Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.976
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(8): e2218294120, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36787351

RESUMO

Chemical products, such as plastics, solvents, and fertilizers, are essential for supporting modern lifestyles. Yet, producing, using, and disposing of chemicals creates adverse environmental impacts which threaten the industry's license to operate. This study presents seven planet-compatible pathways toward 2050 employing demand-side and supply-side interventions with cumulative total investment costs of US$1.2-3.7 trillion. Resource efficiency and circularity interventions reduce global chemicals demand by 23 to 33% and are critical for mitigating risks associated with using fossil feedstocks and carbon capture and sequestration, and constraints on available biogenic and recyclate feedstocks. Replacing fossil feedstocks with biogenic/air-capture sources, shifting carbon destinations from the atmosphere to ground, and electrifying/decarbonizing energy supply for production technologies could enable net negative emissions of 0.5 GtCO2eq y-1 across non-ammonia chemicals, while still delivering essential chemical-based services to society.

2.
Front Neuroendocrinol ; 75: 101154, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39226950

RESUMO

Astrocytes are now recognized as integral components of neural circuits, regulating their maturation, activity and plasticity. Neuroendocrinology has provided fertile ground for revealing the diverse strategies used by astrocytes to regulate the physiological and behavioural outcomes of neural circuit activity in response to internal and environmental inputs. However, the development of astrocytes in the hypothalamus has received much less attention than in other brain regions such as the cerebral cortex and spinal cord. In this review, we synthesize our current knowledge of astrogenesis in the hypothalamus across various life stages. A distinctive feature of hypothalamic astrogenesis is that it persists all throughout lifespan, and involves multiple cellular sources corresponding to radial glial cells during early development, followed by tanycytes, parenchymal progenitors and locally dividing astrocytes. Astrogenesis in the hypothalamus is closely coordinated with the maturation of hypothalamic neurons. This coordination is exemplified by recent findings in neurons producing gonadotropin-releasing hormone, which actively shape their astroglial environment during infancy to integrate functionally into their neural network and facilitate sexual maturation, a process vulnerable to endocrine disruption. While hypothalamic astrogenesis shares common principles with other brain regions, it also exhibits specific features in its dynamics and regulation, both at the inter- and intra-regional levels. These unique properties emphasize the importance of further exploration. Additionally, we discuss the experimental strategies used to assess astrogenesis in the hypothalamus and their potential bias and limitations. Understanding the mechanisms of hypothalamic astrogenesis throughout life will be crucial for comprehending the development and function of the hypothalamus under both physiological and pathological conditions.

3.
Development ; 149(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35023540

RESUMO

Estrogens are well-known to regulate development of sexual dimorphism of the brain; however, their role in embryonic brain development prior to sex-differentiation is unclear. Using estrogen biosensor zebrafish models, we found that estrogen activity in the embryonic brain occurs from early neurogenesis specifically in a type of glia in the olfactory bulb (OB), which we name estrogen-responsive olfactory bulb (EROB) cells. In response to estrogen, EROB cells overlay the outermost layer of the OB and interact tightly with olfactory sensory neurons at the olfactory glomeruli. Inhibiting estrogen activity using an estrogen receptor antagonist, ICI182,780 (ICI), and/or EROB cell ablation impedes olfactory glomerular development, including the topological organisation of olfactory glomeruli and inhibitory synaptogenesis in the OB. Furthermore, activation of estrogen signalling inhibits both intrinsic and olfaction-dependent neuronal activity in the OB, whereas ICI or EROB cell ablation results in the opposite effect on neuronal excitability. Altering the estrogen signalling disrupts olfaction-mediated behaviour in later larval stage. We propose that estrogens act on glia to regulate development of OB circuits, thereby modulating the local excitability in the OB and olfaction-mediated behaviour.


Assuntos
Estrogênios/metabolismo , Neurogênese , Neuroglia/citologia , Bulbo Olfatório/embriologia , Animais , Antagonistas do Receptor de Estrogênio/farmacologia , Fulvestranto/farmacologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Bulbo Olfatório/citologia , Bulbo Olfatório/efeitos dos fármacos , Neurônios Receptores Olfatórios/citologia , Neurônios Receptores Olfatórios/metabolismo , Receptores de Estrogênio/antagonistas & inibidores , Sinapses/metabolismo , Sinapses/fisiologia , Peixe-Zebra
4.
Proc Natl Acad Sci U S A ; 119(47): e2208886119, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36375056

RESUMO

Uterine leiomyoma is the most common tumor in women and causes severe morbidity in 15 to 30% of reproductive-age women. Epidemiological studies consistently indicate a correlation between leiomyoma development and exposure to endocrine-disrupting chemical phthalates, especially di-(2-ethylhexyl) phthalate (DEHP); however, the underlying mechanisms are unknown. Here, among the most commonly encountered phthalate metabolites, we found the strongest association between the urine levels of mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), the principal DEHP metabolite, and the risk of uterine leiomyoma diagnosis (n = 712 patients). The treatment of primary leiomyoma and smooth muscle cells (n = 29) with various mixtures of phthalate metabolites, at concentrations equivalent to those detected in urine samples, significantly increased cell viability and decreased apoptosis. MEHHP had the strongest effects on both cell viability and apoptosis. MEHHP increased cellular tryptophan and kynurenine levels strikingly and induced the expression of the tryptophan transporters SLC7A5 and SLC7A8, as well as, tryptophan 2,3-dioxygenase (TDO2), the key enzyme catalyzing the conversion of tryptophan to kynurenine that is the endogenous ligand of aryl hydrocarbon receptor (AHR). MEHHP stimulated nuclear localization of AHR and up-regulated the expression of CYP1A1 and CYP1B1, two prototype targets of AHR. siRNA knockdown or pharmacological inhibition of SLC7A5/SLC7A8, TDO2, or AHR abolished MEHHP-mediated effects on leiomyoma cell survival. These findings indicate that MEHHP promotes leiomyoma cell survival by activating the tryptophan-kynurenine-AHR pathway. This study pinpoints MEHHP exposure as a high-risk factor for leiomyoma growth, uncovers a mechanism by which exposure to environmental phthalate impacts leiomyoma pathogenesis, and may lead to the development of novel druggable targets.


Assuntos
Dietilexilftalato , Poluentes Ambientais , Leiomioma , Ácidos Ftálicos , Humanos , Feminino , Dietilexilftalato/toxicidade , Dietilexilftalato/urina , Cinurenina , Triptofano , Sobrevivência Celular , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes , Exposição Ambiental/efeitos adversos , Leiomioma/induzido quimicamente , Leiomioma/urina
5.
Small ; 20(32): e2401226, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38511543

RESUMO

Electroredox of organics provides a promising and green approach to producing value-added chemicals. However, it remains a grand challenge to achieve high selectivity of desired products simultaneously at two electrodes, especially for non-isoelectronic transfer reactions. Here a porous heterostructure of Mo2C@Co-NC is successfully fabricated, where subnanometre ß-Mo2C clusters (<1 nm, ≈10 wt%) are confined inside porous Co, N-doped carbon using metalorganic frameworks. It is found that Co species not only promote the formation of ß-Mo2C but also can prevent it from oxidation by constructing the heterojunctions. As noted, the heterostructure achieves >96% yield and 92% Faradaic efficiency (FE) for aldehydes in anodic alcohol oxidation, as well as >99.9% yield and 96% FE for amines in cathodal nitrocompounds reduction in 1.0 M KOH. Precise control of the reaction kinetics of two half-reactions by the electronic interaction between ß-Mo2C and Co is a crucial adjective. Density functional theory (DFT) gives in-depth mechanistic insight into the high aldehyde selectivity. The work guides authors to reveal the electrooxidation nature of Mo2C at a subnanometer level. It is anticipated that the strategy will provide new insights into the design of highly effective bifunctional electrocatalysts for the coproduction of more complex fine chemicals.

6.
Small ; : e2310573, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453689

RESUMO

Electrochemical synthesis of H2 and high-value-added chemicals is an efficient and cost-effective approach that can be powered using renewable electricity. Compared to a conventional electrochemical production system, the modular electrochemical production system (MEPS) based on a solid redox mediator (SRM) can separate the anodic and cathodic reactions in time and space. The MEPS can avoid the use of membranes and formation of useless products, as well as eliminate the mutual dependence of production rates at anode and cathode. The SRM can temporarily store or release electrons and ions to pair with cathodic and anodic reactions, respectively, in MEPS. Designing of SRMs with large charge capacity and good cyclability is of great significance for constructing a high-performance MEPS. This work summarizes the design principles, recent advances in MEPS based on SRM, and application in redox flow cells. Moreover, structure design strategies as well as in situ characterization techniques and theoretical calculations for SRM is also proposed. It is expected to promote the vigorous development of MEPS based on SRM. Finally, the challenges and perspectives of MEPS based on SRM are discussed.

7.
Metab Eng ; 83: 52-60, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521489

RESUMO

2-Pyrone-4,6-dicarboxylic acid (PDC), a chemically stable pseudo-aromatic dicarboxylic acid, is a promising building block compound for manufacturing biodegradable polyesters. This study aimed to construct high-performance cell factories enabling the efficient production of PDC from glucose. Firstly, the effective enzymes of the PDC biosynthetic pathway were overexpressed on the chromosome of the 3-dehydroshikimate overproducing strain. Consequently, the one-step biosynthesis of PDC from glucose was achieved. Further, the PDC production was enhanced by multi-copy integration of the key gene PsligC encoding 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase and co-expression of Vitreoscilla hemoglobin. Subsequently, the PDC production was substantially improved by redistributing the metabolic flux for cell growth and PDC biosynthesis based on dynamically downregulating the expression of pyruvate kinase. The resultant strain PDC50 produced 129.37 g/L PDC from glucose within 78 h under fed-batch fermentation conditions, with a yield of 0.528 mol/mol and an average productivity of 1.65 g/L/h. The findings of this study lay the foundation for the potential industrial production of PDC.


Assuntos
Escherichia coli , Engenharia Metabólica , Poliésteres , Pironas , Escherichia coli/genética , Escherichia coli/metabolismo , Poliésteres/metabolismo , Pironas/metabolismo , Glucose/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácidos Dicarboxílicos/metabolismo
8.
Metab Eng ; 83: 61-74, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522576

RESUMO

5-Methyluridine (5-MU) is a prominent intermediate for industrial synthesis of several antiviral-drugs, however, its availability over the past decades has overwhelmingly relied on chemical and enzymatic strategies. Here, we have realized efficient production of 5-MU in E. coli, for the first time, via a designer artificial pathway consisting of a two-enzyme cascade (UMP 5-methylase and phosphatase). More importantly, we have engineered the E. coli cell factory to boost 5-MU production by systematic evaluation of multiple strategies, and as a proof of concept, we have further developed an antibiotic-free fermentation strategy to realize 5-MU production (10.71 g/L) in E. coli MB229 (a ΔthyA strain). Remarkably, we have also established a versatile and robust platform with exploitation of the engineered E. coli for efficient production of diversified UMP-derived chemicals. This study paves the way for future engineering of E. coli as a synthetic biology platform for acceleratively accessing UMP-derived chemical diversities.


Assuntos
Escherichia coli , Engenharia Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
9.
Mol Ecol ; : e17312, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426368

RESUMO

The impact of multiple environmental and anthropogenic stressors on the marine environment remains poorly understood. Therefore, we studied the contribution of environmental variables to the densities and gene expression of the dominant zooplankton species in the Belgian part of the North Sea, the calanoid copepod Temora longicornis. We observed a reduced density of copepods, which were also smaller in size, in samples taken from nearshore locations when compared to those obtained from offshore stations. To assess the factors influencing the population dynamics of this species, we applied generalised additive models. These models allowed us to quantify the relative contribution of temperature, nutrient levels, salinity, turbidity, concentrations of photosynthetic pigments, as well as chemical pollutants such as polychlorinated biphenyls and polycyclic aromatic hydrocarbons (PAHs), on copepod density. Temperature and Secchi depth, a proxy for turbidity, were the most important environmental variables predicting the densities of T. longicornis, followed by summed PAH and chlorophyll concentrations. Analysing gene expression in field-collected adults, we observed significant variation in metabolic and stress-response genes. Temperature correlated significantly with genes involved in proteolytic activities, and encoding heat shock proteins. Yet, concentrations of anthropogenic chemicals did not induce significant differences in the gene expression of genes involved in the copepod's fatty acid metabolism or well-known stress-related genes, such as glutathione transferases or cytochrome P450. Our study highlights the potential of gene expression biomonitoring and underscores the significance of a changing environment in future studies.

10.
Hum Reprod ; 39(9): 1879-1888, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38926156

RESUMO

Maternal exposure to endocrine-disrupting chemicals (EDCs) in human pregnancy is widely considered as an important cause of adverse changes in male reproductive health due to impaired foetal androgen production/action. However, the epidemiological evidence supporting this view is equivocal, except for certain phthalates, notably diethyl hexyl phthalate (DEHP). Maternal phthalate exposure levels associated with adverse reproductive changes in epidemiological studies are several thousand-fold lower than those needed to suppress foetal androgen production in rats, and direct studies using human foetal testis tissue show no effect of high phthalate exposure on androgen production. This conundrum is unexplained and raises fundamental questions. Human DEHP exposure is predominantly via food with highest exposure associated with consumption of a Western style (unhealthy) diet. This diet is also associated with increased exposure to the most common EDCs, whether persistent (chlorinated or fluorinated chemicals) or non-persistent (phthalates, bisphenols) compounds, which are found at highest levels in fatty and processed foods. Consequently, epidemiological studies associating EDC exposure and male reproductive health disorders are confounded by potential dietary effects, and vice versa. A Western diet/lifestyle in young adulthood is also associated with low sperm counts. Disentangling EDC and dietary effects in epidemiological studies is challenging. In pregnancy, a Western diet, EDC exposure, and maternal living in proximity to industrial sites are all associated with impaired foetal growth/development due to placental dysfunction, which predisposes to congenital male reproductive disorders (cryptorchidism, hypospadias). While the latter are considered to reflect impaired foetal androgen production, effects resulting from foetal growth impairment (FGI) are likely indirect. As FGI has numerous life-long health consequences, and is affected by maternal lifestyle, research into the origins of male reproductive disorders should take more account of this. Additionally, potential effects on foetal growth/foetal testis from the increasing use of medications in pregnancy deserves more research attention.


Assuntos
Disruptores Endócrinos , Efeitos Tardios da Exposição Pré-Natal , Humanos , Masculino , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/efeitos adversos , Feminino , Gravidez , Exposição Materna/efeitos adversos , Ácidos Ftálicos/toxicidade , Ácidos Ftálicos/efeitos adversos , Animais , Dieta/efeitos adversos , Infertilidade Masculina/induzido quimicamente , Infertilidade Masculina/etiologia , Doenças dos Genitais Masculinos/induzido quimicamente , Doenças dos Genitais Masculinos/epidemiologia
11.
Glob Chang Biol ; 30(4): e17254, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38556898

RESUMO

Freshwaters are highly threatened ecosystems that are vulnerable to chemical pollution and climate change. Freshwater taxa vary in their sensitivity to chemicals and changes in species composition can potentially affect the sensitivity of assemblages to chemical exposure. Here we explore the potential consequences of future climate change on the composition and sensitivity of freshwater macroinvertebrate assemblages to chemical stressors using the UK as a case study. Macroinvertebrate assemblages under end of century (2080-2100) and baseline (1980-2000) climate conditions were predicted for 608 UK sites for four climate scenarios corresponding to mean temperature changes of 1.28 to 3.78°C. Freshwater macroinvertebrate toxicity data were collated for 19 chemicals and the hierarchical species sensitivity distribution model was used to predict the sensitivity of untested taxa using relatedness within a Bayesian approach. All four future climate scenarios shifted assemblage compositions, increasing the prevalence of Mollusca, Crustacea and Oligochaeta species, and the insect taxa of Odonata, Chironomidae, and Baetidae species. Contrastingly, decreases were projected for Plecoptera, Ephemeroptera (except for Baetidae) and Coleoptera species. Shifts in taxonomic composition were associated with changes in the percentage of species at risk from chemical exposure. For the 3.78°C climate scenario, 76% of all assemblages became more sensitive to chemicals and for 18 of the 19 chemicals, the percentage of species at risk increased. Climate warming-induced increases in sensitivity were greatest for assemblages exposed to metals and were dependent on baseline assemblage composition, which varied spatially. Climate warming is predicted to result in changes in the use, environmental exposure and toxicity of chemicals. Here we show that, even in the absence of these climate-chemical interactions, shifts in species composition due to climate warming will increase chemical risk and that the impact of chemical pollution on freshwater macroinvertebrate biodiversity may double or quadruple by the end of the 21st century.


Assuntos
Ecossistema , Poluentes Ambientais , Animais , Teorema de Bayes , Biodiversidade , Poluição Ambiental , Invertebrados , Rios
12.
Toxicol Appl Pharmacol ; 489: 116995, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38862081

RESUMO

Identification of Endocrine-Disrupting Chemicals (EDCs) in a regulatory context requires a high level of evidence. However, lines of evidence (e.g. human, in vivo, in vitro or in silico) are heterogeneous and incomplete for quantifying evidence of the adverse effects and mechanisms involved. To date, for the regulatory appraisal of metabolism-disrupting chemicals (MDCs), no harmonised guidance to assess the weight of evidence has been developed at the EU or international level. To explore how to develop this, we applied a formal Expert Knowledge Elicitation (EKE) approach within the European GOLIATH project. EKE captures expert judgment in a quantitative manner and provides an estimate of uncertainty of the final opinion. As a proof of principle, we selected one suspected MDC -triphenyl phosphate (TPP) - based on its related adverse endpoints (obesity/adipogenicity) relevant to metabolic disruption and a putative Molecular Initiating Event (MIE): activation of peroxisome proliferator activated receptor gamma (PPARγ). We conducted a systematic literature review and assessed the quality of the lines of evidence with two independent groups of experts within GOLIATH, with the objective of categorising the metabolic disruption properties of TPP, by applying an EKE approach. Having followed the entire process separately, both groups arrived at the same conclusion, designating TPP as a "suspected MDC" with an overall quantitative agreement exceeding 85%, indicating robust reproducibility. The EKE method provides to be an important way to bring together scientists with diverse expertise and is recommended for future work in this area.


Assuntos
Disruptores Endócrinos , Organofosfatos , Animais , Humanos , Disruptores Endócrinos/toxicidade , Prova Pericial , Organofosfatos/toxicidade , PPAR gama/metabolismo , PPAR gama/agonistas , Medição de Risco
13.
Crit Rev Biotechnol ; : 1-17, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228501

RESUMO

Heme, an iron-containing tetrapyrrole in hemoproteins, including: hemoglobin, myoglobin, catalase, cytochrome c, and cytochrome P450, plays critical physiological roles in different organisms. Heme-derived chemicals, such as biliverdin, bilirubin, and phycocyanobilin, are known for their antioxidant and anti-inflammatory properties and have shown great potential in fighting viruses and diseases. Therefore, more and more attention has been paid to the biosynthesis of hemoproteins and heme derivatives, which depends on the adequate heme supply in various microbial cell factories. The enhancement of endogenous biosynthesis and exogenous uptake can improve the intracellular heme supply, but the excess free heme is toxic to the cells. Therefore, based on the heme-responsive regulators, several sensitive biosensors were developed to fine-tune the intracellular levels of heme. In this review, recent advances in the: biosynthesis, acquisition, regulation, and upcycling of heme were summarized to provide a solid foundation for the efficient production and application of high-value-added hemoproteins and heme derivatives.

14.
Crit Rev Biotechnol ; 44(2): 163-190, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36596577

RESUMO

In the twenty first century, biotechnology offers great opportunities and solutions to climate change mitigation, energy and food security and resource efficiency. The use of metabolic engineering to modify microorganisms for producing industrially significant chemicals is developing and becoming a trend. As a famous, generally recognized as a safe (GRAS) model microorganism, Saccharomyces cerevisiae is widely used due to its excellent operational convenience and high fermentation efficiency. This review summarizes recent advancements in the field of using metabolic engineering strategies to construct engineered S. cerevisiae over the past ten years. Five different types of compounds are classified by their metabolites, and the modified metabolic pathways and strategies are summarized and discussed independently. This review may provide guidance for future metabolic engineering efforts toward such compounds and analogues. Additionally, the limitations of S. cerevisiae as a cell factory and its future trends are comprehensively discussed.


Assuntos
Engenharia Metabólica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biotecnologia , Fermentação , Redes e Vias Metabólicas
15.
Crit Rev Biotechnol ; 44(3): 414-428, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-36842999

RESUMO

Carbon neutrality by 2050 has become one of the most urgent challenges the world faces today. To address the issue, it is necessary to develop and promote new technologies related with CO2 recycling. Cyanobacteria are the only prokaryotes performing oxygenic photosynthesis, capable of fixing CO2 into biomass under sunlight and serving as one of the most important primary producers on earth. Notably, recent progress on synthetic biology has led to utilizing model cyanobacteria such as Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 as chassis for "light-driven autotrophic cell factories" to produce several dozens of biofuels and various fine chemicals directly from CO2. However, due to the slow growth rate and low biomass accumulation in the current chassis, the productivity for most products is still lower than the threshold necessary for large-scale commercial application, raising the importance of developing high-efficiency cyanobacterial chassis with fast growth and/or higher biomass accumulation capabilities. In this article, we critically reviewed recent progresses on identification, systems biology analysis, and engineering of fast-growing cyanobacterial chassis. Specifically, fast-growing cyanobacteria identified in recent years, such as S. elongatus UTEX 2973, S. elongatus PCC 11801, S. elongatus PCC 11802 and Synechococcus sp. PCC 11901 was comparatively analyzed. In addition, the progresses on their recent application in converting CO2 into chemicals, and genetic toolboxes developed for these new cyanobacterial chassis were discussed. Finally, the article provides insights into future challenges and perspectives on the synthetic biology application of cyanobacterial chassis.


Assuntos
Dióxido de Carbono , Biologia Sintética , Fotossíntese , Biocombustíveis
16.
Chemistry ; 30(21): e202400269, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38329391

RESUMO

Recently, catalytic valorization of biomass-derived furans has received growing interest. 5-Aminomethyl-2-furancarboxylic acid (AMFC), a furan amino acid, holds great promise in the aeras of polymer and pharmaceutical, but its synthesis remains limited. In this work, we report a chemobiocatalytic route toward AMFC by combining laccase-TEMPO system and recombinant Escherichia coli (named E. coli_TAF) harboring ω-transaminase (TA), L-alanine dehydrogenase (L-AlaDH) and formate dehydrogenase (FDH), starting from 5-hydroxymethylfurfural (HMF). In the cascade, HMF is oxidized into 5-formyl-2-furancarboxylic acid (FFCA) by laccase-TEMPO system, and then the resulting intermediate is converted into AMFC by E. coli_TAF via transamination with cheap ammonium formate instead of costly organic amine donors, theoretically generating H2O and CO2 as by-products. The tandem process was run in a one-pot twostep manner, affording AMFC with approximately 81 % yield, together with 10 % 2,5-furandicarboxylic acid (FDCA) as by-product. In addition, the scale-up production of AMFC was demonstrated, with 0.41 g/L h productivity and 8.6 g/L titer. This work may pave the way for green manufacturing of the furan-containing amino acid.


Assuntos
Escherichia coli , Furaldeído/análogos & derivados , Lacase , Escherichia coli/metabolismo , Lacase/química , Aminoácidos , Furanos/química , Furaldeído/química , Furaldeído/metabolismo , Ácidos Dicarboxílicos/química
17.
Pharmacol Res ; 205: 107251, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38862070

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver disease worldwide. Epidemiological studies have reported that exposure of the population to environmental endocrine-disrupting chemicals (EDCs) is associated with NAFLD. However, EDCs are of different types, and there are inconsistencies in the relevant evidence and descriptions, which have not been systematically summarized so far. Therefore, this study aimed to determine the association between population exposure to EDCs and NAFLD. Three databases, including PubMed, Web of science, and Embase were searched, and 27 articles were included in this study. Methodological quality, heterogeneity, and publication bias of the included studies were assessed using the Newcastle-Ottawa scale, I2 statistics, Begg's test, and Egger's test. The estimated effect sizes of the included studies were pooled and evaluated using the random-effects model (I2 > 50 %) and the fixed-effects model ( I2 < 50 %). The pooled-estimate effect sizes showed that population exposure to Phthalates (PAEs) (OR = 1.18, 95 % CI:1.03-1.34), cadmium (Cd) (OR = 1.37, 95 % CI:1.09-1.72), and bisphenol A (OR = 1.43, 95 % CI:1.24-1.65) were positively correlated with the risk of NAFLD. Exposure to mercury (OR =1.46, 95 % CI:1.17-1.84) and Cd increased the risk of "elevated alanine aminotransferase". On the contrary, no significant association was identified between perfluoroalkyl substances (OR =0.99, 95 % CI:0.93-1.06) and NAFLD. However, female exposure to perfluorooctanoic acid (OR =1.82, 95 % CI:1.01-3.26) led to a higher risk of NAFLD than male exposure. In conclusion, this study revealed that EDCs were risk factors for NAFLD. Nonetheless, the sensitivity analysis results of some of the meta-analyses were not stable and demonstrated high heterogeneity. The evidence for these associations is limited, and more large-scale population-based studies are required to confirm these findings.


Assuntos
Disruptores Endócrinos , Hepatopatia Gordurosa não Alcoólica , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Humanos , Disruptores Endócrinos/efeitos adversos , Disruptores Endócrinos/toxicidade , Ácidos Ftálicos/efeitos adversos , Ácidos Ftálicos/toxicidade , Poluentes Ambientais/efeitos adversos , Poluentes Ambientais/toxicidade , Fenóis/efeitos adversos , Fenóis/toxicidade , Compostos Benzidrílicos/efeitos adversos , Cádmio/efeitos adversos , Cádmio/toxicidade , Fluorocarbonos/efeitos adversos , Fluorocarbonos/toxicidade
18.
Crit Rev Food Sci Nutr ; : 1-11, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38356229

RESUMO

Immunoassay based on the antibodies specific for targets has advantages of high sensitivity, simplicity and low cost, therefore it has received more attention in recent years, especially for the rapid detection of small molecule chemicals present in foods, diagnostics and environments. However, limited by low molecular weight and only one antigenic determinant existed, immunoassays for these small molecule chemicals, namely hapten substances, were commonly performed in a competitive immunoassay format, whose sensitivities were obviously lower than the sandwich enzyme-linked immunosorbent assay generally adaptable for the protein targets. In order to break through the bottleneck of detection format, researchers have designed and established several novel noncompetitive immunoassays for the haptens in the past few years. In this review, we focused on the four representative types of noncompetitive immunoassay formats and described their characteristics and applications in rapid detection of small molecules. Meanwhile, a systematic discussion on the current technologies challenges and the possible solutions were also summarized. This review aims to provide an updated overview of the current state-of-the-art in noncompetitive immunoassay for small molecules, and inspire the development of novel designs for small molecule detection.

19.
J Bone Miner Metab ; 42(2): 242-252, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498197

RESUMO

INTRODUCTION: This study was to investigate the correlations between pyrethroid exposure and bone mineral density (BMD) and osteopenia. MATERIALS AND METHODS: This cross-sectional study included 1389 participants over 50 years of age drawn from the 2007-2010 and 2013-2014 National Health and Nutrition Examination Survey (NHANES). Three pyrethroid metabolites, 3-phenoxybenzoic acid (3-PBA), trans-3-(2,2-dichlorovinyl)-2,2-dimethyl-cyclopropane-1-carboxylic acid (trans-DCCA), and 4-fluoro-3-phenoxybenzoic acid (4-F-3PBA) were used as indicators of pyrethroid exposure. Low BMD was defined as T-score < - 1.0, including osteopenia. Weighted multivariable linear regression analysis or logistic regression analysis was utilized to evaluate the correlation between pyrethroid exposure and BMD and low BMD. Bayesian kernel machine regression (BKMR) model was utilized to analyze the correlation between pyrethroids mixed exposure and low BMD. RESULTS: There were 648 (48.41%) patients with low BMD. In individual pyrethroid metabolite analysis, both tertile 2 and tertile 3 of trans-DCCA were negatively related to total femur, femur neck, and total spine BMD [coefficient (ß) = - 0.041 to - 0.028; all P < 0.05]. Both tertile 2 and tertile 3 of 4-F-3PBA were negatively related to total femur BMD (P < 0.05). Only tertile 2 [odds ratio (OR) = 1.63; 95% CI = 1.07, 2.48] and tertile 3 (OR = 1.65; 95% CI = 1.10, 2.50) of trans-DCCA was correlated with an increased risk of low BMD. The BKMR analysis indicated that there was a positive tendency between mixed pyrethroids exposure and low BMD. CONCLUSION: In conclusion, pyrethroids exposure was negatively correlated with BMD levels, and the associations of pyrethroids with BMD and low BMD varied by specific pyrethroids, pyrethroid concentrations, and bone sites.


Assuntos
Benzoatos , Doenças Ósseas Metabólicas , Inseticidas , Éteres Fenílicos , Piretrinas , Adulto , Humanos , Pessoa de Meia-Idade , Piretrinas/efeitos adversos , Piretrinas/análise , Piretrinas/metabolismo , Inseticidas/efeitos adversos , Inseticidas/análise , Inseticidas/metabolismo , Inquéritos Nutricionais , Estudos Transversais , Densidade Óssea , Teorema de Bayes , Exposição Ambiental/efeitos adversos , Doenças Ósseas Metabólicas/induzido quimicamente , Doenças Ósseas Metabólicas/epidemiologia
20.
Environ Sci Technol ; 58(32): 14088-14097, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39096285

RESUMO

Urinary analysis of exogenous and endogenous molecules constitutes an efficient, noninvasive approach to evaluate human health status. However, the exposome characterization of urinary molecules remains extremely challenging with current techniques. Herein, we develop an ExpoNano strategy based on hyper-cross-linked polymers (HCPs) to achieve ultrahigh-throughput measurement of exo/endogenous molecules in urine. The strategy includes a simple trapping-detrapping procedure (15 min) with HCPs in enzymatically treated urine, followed by mass spectrometer determination. Molecules that can be determined by ExpoNano have a wide range of molecular weight (75-837 Da) and Log Kow (octanol-water partition coefficient; -9.86 to 10.56). The HCPs can be repeatedly used five times without decreasing the trapping efficiency. Application of ExpoNano in a biomonitoring study revealed a total of 63 environmental chemicals detected in >50% of the urine pools collected from Chinese adults living in 13 cities, with a median concentration of 0.026-47 ng/mL, while nontargeted analysis detected an additional 243 exogenous molecules. Targeted and nontargeted analysis also detected 926 endogenous molecules in pooled urine. Collectively, the ExpoNano strategy demonstrates unique advantages over traditional urine analysis approaches, including a wide range of analytes, satisfactory trapping efficiency, high simplicity and reusability, and extremely reduced time demand and financial cost.


Assuntos
Monitoramento Biológico , Polímeros , Humanos , Polímeros/química , Monitoramento Biológico/métodos , Expossoma , Monitoramento Ambiental/métodos , Adulto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA