbidity and poor quality of life in this patient population, even when patients are cancer-free. Evidence from patients with cancer and animal models demonstrates that the presence of malignancy itself, independent of cardiotoxic therapy exposure or CVD risk factors, negatively impacts cardiac structure and function. As such, the primary focus of this review is the cardiac pathophysiological and molecular features of therapy-naïve cancer. We also summarize the strengths and limitations of preclinical cancer models for cardio-oncology research and discuss therapeutic strategies that have been tested experimentally for the treatment of cancer-induced cardiac atrophy and dysfunction. Finally, we explore an adjacent area of interest, called "reverse cardio-oncology," where the sequelae of heart failure augment cancer progression. Here, we emphasize the cross-disease communication between malignancy and the injured heart and discuss the importance of chronic low-grade inflammation and endocrine factors in the progression of both diseases.


Assuntos
Cardiotoxicidade , Doenças Cardiovasculares , Neoplasias , Humanos , Doenças Cardiovasculares/etiologia , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/efeitos adversos , Fatores de Risco , Cardio-Oncologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA