Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Int J Med Sci ; 20(3): 392-405, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860682

RESUMO

Background: Fetal growth restriction (FGR) is characterized by restricted fetal growth and dysregulated placental development. The etiology and pathogenesis still remain elusive. IL-27 shows multiple roles in regulating various biological processes, however, how IL-27 involves in placentation in FGR pregnancy hasn't been demonstrated. Methods: The levels of IL-27 and IL-27RA in FGR and normal placentae were determined by immunohistochemistry, western blot and RT-PCR. HTR-8/SVneo cells and Il27ra-/- murine models have been adopted to evaluate the effects of IL-27 on the bio-functions of trophoblast cells. GO enrichment and GSEA analysis were performed to explore the underlying mechanism. Findings: IL-27 and IL-27RA was lowly expressed in FGR placentae and administration of IL-27 on HTR-8/SVneo could promote its proliferation, migration and invasion. Comparing with wildtypes, Il27ra-/- embryos were smaller and lighter, and the placentae from which were poorly developed. In mechanism, the molecules of canonical Wnt/ß-catenin pathway (CCND1, CMYC, SOX9) were downregulated in Il27ra-/- placentae. In contrast, the expression of SFRP2 (negative regulator of Wnt) was increased. Overexpression of SFRP2 in vitro could impair trophoblast migration and invasion capacity. Interpretation: IL-27/IL-27RA negatively regulates SFRP2 to activate Wnt/ß-catenin, and thus promotes migration and invasion of trophoblasts during pregnancy. However, IL-27 deficiency may contribute to the development of FGR by restricting the Wnt activity.


Assuntos
Interleucina-27 , Gravidez , Feminino , Animais , Camundongos , Humanos , Trofoblastos , beta Catenina/genética , Retardo do Crescimento Fetal/genética , Placenta , Proliferação de Células/genética , Proteínas de Membrana
2.
Rinsho Ketsueki ; 64(6): 547-552, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37407480

RESUMO

Acute myeloid leukemia (AML) is one of the most common hematologic malignancies derived from self-renewing and highly propagating leukemic stem cells (LSCs). We have previously identified T-cell immunoglobulin mucin-3 (TIM-3) as an AML LSC-specific surface molecule by comparing the gene expression profiles of LSCs and hematopoietic stem cells (HSCs). TIM-3 expression clearly discriminates LSCs from HSCs within the CD34+CD38- stem cell fraction. Furthermore, AML cells secrete galectin-9 (Gal-9, a TIM-3 ligand) in an autocrine manner, resulting in constitutive TIM-3 signaling, which maintains LSC self-renewal capacity through ß-catenin accumulation. In this study, we investigated the LSC-specific mechanisms of TIM-3 signaling. We found that TIM-3 signaling drove the canonical Wnt pathway, which was independent of Wnt ligands, to maintain cancer stemness in LSCs. Gal-9 ligation activated the cytoplasmic Src homology 2 (SH2) binding domain of TIM-3 to recruit hematopoietic cell kinase (HCK), a Src family kinase that is highly expressed in LSCs. HCK phosphorylated p120-catenin to promote the formation of the LDL receptor-related protein 6 (LRP6) signalosome, hijacking the canonical Wnt pathway. This TIM-3/HCK/p120-catenin axis was employed principally in immature LSCs compared to TIM-3-expressing exhausted T-cells.


Assuntos
Leucemia Mieloide Aguda , Via de Sinalização Wnt , Humanos , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , beta Catenina/metabolismo , Leucemia Mieloide Aguda/genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Neoplásicas
3.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499743

RESUMO

Variants in genes encoding for microRNAs have been associated with their deregulation in breast cancer (BC). Sequencing of microRNAs deregulated in BC was performed using DNA from Chilean patients with a strong family history and negative for mutations in BRCA1/BRCA2. Seventeen variants were identified, three of which were selected for a case-control association study: rs376491654 (miR-335), rs755634302 (miR-497), and rs190708267 (miR-155). For rs190708267 C>T, the heterozygous T allele was detected in four BC cases and absent in controls, while homozygous TT cases were not detected. Variants were modelled in silico, cloned in a plasmid, expressed in BC cell lines, and functional in vitro assays were performed. Overexpression of the miR-155-T allele increased mature miR-155-5p levels in both BC cell lines, suggesting that its presence alters pre-miR-155 processing. Moreover, BC cells overexpressing the miR-155-T allele showed increased proliferation, migration, and resistance to cisplatin-induced death compared to miR-155-C overexpressing cells. Of note, the 3'UTR of APC, GSK3ß, and PPP1CA genes, all into the canonical Wnt signaling pathway, were identified as direct targets. APC and GSK3ß mRNA levels decreased while PP1 levels increased. These results suggest a pathogenic role of the variant rs190708267 (miR-155) in BRCA 1/2 negative BC, conferring susceptibility and promoting traits of aggressiveness.


Assuntos
Neoplasias da Mama , MicroRNAs , Feminino , Humanos , Regiões 3' não Traduzidas , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Mutação
4.
BMC Biol ; 18(1): 151, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33109217

RESUMO

BACKGROUND: Wnt signaling is a critical determinant for the maintenance and differentiation of stem/progenitor cells, including trophoblast stem cells during placental development. Hyperactivation of Wnt signaling has been shown to be associated with human trophoblast diseases. However, little is known about the impact and underlying mechanisms of excessive Wnt signaling during placental trophoblast development. RESULTS: In the present work, we observed that two inhibitors of Wnt signaling, secreted frizzled-related proteins 1 and 5 (Sfrp1 and Sfrp5), are highly expressed in the extraembryonic trophoblast suggesting possible roles in early placental development. Sfrp1 and Sfrp5 double knockout mice exhibited disturbed trophoblast differentiation in the placental ectoplacental cone (EPC), which contains the precursors of trophoblast giant cells (TGCs) and spongiotrophoblast cells. In addition, we employed mouse models expressing a truncated ß-catenin with exon 3 deletion globally and trophoblast-specifically, as well as trophoblast stem cell lines, and unraveled that hyperactivation of canonical Wnt pathway exhausted the trophoblast precursor cells in the EPC, resulting in the overabundance of giant cells at the expense of spongiotrophoblast cells. Further examination uncovered that hyperactivation of canonical Wnt pathway disturbed trophoblast differentiation in the EPC via repressing Ascl2 expression. CONCLUSIONS: Our investigations provide new insights that the homeostasis of canonical Wnt-ß-catenin signaling is essential for EPC trophoblast differentiation during placental development, which is of high clinical relevance, since aberrant Wnt signaling is often associated with trophoblast-related diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Proteínas de Membrana/genética , Trofoblastos/metabolismo , Via de Sinalização Wnt/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Feminino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout
5.
FASEB J ; 33(6): 7555-7562, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30866652

RESUMO

Osteoblast differentiation and proliferation are regulated by several modulators, among which are adenosine A2A receptors (A2ARs) and Wingless/Integrated-ß-catenin pathways. Cytosolic ß-catenin stabilization promotes its nuclear translocation and transcriptional activity. In the present study, we seek to determine whether there is a connection between A2AR stimulation and cellular ß-catenin levels in osteoblasts. Osteoblast precursor cell line (MC3T3-E1) and primary murine osteoblasts were treated with CGS21680, a highly selective A2AR agonist. We analyzed cellular content and nuclear translocation of phosphorylated (p)-serine 552 (S552) ß-catenin in response to A2AR stimulation in MC3T3-E1 cells, in both wild-type and A2AR knockout (A2AKO) mice. Moreover, we measured cellular ß-catenin levels in MC3T3-E1 cells transfected with scrambled or protein kinase B (Akt) small interfering RNA following A2AR activation. CGS21680 (1 µM) stimulated an increase in both the cellular content and nuclear translocation of p-S552 ß-catenin after 15 min of incubation. A2AR activation had no tangible effect on the cellular ß-catenin level either in A2AKO mice or in osteoblasts with diminished Akt content. Our findings demonstrate an interaction between A2AR, ß-catenin, and Akt signaling in osteoblasts. The existence of such a crosstalk has significant repercussions in the development of novel therapeutic approaches targeting medical conditions associated with reduced bone density.-Borhani, S., Corciulo, C., Larranaga-Vera, A., Cronstein, B. N. Adenosine A2A receptor (A2AR) activation triggers Akt signaling and enhances nuclear localization of ß-catenin in osteoblasts.


Assuntos
Núcleo Celular/metabolismo , Osteoblastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor A2A de Adenosina/efeitos dos fármacos , Transdução de Sinais , beta Catenina/metabolismo , Células 3T3 , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenetilaminas/farmacologia , Fosforilação , Receptor A2A de Adenosina/genética
6.
Exp Eye Res ; 185: 107681, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31150636

RESUMO

Microenvironmental factors regulate stem cell fate. Fibronectin (FN), a key extracellular matrix component of the microenvironment, has been linked to various stem cell behaviors. However, how FN controls self-renewal, proliferation, and homeostasis of limbal stem cells remains unclear. Our study investigated the roles of FN in the self-renewal of rabbit limbal epithelial stem cells (rLESCs) by assessing rLESC proliferation and stemness in the presence and absence of FN. We further examined the effect of FN on non-canonical Wnt signaling during rLESC proliferation by evaluating the expression of cell cycle regulators. We found that rLESC proliferation increased after FN treatment and that 12.5 µg/cm2 FN maintained rLESC stemness. FN facilitated rLESC self-renewal by promoting Wnt11 and Fzd7 interaction. Furthermore, FN modulated cell cycle regulators to enhance rLESC proliferation via the upregulation of ROCK1 and ROCK2. Our study provides new insights into the mechanism through which FN regulates the self-renewal of rLESCs; specifically, this occurs via stimulation of the Wnt11/Fzd7/ROCK non-canonical Wnt pathway. The roles of FN in the self-renewal of limbal epithelial stem cells should be further investigated for the potential treatment of limbal deficiency.


Assuntos
Epitélio Corneano/efeitos dos fármacos , Fibronectinas/farmacologia , Receptores Frizzled/metabolismo , Limbo da Córnea/citologia , Células-Tronco/efeitos dos fármacos , Proteínas Wnt/metabolismo , Quinases Associadas a rho/metabolismo , Animais , Western Blotting , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Epitélio Corneano/metabolismo , Citometria de Fluxo , Técnica Indireta de Fluorescência para Anticorpo , Técnicas de Silenciamento de Genes , Masculino , RNA Interferente Pequeno/genética , Coelhos , Reação em Cadeia da Polimerase em Tempo Real , Células-Tronco/metabolismo , Via de Sinalização Wnt/fisiologia
7.
Mol Cancer ; 16(1): 20, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28137278

RESUMO

BACKGROUND: Colorectal cancer remains one of the most common malignant tumors worldwide. Colorectal cancer initiating cells (CCICs) are a small subpopulation responsible for malignant behaviors of colorectal cancer. Aberrant activation of the Wnt pathways regulates the self-renewal of CCIC. However, the underlying mechanism(s) remain poorly understood. METHODS: Via retroviral library screening, we identified Nuclear Receptor-Interacting Protein 2 (NRIP2) as a novel interactor of the Wnt pathway from enriched colorectal cancer colosphere cells. The expression levels of NRIP2 and retinoic acid-related orphan receptor ß (RORß) were further examined by FISH, qRT-PCR, IHC and Western blot. NRIP2 overexpressed and knockdown colorectal cancer cells were produced to study the role of NRIP2 in Wnt pathway. We also verified the binding between NRIP2 and RORß and investigated the effect of RORß on CCICs both in vitro and in vivo. Genechip-scanning speculated downstream target HBP1. Western blot, ChIP and luciferase reporter were carried to investigate the interaction between NRIP2, RORß, and HBP1. RESULTS: NRIP2 was significantly up-regulated in CCICs from both cell lines and primary colorectal cancer tissues. Reinforced expression of NRIP2 increased Wnt activity, while silencing of NRIP2 attenuated Wnt activity. The transcription factor RORß was a key target through which NRIP2 regulated Wnt pathway activity. RORß was a transcriptional enhancer of inhibitor HBP1 of the Wnt pathway. NRIP2 prevented RORß to bind with downstream HBP1 promoter regions and reduced the transcription of HBP1. This, in turn, attenuated the HBP1-dependent inhibition of TCF4-mediated transcription. CONCLUSIONS: NRIP2 is a novel interactor of the Wnt pathway in colorectal cancer initiating cells. interactions between NRIP2, RORß, and HBP1 mediate a new mechanism for CCIC self-renewal via the Wnt activity.


Assuntos
Neoplasias Colorretais/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Grupo de Alta Mobilidade/genética , Células-Tronco Neoplásicas/metabolismo , Proteínas do Tecido Nervoso/genética , Membro 2 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Proteínas Repressoras/genética , Regulação para Cima , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HT29 , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Camundongos , Transplante de Neoplasias , Proteínas do Tecido Nervoso/metabolismo , Membro 2 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Repressoras/metabolismo , Via de Sinalização Wnt
8.
Cell Immunol ; 310: 99-107, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27544306

RESUMO

The presence of memory T cells (TMs) hinders transplant survival. Dendritic cells (DCs) induce the generation of TMs during primary immune responses. However, the specific mechanisms are unclear. In this study, we constructed a Wnt3a-expressing adenovirus and used small interfering RNA (siRNA) targeting Wnt3a to investigate the influence of Wnt3a expression in DCs on the generation of TMs during primary immune responses. Our results demonstrated that the Wnt3a expression levels in DCs influenced the generation of TMs after 5days in co-culture with naïve T cells through activation of the Wnt canonical pathway. Interleukin-7 secretion levels in supernatants of DC/TNs co-cultures showed a similar pattern of Wnt3a expression levels in DCs. These findings provide a better understanding of TMs generation mechanisms that might be useful to improve transplant outcomes.


Assuntos
Células Dendríticas/imunologia , Rejeição de Enxerto/imunologia , Linfócitos T/imunologia , Proteína Wnt3A/metabolismo , Animais , Células Cultivadas , Técnicas de Cocultura , Rejeição de Enxerto/prevenção & controle , Memória Imunológica , Interleucina-7/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética , Transdução de Sinais/imunologia , Proteína Wnt3A/genética
9.
Calcif Tissue Int ; 99(2): 174-86, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27040676

RESUMO

Elucidation of the molecular mechanisms that regulate the differentiation of adipose-derived mesenchymal stem cells into osteogenic cells may lead to new methods for bone tissue engineering. We examined the role of miR-26a-5p in the regulation of osteogenic differentiation of mouse adipose-derived mesenchymal stem cells (mADSCs) by using mimics and inhibitors of this microRNA. Our results showed that over-expression of miR-26a-5p inhibited osteogenesis and that suppression of endogenous miR-26a-5p promoted osteogenesis. Four bioinformatics algorithms indicated that the 3'UTR of Wnt5a was a potential target of miR-26a-5p. We confirmed this prediction by use of dual-luciferase reporter assay and GFP/RFP assay. We also examined the molecular mechanisms by which miR-26a-5p regulates osteogenesis. Fura-2AM and Western blot assays after transfection indicated that miR-26a-5p repressed WNT5A, inhibited calcium flux and protein kinase C, and suppressed osteogenic differentiation of mADSCs. By contrast, miR-26a-5p inhibition activated these signal proteins and promoted osteogenic differentiation. Taken together, our results suggest that up-regulation of miR-26a-5p inhibits osteogenic differentiation of mADSCs by directly targeting the 3'UTR of Wnt5a, thereby down-regulating the Wnt/Ca(2+) signaling pathway.


Assuntos
Diferenciação Celular/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Osteoblastos/citologia , Osteogênese/genética , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Adiposidade/fisiologia , Animais , Cálcio/metabolismo , Regulação da Expressão Gênica/genética , Masculino , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/genética
10.
Int J Mol Sci ; 17(4): 495, 2016 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-27049382

RESUMO

Most studies of Wnt signaling in malignant tissues have focused on the canonical Wnt pathway (CWP) due to its role in stimulating cellular proliferation. The role of the non-canonical Wnt pathway (NCWP) in tissues with dysregulated Wnt signaling is not fully understood. Understanding NCWP's role is important since these opposing pathways act in concert to maintain homeostasis in healthy tissues. Our preliminary studies demonstrated that LiCl inhibited proliferation of primary cells derived from colorectal cancer (CRC). Since LiCl stimulates cell proliferation in normal tissues and NCWP suppresses it, the present study was designed to investigate the impact of NCWP components in LiCl-mediated effects. LiCl-mediated inhibition of CRC cell proliferation (p < 0.001) and increased apoptosis (p < 0.01) coincided with 23-fold increase (p < 0.025) in the expression of the NCWP ligand, Wnt9A. LiCl also suppressed ß-catenin mRNA (p < 0.03), total ß-catenin protein (p < 0.025) and the active form of ß-catenin. LiCl-mediated inhibition of CRC cell proliferation was partially reversed by IWP-2, and Wnt9A antibody. Recombinant Wnt9A protein emulated LiCl effects by suppressing ß-catenin protein (p < 0.001), inhibiting proliferation (p < 0.001) and increasing apoptosis (p < 0.03). This is the first study to demonstrate induction of a NCWP ligand, Wnt9A as part of a mechanism for LiCl-mediated suppression of CRC cell proliferation.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Colo/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Cloreto de Lítio/farmacologia , Reto/efeitos dos fármacos , Proteínas Wnt/metabolismo , Adulto , Antimaníacos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Colo/metabolismo , Colo/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Pessoa de Meia-Idade , Reto/metabolismo , Reto/patologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo
11.
Cancer Sci ; 106(6): 665-671, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25788321

RESUMO

The canonical Wnt/ß-catenin pathway plays an important role in different developmental processes through the regulation of stem cell functions. In the activation of the canonical Wnt/ß-catenin pathway, ß-catenin protein is imported into the nucleus and activates transcription of target genes including cyclin D1 and c-myc. Aberrant activation of the Wnt/ß-catenin pathway contributes to carcinogenesis and malignant behaviors, and Wnt signaling is essential for the maintenance of cancer stem cells. The canonical Wnt/ß-catenin pathway has been investigated extensively as a target in cancer treatment and several specific inhibitors of this signaling pathway have been identified through high-throughput screening. In this review, the significance of the canonical Wnt/ß-catenin pathway in hematological carcinogenesis and screening methods for specific inhibitors are discussed.


Assuntos
Neoplasias Hematológicas/tratamento farmacológico , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/antagonistas & inibidores , Medula Óssea/fisiologia , Epigênese Genética , Neoplasias Hematológicas/etiologia , Neoplasias Hematológicas/genética , Humanos , Células-Tronco Neoplásicas/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Via de Sinalização Wnt/fisiologia , beta Catenina/fisiologia
12.
Cells ; 13(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474391

RESUMO

Parenchyma of pulmonary cancers acquires contractile properties that resemble those of muscles but presents some particularities. These non-muscle contractile tissues could be stimulated either electrically or chemically (KCl). They present the Frank-Starling mechanism, the Hill hyperbolic tension-velocity relationship, and the tridimensional time-independent tension-velocity-length relationship. Relaxation could be obtained by the inhibition of crossbridge molecular motors or by a decrease in the intracellular calcium concentration. They differ from muscles in that their kinetics are ultraslow as evidenced by their low shortening velocity and myosin ATPase activity. Contractility is generated by non-muscle myosin type II A and II B. The activation of the ß-catenin/WNT pathway is accompanied by the high level of the non-muscle myosin observed in lung cancers.


Assuntos
Neoplasias Pulmonares , Miosinas , Humanos , Miosinas/metabolismo , Contração Muscular , Músculos/metabolismo
13.
Exp Ther Med ; 26(1): 330, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37346406

RESUMO

The results of our previous study demonstrated that activation of the Wnt/ß-catenin pathway increased the differentiation of mesenchymal stem cells (MSCs) into type II alveolar epithelial (AT II) cells; however, the specific mechanisms remain unclear. The present study aimed to evaluate the role of Wnt/ß-catenin-p130/E2F transcription factor 4 (E2F4) in regulating the differentiation of mouse MSCs (mMSCs) into AT II cells, and to determine the specific mechanisms. mMSCs with p130 or E2F4 overexpression were constructed using lentiviral vectors. Differentiation of mMSCs into AT II cells was promoted using a modified coculture system with murine lung epithelial-12 cells incubated in small airway growth medium for 7-14 days. The differentiation efficiency was detected using immunofluorescence, western blot analysis and transmission electron microscopy. To detect the association between the canonical Wnt pathway and p130/E2F4, 4 mmol/l lithium chloride (LiCl) or 200 ng/ml Dickkopf-related protein 1 (DKK-1) was also added to the coculture system. Following differentiation, the cell cycle of mMSCs was evaluated using flow cytometry. The results of the present study demonstrated that surfactant protein C (SP-C) protein expression was higher in the p130 overexpression (MSC-p130) and E2F4 overexpression (MSC-E2F4) groups compared with the normal control mMSCs group following differentiation into AT II cells. Similar results for SP-C protein expression and lamellar body-like structures were also observed using immunofluorescence analysis and electron microscopy. Following the addition of LiCl into the coculture system for activation of the Wnt/ß-catenin signaling pathway, phosphorylated (p)-p130/p130 was slightly decreased at 7 days and E2F4 was increased both at 7 and 14 days in mMSCs. Furthermore, the p-p130/p130 ratio was significantly increased at 14 days and E2F4 was decreased both at 7 and 14 days following DKK-1-mediated inhibition of the Wnt pathway. The results of the present study demonstrated that the numbers of cells in G1 and S phases were increased following activation of the Wnt pathway and decreased following Wnt pathway inhibition. However, the number of cells in G1 phase was increased following the differentiation of mMSCs overexpressing p130 or E2F4. Therefore, the results of the present study revealed that the canonical Wnt signaling pathway may affect the differentiation of MSCs into AT II cells via regulation of downstream p130/E2F4. The specific mechanisms may be associated with G1 phase extension in the cell cycle of MSCs.

14.
Front Pediatr ; 10: 916716, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299696

RESUMO

Background: Bronchopulmonary dysplasia (BPD) is characterized by impaired alveolar and microvascular development. Claudin-18 is the only known lung-specific tight junction protein affecting the development and transdifferentiation of alveolar epithelium. Objective: We aimed to explore the changes in the expression of claudin-18, podoplanin, SFTPC, and the canonical WNT pathway, in a rat model of hyperoxia-induced BPD, and to verify the regulatory relationship between claudin-18 and the canonical WNT pathway by cell experiments. Methods: A neonatal rat and cell model of BPD was established by exposing to hyperoxia (85%). Hematoxylin and eosin (HE) staining was used to confirm the establishment of the BPD model. The mRNA levels were assessed using quantitative real-time polymerase chain reaction(qRT-PCR). Protein expression levels were determined using western blotting, immunohistochemical staining, and immunofluorescence. Results: As confirmed by HE staining, the neonatal rat model of BPD was successfully established. Compared to that in the control group, claudin-18 and claudin-4 expression decreased in the hyperoxia group. Expression of ß-catenin in the WNT signaling pathway decreased, whereas that of p-GSK-3ß increased. Expression of the AEC II marker SFTPC initially decreased and then increased, whereas that of the AEC I marker podoplanin increased on day 14 (P < 0.05). Similarly, claudin-18, claudin-4, SFTPC and ß-catenin were decreased but podoplanin was increased when AEC line RLE-6TN exposed to 85% hyperoxia. And the expression of SFTPC was increased, the podoplanin was decreased, and the WNT pathway was upregulated when claudin-18 was overexpressed. Conclusions: Claudin-18 downregulation during hyperoxia might affect lung development and maturation, thereby resulting in hyperoxia-induced BPD. Additionally, claudin-18 is associated with the canonical WNT pathway and AECs transdifferentiation.

15.
Gene ; 819: 146246, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35122924

RESUMO

Triple-negative breast cancer (TNBC) represents a challenge in the search for new therapeutic targets. TNBCs are aggressive and generate resistance to chemotherapy. Tumors of TNBC patients with poor prognosis present a high level of adenosine deaminase acting on RNA1 (ADAR1). We explore the connection of ADAR1 with the canonical Wnt signaling pathway and the effect of modulation of its expression in TNBC. Expression data from cell line sequencing (DepMap) and TCGA samples were downloaded and analyzed. We lentivirally generated an MDA-MB-231 breast cancer cell line that overexpress (OE) ADAR1p110 or an ADAR knockdown. Abundance of different proteins related to Wnt/ß-catenin pathway and activity of nuclear ß-catenin were analyzed by Western blot and luciferase TOP/FOP reporter assay, respectively. Cell invasion was analyzed by matrigel assay. In mice, we study the behavior of tumors generated from ADAR1p110 (OE) cells and tumor vascularization immunostaining were analyzed. ADAR1 connects to the canonical Wnt pathway in TNBC. ADAR1p110 overexpression decreased GSK-3ß, while increasing active ß-catenin. It also increased the activity of nuclear ß-catenin and increased its target levels. ADAR1 knockdown has the opposite effect. MDA-MB-231 ADAR1 (OE) cells showed increased capacity of invasion. Subsequently, we observed that tumors derived from ADAR1p110 (OE) cells showed increased invasion towards the epithelium, and increased levels of Survivin and CD-31 expressed in vascular endothelial cells. These results indicate that ADAR1 overexpression alters the expression of some key components of the canonical Wnt pathway, favoring invasion and neovascularization, possibly through activation of the ß-catenin, which suggests an unknown role of ADAR1p110 in aggressiveness of TNBC tumors.


Assuntos
Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fenótipo , Via de Sinalização Wnt , beta Catenina/metabolismo
16.
Neural Regen Res ; 17(2): 401-408, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34269216

RESUMO

The regulation of adult neural stem cells (NSCs) is critical for lifelong neurogenesis. MicroRNAs (miRNAs) are a type of small, endogenous RNAs that regulate gene expression post-transcriptionally and influence signaling networks responsible for several cellular processes. In this study, miR-103-3p was transfected into neural stem cells derived from embryonic hippocampal neural stem cells. The results showed that miR-103-3p suppressed neural stem cell proliferation and differentiation, and promoted apoptosis. In addition, miR-103-3p negatively regulated NudE neurodevelopment protein 1-like 1 (Ndel1) expression by binding to the 3' untranslated region of Ndel1. Transduction of neural stem cells with a lentiviral vector overexpressing Ndel1 significantly increased cell proliferation and differentiation, decreased neural stem cell apoptosis, and decreased protein expression levels of Wnt3a, ß-catenin, phosphor-GSK-3ß, LEF1, c-myc, c-Jun, and cyclin D1, all members of the Wnt/ß-catenin signaling pathway. These findings suggest that Ndel1 is a novel miR-103-3p target and that miR-103-3p acts by suppressing neural stem cell proliferation and promoting apoptosis and differentiation. This study was approved by the Animal Ethics Committee of Nantong University, China (approval No. 20200826-003) on August 26, 2020.

17.
Front Endocrinol (Lausanne) ; 12: 725708, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956074

RESUMO

A pivotal role of thyroid hormones and their nuclear receptors in intestinal development and homeostasis have been described, whereas their involvement in intestinal carcinogenesis is still controversial. In this perspective article we briefly summarize the recent advances in this field and present new data regarding their functional interaction with one of the most important signaling pathway, such as WNT, regulating intestinal development and carcinogenesis. These complex interactions unveil new concepts and will surely be of importance for translational research.


Assuntos
Regulação da Expressão Gênica , Genes erbA , Neoplasias Intestinais/patologia , Intestinos/patologia , Receptores dos Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/metabolismo , Via de Sinalização Wnt , Homeostase , Humanos , Neoplasias Intestinais/genética , Neoplasias Intestinais/metabolismo , Intestinos/metabolismo , Receptores dos Hormônios Tireóideos/genética
18.
Int Immunopharmacol ; 100: 108123, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34560511

RESUMO

The slightly available data about the pathogenesis process of mild repetitive traumatic brain injury (mRTBI) indicates to the necessity of further exploration of mRTBI consequences. Several cellular changes are believed to contribute to the cognitive disabilities, and neurodegenerative changes observed later in persons subjected to mRTBI. We investigated glial fibrillary acidic protein (GFAP), the important severity related biomarker, where it showed further increase after multiple trauma compared to single one. To authenticate our aim, Morin (10 mg/kg loading dose, then twice daily 5 mg/kg for 7 days), MK-801 (1 mg/kg; i.p) and their combination were used. The results obtained has shown that all the chosen regimens opposed the upregulated dementia markers (Aß1-40,p(Thr231)Tau) and inflammatory protein contents/expression of p(Ser53s6)NF-κBp65, TNF-α, IL-6,and IL-1ß and the elevated GFAP in immune stained cortex sections. Additionally, they exerted anti-apoptotic activity by decreasing caspase-3 activity and increasing Bcl-2 contents. Saving brain tissues was evident after these therapeutic agents via upregulating the non-canonical Wnt-1/PKC-α cue and IL-10/p(Tyr(1007/1008))JAK-2/p(Tyr705)STAT-3 signaling pathway to confirm enhancement of survival pathways on the molecular level. Such results were imitated by correcting the injury dependent deviated behavior, where Morin alone or in combination enhanced behavior outcome. On one side, our study refers to the implication of two survival signaling pathways; viz.,the non-canonical Wnt-1/PKC-α and p(Tyr(1007/1008))JAK-2/p(Tyr705)STAT-3 in single and repetitive mRTBI along with distorted dementia markers, inflammation and apoptotic process that finally disrupted behavior. On the other side, intervention through affecting all these targets by Morin alone or with MK-801 affords a promising neuroprotective effect.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Flavonoides/farmacologia , Janus Quinase 2/metabolismo , Oligopeptídeos/metabolismo , Fosfopeptídeos/metabolismo , Proteína Quinase C-alfa/metabolismo , Fator de Transcrição STAT3/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Apoptose/efeitos dos fármacos , Lesões Encefálicas Traumáticas/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Condicionamento Psicológico/efeitos dos fármacos , Maleato de Dizocilpina/farmacologia , Medo/efeitos dos fármacos , Inflamação/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Proteína Wnt1 , Proteínas tau/metabolismo
19.
J Mol Med (Berl) ; 98(6): 897-906, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32424558

RESUMO

Impaired bone homeostasis caused by osteomyelitis provokes serious variations in the bone remodeling process, thereby involving multiple inflammatory cytokines to activate bone healing. We have previously established a mouse model for post-traumatic osteomyelitis and studied bone regeneration after sufficient debridement. Moreover, we could further characterize the postinfectious inflammatory state of bony defects after debridement with elevated osteoclasts and decreased bone formation despite the absence of bacteria. In this study, we investigated the positive effects of Wnt-pathway modulation on bone regeneration in our previous established mouse model. This was achieved by local application of Wnt3a, a recombinant activator of the canonical Wnt-pathway. Application of Wnt3a could enhance new bone formation, which was verified by histological and µ-CT analysis. Moreover, histology and western blots revealed enhanced osteoblastogenesis and downregulated osteoclasts in a RANKL-dependent manner. Further analysis of Wnt-pathway showed downregulation after bone infections were reconstituted by application of Wnt3a. Interestingly, Wnt-inhibitory proteins Dickkopf 1 (DKK1), sclerostin, and secreted frizzled protein 1 (sFRP1) were upregulated simultaneously to Wnt-pathway activation, indicating a negative feedback for active form of Beta-catenin. In this study, we could demonstrate enhanced bone formation in defects caused by post-traumatic osteomyelitis after Wnt3a application. KEY MESSAGES: Osteomyelitis decreases bone regeneration Wnt3a restores bone healing after infection Canonical Wnt-pathway activation with negative feedback.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Osteomielite/metabolismo , Osteomielite/terapia , Proteínas Recombinantes/administração & dosagem , Proteína Wnt3A/administração & dosagem , Animais , Desbridamento , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Imunofluorescência , Glicogênio Sintase Quinase 3 beta/metabolismo , Processamento de Imagem Assistida por Computador , Masculino , Camundongos , Osteoclastos/metabolismo , Osteogênese/genética , Osteomielite/diagnóstico , Osteomielite/etiologia , Via de Sinalização Wnt/efeitos dos fármacos , Microtomografia por Raio-X , beta Catenina/metabolismo
20.
Neurochem Int ; 141: 104881, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33068684

RESUMO

Alzheimer's disease (AD) constitutes the leading cause of dementia worldwide. It is associated to amyloid-ß (Aß) aggregation and tau hyper-phosphorylation, accompanied by a progressive cognitive decline. Evidence suggests that the canonical Wnt pathway is deregulated in AD. Pathway activity is mediated by ß-catenin stabilization in the cytosol, and subsequent translocation to the nucleus to regulate the expression of several genes implicated in brain homeostasis and functioning. It was recently proposed that Dickkopf-related protein-1 (DKK1), an endogenous antagonist of the pathway, might be implicated in AD pathogenesis. Here, we hypothesized that canonical Wnt pathway deactivation associated to DKK1 induction contributes to late-onset AD pathogenesis, and thus DKK1 neutralization could attenuate AD pathology. For this purpose, human post-mortem AD brain samples were used to assess pathway activity, and aged APPswe/PS1 mice were used to investigate DKK1 in late-onset AD-like pathology and therapy. Our findings indicate that ß-catenin levels progressively decrease in the brain of AD patients, correlating with the duration of symptoms. Next, we found that Aß pathology in APPswe/PS1 mediates DKK1 induction in the brain. Pharmacological neutralization of DKK1's biological activity in APPswe/PS1 mice restores pathway activity by stabilizing ß-catenin, attenuates Aß pathology, and ameliorates the memory of mice. Attenuation of AD-like pathology upon DKK1 inhibition is accompanied by a reduced protein expression of beta-site amyloid precursor protein (APP) cleaving enzyme-1 (BACE1). Moreover, DKK1 inhibition enhances vascular density, promotes blood-brain barrier (BBB) integrity by increasing claudin 5, glucose transporter-1 (GLUT1), and ATP-binding cassette sub-family B member-1 (ABCB1) protein expression, as well as ameliorates synaptic plasticity by increasing brain-derived neurotrophic factor (BDNF), and postsynaptic density protein-95 (PSD-95) protein expression. DKK1 conditional induction reduces claudin 5, abcb1, and psd-95 mRNA expression, validating its inhibition effects. Our results indicate that neutralization of DKK1's biological activity attenuates AD-like pathology by restoring canonical Wnt pathway activity.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Doença de Alzheimer/psicologia , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Comportamento Animal , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Claudina-5/genética , Proteína 4 Homóloga a Disks-Large/genética , Humanos , Camundongos , Fragmentos de Peptídeos/genética , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA