Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Annu Rev Biochem ; 86: 485-514, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28654327

RESUMO

Living organisms sense and respond to light, a crucial environmental factor, using photoreceptors, which rely on bound chromophores such as retinal, flavins, or linear tetrapyrroles for light sensing. The discovery of photoreceptors that sense light using 5'-deoxyadenosylcobalamin, a form of vitamin B12 that is best known as an enzyme cofactor, has expanded the number of known photoreceptor families and unveiled a new biological role of this vitamin. The prototype of these B12-dependent photoreceptors, the transcriptional repressor CarH, is widespread in bacteria and mediates light-dependent gene regulation in a photoprotective cellular response. CarH activity as a transcription factor relies on the modulation of its oligomeric state by 5'-deoxyadenosylcobalamin and light. This review surveys current knowledge about these B12-dependent photoreceptors, their distribution and mode of action, and the structural and photochemical basis of how they orchestrate signal transduction and control gene expression.


Assuntos
Proteínas de Bactérias/química , Cobamidas/metabolismo , Regulação Bacteriana da Expressão Gênica , Fotorreceptores Microbianos/química , Proteínas Repressoras/química , Fatores de Transcrição/química , Bacillus megaterium/genética , Bacillus megaterium/metabolismo , Bacillus megaterium/efeitos da radiação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cobamidas/química , Luz , Modelos Moleculares , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Myxococcus xanthus/efeitos da radiação , Fotoquímica , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Conformação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , Thermus thermophilus/efeitos da radiação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Vitamina B 12/química , Vitamina B 12/metabolismo
2.
Ecotoxicol Environ Saf ; 224: 112666, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34416635

RESUMO

Carbaryl is the representative of carbamate insecticide. As an acetylcholinesterase inhibitor, it poses potential threat to humans and other non-target organisms. Agrobacterium sp. XWY-2, which could grow with carbaryl as the sole carbon source, was isolated and characterized. The carH gene, encoding a carbaryl hydrolase, was cloned from strain XWY-2 and expressed in Escherichia coli BL21 (DE3). CarH was able to hydrolyze carbamate pesticides including carbaryl, carbofuran, isoprocarb, propoxur and fenobucarb efficiently, while it hydrolyzed oxamyl and aldicarb poorly. The optimal pH of CarH was 8.0 and the optimal temperature was 30 â„ƒ. The apparent Km and kcat values of CarH for carbaryl were 38.01 ± 2.81 µM and 0.33 ± 0.01 s-1, respectively. The point mutation experiment demonstrated that His341, His343, His346, His416 and D437 are the key sites for CarH to hydrolyze carbaryl.

3.
J Bacteriol ; 202(20)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967908

RESUMO

Pseudomonas putida KT2440 retains three homologs (PplR1 to PplR3) of the LitR/CarH family, an adenosyl B12-dependent light-sensitive MerR family transcriptional regulator. Transcriptome analysis revealed the existence of a number of photoinducible genes, including pplR1, phrB (encoding DNA photolyase), ufaM (furan-containing fatty acid synthase), folE (GTP cyclohydrolase I), cryB (cryptochrome-like protein), and multiple genes without annotated/known function. Transcriptional analysis by quantitative reverse transcription-PCR with knockout mutants of pplR1 to pplR3 showed that a triple knockout completely abolished the light-inducible transcription in P. putida, which indicates the occurrence of ternary regulation of PplR proteins. A DNase I footprint assay showed that PplR1 protein specifically binds to the promoter regions of light-inducible genes, suggesting a consensus PplR1-binding direct repeat, 5'-T(G/A)TACAN12TGTA(C/T)A-3'. The disruption of B12 biosynthesis cluster did not affect the light-inducible transcription; however, disruption of ppSB1-LOV (where LOV indicates "light, oxygen, or voltage") and ppSB2-LOV, encoding blue light photoreceptors adjacently located to pplR3 and pplR2, respectively, led to the complete loss of light-inducible transcription. Overall, the results suggest that the three PplRs and two PpSB-LOVs cooperatively regulate the light-inducible gene expression. The wide distribution of the pplR/ppSB-LOV cognate pair homologs in Pseudomonas spp. and related bacteria suggests that the response and adaptation to light are similarly regulated in the group of nonphototrophic bacteria.IMPORTANCE The LitR/CarH family is a new group of photosensor homologous to MerR-type transcriptional regulators. Proteins of this family are distributed to various nonphototrophic bacteria and grouped into at least five classes (I to V). Pseudomonas putida retaining three class II LitR proteins exhibited a genome-wide response to light. All three paralogs were functional and mediated photodependent activation of promoters directing the transcription of light-induced genes or operons. Two LOV (light, oxygen, or voltage) domain proteins, adjacently encoded by two litR genes, were also essential for the photodependent transcriptional control. Despite the difference in light-sensing mechanisms, the DNA binding consensus of class II LitR [T(G/A)TA(C/T)A] was the same as that of class I. This is the first study showing the actual involvement of class II LitR in light-induced transcription.


Assuntos
Proteínas de Bactérias/metabolismo , Luz , Fotorreceptores Microbianos/metabolismo , Pseudomonas putida/metabolismo , Pseudomonas putida/efeitos da radiação , Proteínas de Bactérias/genética , Sítios de Ligação , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Óperon , Fotorreceptores Microbianos/genética , Regiões Promotoras Genéticas , Pseudomonas putida/genética
4.
Chemistry ; 26(44): 9859-9863, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32270892

RESUMO

Spatiotemporal control of integrin-mediated cell adhesions to extracellular matrix regulates cell behavior with has numerous implications for biotechnological applications. In this work, two approaches for regulating cell adhesions in space and time with high precision are reported, both of which utilize green light. In the first design, CarH, which is a tetramer in the dark, is used to mask cRGD adhesion-peptides on a surface. Upon green light illumination, the CarH tetramer dissociates into its monomers, revealing the adhesion peptide so that cells can adhere. In the second design, the RGD motif is incorporated into the CarH protein tetramer such that cells can adhere to surfaces functionalized with this protein. The cell adhesions can be disrupted with green light, due to the disassembly of the CarH-RGD protein. Both designs allow for photoregulation with noninvasive visible light and open new possibilities to investigate the dynamical regulation of cell adhesions in cell biology.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/efeitos da radiação , Adesão Celular/efeitos da radiação , Luz , Oligopeptídeos/metabolismo , Proteínas de Bactérias/química , Integrinas/química , Integrinas/metabolismo , Análise Espaço-Temporal , Thermus thermophilus
5.
J Biol Chem ; 293(46): 17888-17905, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30262667

RESUMO

Newly discovered bacterial photoreceptors called CarH sense light by using 5'-deoxyadenosylcobalamin (AdoCbl). They repress their own expression and that of genes for carotenoid synthesis by binding in the dark to operator DNA as AdoCbl-bound tetramers, whose light-induced disassembly relieves repression. High-resolution structures of Thermus thermophilus CarHTt have provided snapshots of the dark and light states and have revealed a unique DNA-binding mode whereby only three of four DNA-binding domains contact an operator comprising three tandem direct repeats. To gain further insights into CarH photoreceptors and employing biochemical, spectroscopic, mutational, and computational analyses, here we investigated CarHBm from Bacillus megaterium We found that apoCarHBm, unlike monomeric apoCarHTt, is an oligomeric molten globule that forms DNA-binding tetramers in the dark only upon AdoCbl binding, which requires a conserved W-X9-EH motif. Light relieved DNA binding by disrupting CarHBm tetramers to dimers, rather than to monomers as with CarHTt CarHBm operators resembled that of CarHTt, but were larger by one repeat and overlapped with the -35 or -10 promoter elements. This design persisted in a six-repeat, multipartite operator we discovered upstream of a gene encoding an Spx global redox-response regulator whose photoregulated expression links photooxidative and general redox responses in B. megaterium Interestingly, CarHBm recognized the smaller CarHTt operator, revealing an adaptability possibly related to the linker bridging the DNA- and AdoCbl-binding domains. Our findings highlight a remarkable plasticity in the mode of action of B12-based CarH photoreceptors, important for their biological functions and development as optogenetic tools.


Assuntos
Proteínas de Bactérias/metabolismo , Cobamidas/metabolismo , DNA Bacteriano/metabolismo , Fotorreceptores Microbianos/metabolismo , Proteínas Repressoras/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Bacillus megaterium , Proteínas de Bactérias/genética , Sítios de Ligação , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Regiões Operadoras Genéticas , Fotorreceptores Microbianos/genética , Regiões Promotoras Genéticas , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Proteínas Repressoras/genética , Raios Ultravioleta
6.
J Bacteriol ; 200(24)2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30249707

RESUMO

The LitR/CarH protein family is an adenosyl B12 (AdoB12)-dependent photoreceptor family with DNA-binding activity, and its homologs are widely distributed in the genomes of diverse bacterial genera. In this investigation, we studied the role and functions of a LitR homolog from a Gram-negative soil bacterium, Burkholderia multivorans, which does not possess an AdoB12-binding domain. Transcriptome analysis indicated the existence of 19 light-induced genes, including folE2, cfaB, litS, photolyase gene phrB2, and cryB, located in the region flanking litR Disruption of litR caused constitutive expression of all the light-inducible genes, while mutation in the light-induced sigma factor gene, litS, abolished the transcription of the phrB2 operon and the cfa operon, indicating that LitR and LitS play a central role in light-inducible transcription. A gel shift assay showed that recombinant protein LitR specifically binds to the promoter regions of litR and the folE2 operon, and its binding was weakened by UV-A illumination. LitR absorbs light at maximally near 340 nm and exhibited a photocyclic response and light-dependent dissociation of multimer into tetramer. The litR mutant produced a 20-fold-higher intracellular level of folate than that of the wild-type strain. Thus, the evidence suggests that LitR light-dependently regulates the transcription of litR itself and the folE2 operon, resulting in the production of folate, and then the expressed RNA polymerase complex containing σLitS directs the transcription of the phrB2 operon and the cfa operon. These light-dependent characteristics suggest that class III LitR, in complex with a UV-A-absorbing molecule, follows a novel light-sensing mechanism.IMPORTANCE Members of the LitR/CarH family are adenosyl B12-based photosensory transcriptional regulator involved in light-inducible carotenoid production in nonphototrophic bacteria. Our study provides the first evidence of the involvement of a class III LitR, which lacks an adenosyl B12-binding domain in the light response of Burkholderia multivorans belonging to betaproteobacteria. Our biochemical analysis suggests that class III LitR protein exhibits features as a photosensor including absorption of light at the UV-A region (λmax = ca. 340 nm), photocyclic response, and light-dependent dissociation. This suggests that class III LitR associates with a UV-A-absorbing molecule, and it has a photosensing mechanism distinguishable from that of the B12-based type.


Assuntos
Burkholderia/metabolismo , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Burkholderia/classificação , Burkholderia/genética , Evolução Molecular , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Mutação , Óperon , Fotorreceptores Microbianos/química , Filogenia , Regiões Promotoras Genéticas
7.
Sci Technol Adv Mater ; 14(3): 035003, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27877576

RESUMO

We follow the evolution of the electronic properties of the titled homologous series when n as well as the atomic type of A and M are varied where for n = 1, A = Ca, Sr and M = Rh, Ir while for n = 3, A = Ca, Sr and M = Rh. The crystal structure of n = 1 members is known to be CaRh2B2-type (Fddd), while that of n = 3 is Ca3Rh8B6-type (Fmmm); the latter can be visualized as a stacking of structural fragments from AM3B2 (P6/mmm) and AM2B2. The metallic properties of the n = 1 and 3 members are distinctly different: on the one hand, the n = 1 members are characterized by a linear coefficient of the electronic specific heat γ ≈ 3 mJ mol-1 K-2, a Debye temperature θD ≈ 300 K, a normal conductivity down to 2 K and a relatively strong linear magnetoresistivity for fields up to 150 kOe. The n = 3 family, on the other hand, exhibits γ ≈ 18 mJ mol-1 K-2, θD ≈ 330 K, a weak linear magnetoresistivity and an onset of superconductivity (for Ca3Rh8B6, Tc = 4.0 K and Hc2 = 14.5 kOe, while for Sr3Rh8 B6, Tc = 3.4 K and Hc2 ≈ 4.0 kOe). These remarkable differences are consistent with the findings of the electronic band structures and density of state (DOS) calculations. In particular, satisfactory agreement between the measured and calculated γ was obtained. Furthermore, the Fermi level, EF, of Ca3Rh8B6 lies at almost the top of a pronounced local DOS peak, while that of CaRh2B2 lies at a local valley: this is the main reason behind the differences between the, e.g., superconducting properties. Finally, although all atoms contribute to the DOS at EF, the contribution of the Rh atoms is the strongest.

8.
Adv Healthc Mater ; 12(25): e2300835, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37070155

RESUMO

Vitamin B12 (cobalamin) is essential for human health and its deficiency results in anemia and neurological damage. Vitamin B12 exists in different forms with various bioactivity but most sensors are unable to discriminate between them. Here, a whole-cell agglutination assay that is specific for adenosylcobalamin (AboB12), which is one of two bioactive forms, is reported. This biosensor consists of Escherichia coli that express the AdoB12 specific binding domain of CarH at their surface. In the presence of AdoB12, CarH forms tetramers, which leads to specific bacterial cell-cell adhesions and agglutination. These CarH tetramers disassemble upon green light illumination such that reversion of the bacterial aggregation can serve as internal quality control. The agglutination assay has a detection limit of 500 nм AdoB12, works in protein-poor biofluids such as urine, and has high specificity to AdoB12 over other forms of vitamin B12 as also demonstrated with commercially available supplements. This work is a proof of concept for a cheap and easy-to-readout AdoB12 sensor that can be implemented at the point-of-care to monitor high-dose vitamin B12 supplementation.


Assuntos
Proteínas de Bactérias , Técnicas Biossensoriais , Humanos , Proteínas de Bactérias/química , Cobamidas/química , Cobamidas/metabolismo , Vitamina B 12/metabolismo , Bactérias/metabolismo
9.
J Photochem Photobiol B ; 245: 112751, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37441852

RESUMO

CarH is a cobalamin-based photoreceptor which has attracted significant interest due to its complex mechanism involving its organometallic coenzyme-B12 chromophore. While several experimental and computational studies have sought to understand CarH's mechanism of action, there are still many aspects of the mechanism which remain unclear. While light is needed to activate the Co-C5' bond, it is not entirely clear whether reaction pathway involves singlet or triplet diradical states. A recent experimental study implicated triplet pathway and importance of intersystem crossing (ISC) as a viable mechanistic route for photoproduct formation in CarH. Herein, a combined quantum mechanics/molecular mechanics approach (QM/MM) was used to explore the involvement of triplet states in CarH. Two possibilities were explored. The first possibility involved photo-induced homolytic cleavage of the Co-C5' where the radical pair (RP) would deactivate to a triplet state (T0) on the ground state potential energy surface (PES). However, a pathway for the formation of the photoproduct, 4',5'-anhydroadenosine (anhAdo), on the triplet ground state PES was not energetically feasible. The second possibility involved exploring a manifold of low-lying triplet excited states computed using TD-DFT within the QM/MM framework. Viable crossings of triplet excited states with singlet excited states were identified using semiclassical Landau-Zener theory and the effectiveness of spin-orbit coupling by El-Sayed rules. Several candidates along both the Co-NIm potential energy curve (PEC) and Co-C5'/Co-NIm PES were identified, which appear to corroborate experimental findings and implicate the possible role of triplet states in CarH.


Assuntos
Teoria Quântica , Vitamina B 12 , Vitamina B 12/química
10.
Vitam Horm ; 119: 149-184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35337618

RESUMO

Photoreceptor proteins enable living organisms to sense light and transduce this signal into biochemical outputs to elicit appropriate cellular responses. Their light sensing is typically mediated by covalently or noncovalently bound molecules called chromophores, which absorb light of specific wavelengths and modulate protein structure and biological activity. Known photoreceptors have been classified into about ten families based on the chromophore and its associated photosensory domain in the protein. One widespread photoreceptor family uses coenzyme B12 or 5'-deoxyadenosylcobalamin, a biological form of vitamin B12, to sense ultraviolet, blue, or green light, and its discovery revealed both a new type of photoreceptor and a novel functional facet of this vitamin, best known as an enzyme cofactor. Large strides have been made in our understanding of how these B12-based photoreceptors function, high-resolution structural descriptions of their functional states are available, as are details of their unusual photochemistry. Additionally, they have inspired notable applications in optogenetics/optobiochemistry and synthetic biology. Here, we provide an overview of what is currently known about these B12-based photoreceptors, their discovery, distribution, molecular mechanism of action, and the structural and photochemical basis of how they orchestrate signal transduction and gene regulation, and how they have been used to engineer optogenetic control of protein activities in living cells.


Assuntos
Proteínas de Bactérias , Vitamina B 12 , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Vitamina B 12/metabolismo , Vitaminas
11.
Methods Enzymol ; 668: 349-372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35589201

RESUMO

Coenzyme B12 is one of the most complex cofactors found in nature and synthesized de novo by certain groups of bacteria. Although its use in various enzymatic reactions is well characterized, only recently an unusual light-sensing function has been ascribed to coenzyme B12. It has been reported that the coenzyme B12 binding protein CarH, found in the carotenoid biosynthesis pathway of several thermostable bacteria, binds to the promoter region of DNA and suppresses transcription. To overcome the harmful effects of light-induced damage in the cells, CarH releases DNA in the presence of light and promotes transcription and synthesis of carotenoids, thereby working as a photoreceptor. CarH is able to achieve this by exploiting the photosensitive nature of the CoC bond between the adenosyl moiety and the cobalt atom in the coenzyme B12 molecule. Extensive structural and spectroscopy studies provided a mechanistic understanding of the molecular basis of this unique light-sensitive reaction. Most studies on CarH have used the ortholog from the thermostable bacterium Thermus thermophilus, due to the ease with which it can be expressed and purified in high quantities. In this chapter we give an overview of this intriguing class of photoreceptors and report a step-by-step protocol for expression, purification and spectroscopy experiments (both static and time-resolved techniques) employed in our laboratory to study CarH from T. thermophilus. We hope the contents of this chapter will be of interest to the wider coenzyme B12 community and apprise them of the potential and possibilities of using coenzyme B12 as a light-sensing probe in a protein scaffold.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo , Cobamidas/química , Cobamidas/genética , Cobamidas/metabolismo , DNA/metabolismo , Fosfotreonina/análogos & derivados , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , Vitamina B 12/metabolismo
12.
J Photochem Photobiol B ; 232: 112471, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35644067

RESUMO

The CarH photoreceptor exploits of the light-sensing ability of coenzyme B12 ( adenosylcobalamin = AdoCbl) to perform its catalytic function, which includes large-scale structural changes to regulate transcription. In daylight, transcription is activated in CarH via the photo-cleavage of the Co-C5' bond of coenzyme B12. Subsequently, the photoproduct, 4',5'-anhydroadenosine (anhAdo) is formed inducing dissociation of the CarH tetramer from DNA. Several experimental studies have proposed that hydridocoblamin (HCbl) may be formed in process with anhAdo. The photolytic cleavage of the Co-C5' bond of AdoCbl was previously investigated using photochemical techniques and the involvement of both singlet and triplet excited states were explored. Herein, QM/MM calculations were employed to probe (1) the photolytic processes which may involve singlet excited states, (2) the mechanism of anhAdo formation, and (3) whether HCbl is a viable intermediate in CarH. Time-dependent density functional theory (TD-DFT) calculations indicate that the mechanism of photodissociation of the Ado ligand involves the ligand field (LF) portion of the lowest singlet excited state (S1) potential energy surface (PES). This is followed by deactivation to a point on the S0 PES where the Co-C5' bond remains broken. This species corresponds to a singlet diradical intermediate. From this point, the PES for anhAdo formation was explored, using the Co-C5' and Co-C4' bond distances as active coordinates, and a local minimum representing anhAdo and HCbl formation was found. The transition state (TS) for the formation of the Co-H bond of HCbl was located and its identity was confirmed by a single imaginary frequency of i1592 cm-1. Comparisons to experimental studies and the potential role of rotation around the N-glycosidic bond of the Ado ligand were discussed.


Assuntos
Cobamidas , Cobamidas/química , Ligantes , Fosfotreonina/análogos & derivados
13.
Adv Biol (Weinh) ; 5(5): e2000199, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34028212

RESUMO

The regulation of cell-cell adhesions in space and time plays a crucial role in cell biology, especially in the coordination of multicellular behavior. Therefore, tools that allow for the modulation of cell-cell interactions with high precision are of great interest to a better understanding of their roles and building tissue-like structures. Herein, the green light-responsive protein CarH is expressed at the plasma membrane of cells as an artificial cell adhesion receptor, so that upon addition of its cofactor vitamin B12 specific cell-cell interactions form and lead to cell clustering in a concentration-dependent manner. Upon green light illumination, the CarH based cell-cell interactions disassemble and allow for their reversion with high spatiotemporal control. Moreover, these artificial cell-cell interactions impact cell migration, as observed in a wound-healing assay. When the cells interact with each other in the presence of vitamin B12 in the dark, the cells form on a solid front and migrate collectively; however, under green light illumination, individual cells migrate randomly out of the monolayer. Overall, the possibility of precisely controlling cell-cell interactions and regulating multicellular behavior is a potential pathway to gaining more insight into cell-cell interactions in biological processes.


Assuntos
Comunicação Celular , Vitamina B 12 , Adesão Celular , Luz
14.
Methods Mol Biol ; 2312: 89-107, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34228286

RESUMO

The quest to engineer increasingly complex synthetic gene networks in mammalian and plant cells requires an ever-growing portfolio of orthogonal gene expression systems. To control gene expression, light is of particular interest due to high spatial and temporal resolution, ease of dosage and simplicity of administration, enabling increasingly sophisticated man-machine interfaces. However, the majority of applied optogenetic switches are crowded in the UVB, blue and red/far-red light parts of the optical spectrum, limiting the number of simultaneously applicable stimuli. This problem is even more pertinent in plant cells, in which UV-A/B, blue, and red light-responsive photoreceptors are already expressed endogenously. To alleviate these challenges, we developed a green light responsive gene switch, based on the light-sensitive bacterial transcription factor CarH from Thermus thermophilus and its cognate DNA operator sequence CarO. The switch is characterized by high reversibility, high transgene expression levels, and low leakiness, leading to up to 350-fold induction ratios in mammalian cells. In this chapter, we describe the essential steps to build functional components of the green light-regulated gene switch, followed by detailed protocols to quantify transgene expression over time in mammalian cells. In addition, we expand this protocol with a description of how the optogenetic switch can be implemented in protoplasts of A. thaliana.


Assuntos
Arabidopsis/efeitos da radiação , Proteínas de Bactérias/efeitos da radiação , Engenharia Celular , Genes de Troca , Luz , Optogenética , Plantas Geneticamente Modificadas/efeitos da radiação , Thermus thermophilus/genética , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes Reporter , Humanos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Thermus thermophilus/metabolismo , Fatores de Tempo , Transfecção
15.
Microorganisms ; 9(5)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063365

RESUMO

Myxobacteria are Gram-negative δ-proteobacteria found predominantly in terrestrial habitats and often brightly colored due to the biosynthesis of carotenoids. Carotenoids are lipophilic isoprenoid pigments that protect cells from damage and death by quenching highly reactive and toxic oxidative species, like singlet oxygen, generated upon growth under light. The model myxobacterium Myxococcus xanthus turns from yellow in the dark to red upon exposure to light because of the photoinduction of carotenoid biosynthesis. How light is sensed and transduced to bring about regulated carotenogenesis in order to combat photooxidative stress has been extensively investigated in M. xanthus using genetic, biochemical and high-resolution structural methods. These studies have unearthed new paradigms in bacterial light sensing, signal transduction and gene regulation, and have led to the discovery of prototypical members of widely distributed protein families with novel functions. Major advances have been made over the last decade in elucidating the molecular mechanisms underlying the light-dependent signaling and regulation of the transcriptional response leading to carotenogenesis in M. xanthus. This review aims to provide an up-to-date overview of these findings and their significance.

16.
J Photochem Photobiol B ; 224: 112295, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34548209

RESUMO

Hydridocobalamin (HCbl), is a known member of the B12 family of molecules (cobalamins, Cbls) yet unlike other well-studied Cbls, little is known of the electronic and photolytic properties of this species. Interest in HCbl has increased significantly in recent years when at least three experimentally proposed mechanisms implicate HCbl as an intermediary in the photoreaction of coenzyme B12-dependent photoreceptor CarH. Specifically, cleavage of the Co-C5' bond of coenzyme B12 could lead to a ß-hydride or ß­hydrogen elimination reaction to form HCbl. HCbl is known to be a transient species where the oxidation state of the Co is variable; Co(I)-H+ ↔ Co(II)-H â†” Co(III)-H-. Further, HCbl is a very unstable with a pKa of ~1. This complicates experimental studies and to the best of our knowledge there are no available crystal structures of HCbl - either for the isolated molecule or bound to an enzyme. In this study, the electronic structure, photolytic properties, and reactivity of HCbl were explored to determine the preferred oxidation state as well as its potential role in the formation of the photoproduct in CarH. Natural bond orbital (NBO) analysis was performed to determine the oxidation state of Co in isolated HCbl. Based on the NBO analysis of HCbl, Co clearly had excess negative charge, which is in stark contrast to other alkylCbls where the Co ion is marked by significant positive charge. In sum, NBO results indicate that the CoH bond is strongly polarized and almost ionic. It can be described as protonated Co(I). In addition, DFT was used to explore the bond dissociation energy of HCbl based on homolytic cleavage of the CoH bond. TD-DFT calculations were used to compare computed electronic transitions to the experimentally determined absorption spectrum. The photoreaction of CarH was explored using an isolated model system and a pathway for hydrogen transfer was found. Finally, quantum mechanics/molecular mechanics (QM/MM) calculations were employed to investigate the formation of HCbl in CarH.


Assuntos
Elétrons , Vitamina B 12/análogos & derivados , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Fotólise , Teoria Quântica , Vitamina B 12/química
17.
J Photochem Photobiol B ; 209: 111919, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32615490

RESUMO

The discovery of naturally occurring B12-depedent photoreceptors has allowed for applications of cobalamins (Cbls) in optogenetics and synthetic biology to emerge. However, theoretical investigations of the complex mechanisms of these systems have been lacking. Adenosylcobalamin (AdoCbl)-dependent photoreceptor, CarH, is one example and it relies on daylight to perform its catalytic function. Typically, in enzymes employing AdoCbl as their cofactor, the Co-C5' bond activation and cleavage is triggered by substrate binding. The cleavage of the Co-C5' bond is homolytic resulting in radical pair formation. However, in CarH, this bond is instead activated by light. To explore this peculiarity, the ground and first excited state potential energy surfaces (PESs) were constructed using the quantum mechanics/molecular mechanics (QM/MM) framework and compared with other AdoCbl-dependent enzymes. QM/MM results indicate that CarH is photolytically active as a result of the AdoCbl dual role, acting as a radical generator and as a substrate. Photo-cleavage of the Co-C5' bond and subsequent H-atom abstraction is possible because of the specific orientation of the H-C4' bond with respect to the Co(II) center. Comparison with other AdoCbl-dependent enzymes indicate that the protein environment in the CarH active center alters the photochemistry of AdoCbl by controlling the stereochemistry of the ribose moiety.


Assuntos
Enzimas/metabolismo , Fotólise , Vitamina B 12/metabolismo , Simulação de Dinâmica Molecular , Fotoquímica , Teoria Quântica
18.
ACS Synth Biol ; 7(5): 1349-1358, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29634242

RESUMO

The ever-increasing complexity of synthetic gene networks and applications of synthetic biology requires precise and orthogonal gene expression systems. Of particular interest are systems responsive to light as they enable the control of gene expression dynamics with unprecedented resolution in space and time. While broadly used in mammalian backgrounds, however, optogenetic approaches in plant cells are still limited due to interference of the activating light with endogenous photoreceptors. Here, we describe the development of the first synthetic light-responsive system for the targeted control of gene expression in mammalian and plant cells that responds to the green range of the light spectrum in which plant photoreceptors have minimal activity. We first engineered a system based on the light-sensitive bacterial transcription factor CarH and its cognate DNA operator sequence CarO from Thermus thermophilus to control gene expression in mammalian cells. The system was functional in various mammalian cell lines, showing high induction (up to 350-fold) along with low leakiness, as well as high reversibility. We quantitatively described the systems characteristics by the development and experimental validation of a mathematical model. Finally, we transferred the system into A. thaliana protoplasts and demonstrated gene repression in response to green light. We expect that this system will provide new opportunities in applications based on synthetic gene networks and will open up perspectives for optogenetic studies in mammalian and plant cells.


Assuntos
Regulação da Expressão Gênica , Engenharia Genética/métodos , Mamíferos/genética , Transgenes , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Arabidopsis/citologia , Arabidopsis/genética , Linhagem Celular , Regulação da Expressão Gênica de Plantas , Humanos , Luz , Modelos Teóricos , Optogenética/métodos , Células Vegetais , Plantas Geneticamente Modificadas , Thermus thermophilus/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA