Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 36(2): e22139, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35064693

RESUMO

Metformin, a commonly prescribed drug for type 2 diabetes mellitus, has been shown to activate AMP-activated protein kinase (AMPK). Notably, AMPK activation has recently been observed to be associated with anti-inflammatory responses. Metformin is also reported to elicit anti-inflammatory responses in CD4+ T cells, resulting in improvement in experimental chronic inflammatory diseases, such as systemic lupus erythematosus. To investigate the effect of metformin on inflammatory bowel disease (IBD), we developed a T cell-transfer model of chronic colitis in which SCID mice were injected with CD4+ CD45RBhigh T cells to induce colitis. We examined the effects of metformin via in vitro and in vivo experiments on lamina propria (LP) CD4+ T cells. We observed that metformin suppresses the frequency of interferon (IFN) -γ-producing LP CD4+ T cells in vitro, which were regulated by AMPK activation, a process possibly induced by the inhibition of oxidative phosphorylation. Furthermore, we examined the effects of metformin on an in vivo IBD model. Metformin-treated mice showed AMPK activation in LP CD4+ T cells and ameliorated colitis. Our study demonstrates that metformin-induced AMPK activation in mucosal CD4+ T cells contributes to the improvement of IBD by suppressing IFN-γ production. Moreover, our results indicate that AMPK may be a target molecule for the regulation of mucosal immunity and inflammation. Thus, AMPK-activating drugs such as metformin may be potential therapeutic agents for the treatment of IBD.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Colite/tratamento farmacológico , Interferon gama/metabolismo , Metformina/farmacologia , Mucosa/efeitos dos fármacos , Transferência Adotiva/métodos , Animais , Linfócitos T CD4-Positivos/metabolismo , Colite/metabolismo , Colo/efeitos dos fármacos , Colo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Imunidade nas Mucosas/efeitos dos fármacos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Mucosa/metabolismo
2.
Part Fibre Toxicol ; 20(1): 49, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110964

RESUMO

BACKGROUND: Nanoplastics (NPs) are omnipresent in our lives as a new type of pollution with a tiny size. It can enter organisms from the environment, accumulate in the body, and be passed down the food chain. Inflammatory bowel disease (IBD) is a nonspecific intestinal inflammatory disease that is recurrent and prevalent in the population. Given that the intestinal features of colitis may affect the behavior and toxicity of NPs, it is imperative to clarify the risk and toxicity mechanisms of NPs in colitis models. METHODS AND RESULTS: In this study, mice were subjected to three cycles of 5-day dextran sulfate sodium (DSS) exposures, with a break of 7 to 11 days between each cycle. After the first cycle of DSS exposure, the mice were fed gavagely with water containing 100 nm polystyrene nanobeads (PS-NPs, at concentrations of 1 mg/kg·BW, 5 mg/kg·BW and 25 mg/kg·BW, respectively) for 28 consecutive days. The results demonstrated that cyclic administration of DSS induced chronic inflammation in mice, while the standard drug "5-aminosalicylic acid (5-ASA)" treatment partially improved colitis manifestations. PS-NPs exacerbated intestinal inflammation in mice with chronic colitis by activating the MAPK signaling pathway. Furthermore, PS-NPs aggravated inflammation, oxidative stress, as well as hepatic lipid metabolism disturbance in the liver of mice with chronic colitis. CONCLUSION: PS-NPs exacerbate intestinal inflammation and injury in mice with chronic colitis. This finding highlights chronically ill populations' susceptibility to environmental hazards, which urgent more research and risk assessment studies.


Assuntos
Colite , Poliestirenos , Camundongos , Animais , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Metabolismo dos Lipídeos , Colite/induzido quimicamente , Colite/metabolismo , Inflamação/metabolismo , Estresse Oxidativo , Fígado/metabolismo , Doença Crônica , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
3.
J Dairy Sci ; 106(11): 7352-7366, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37210370

RESUMO

The pathogenesis of inflammatory bowel disease may be related to local inflammatory damage and disturbances in intestinal microecology. Probiotic therapy is a safe and effective therapeutic approach. Considering that fermented milk is accepted and enjoyed by many people as a daily dietary intervention strategy, its potential to alleviate dextran sulfate sodium (DSS)-induced chronic colitis in mice needs to be explored. In this study, we evaluated the therapeutic effects of Lactiplantibacillus plantarum ZJ316-fermented milk by establishing a mouse model of DSS-induced chronic colitis. The results showed that the disease severity and colonic lesions of inflammatory bowel disease were effectively alleviated by ingestion of fermented milk. At the same time, the expression of proinflammatory cytokines (TNF-α, IL-1ß, and IL-6) effectively decreased, and the expression of antiinflammatory cytokines (IL-10) increased. Results based on 16S rRNA gene sequencing indicated that the structure and diversity of intestinal microorganisms changed markedly by intake of L. plantarum ZJ316-fermented milk, and fermented milk reduced the abundance of harmful bacteria (Helicobacter) while promoting the growth of beneficial bacteria (Faecalibacterium, Lactiplantibacillus, and Bifidobacterium). Additionally, the levels of short-chain fatty acids (acetic acid, propionic acid, butyric acid, pentanoic acid, and isobutyric acid) were also increased. In conclusion, the intake of L. plantarum ZJ316-fermented milk can alleviate chronic colitis by suppressing the inflammatory response and regulating intestinal microbiota.

4.
Phytother Res ; 37(2): 731-742, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36196887

RESUMO

Curcumin (Cur) is a natural active phenolic compound extracted from the root of Curcuma Longa L. It has anti-inflammatory, anti-tumor and other pharmacological activities, and is commonly used to treat ulcerative colitis (UC). However, it is not clear whether curcumin regulates the function and differentiation of Breg cells to treat UC. In this study, mice with chronic colitis were induced by dextran sulfate sodium (DSS), and treated with curcumin for 12 days. Curcumin effectively improved the body weight, colonic weight, colonic length, decreased colonic weight index and pathological injury score under colonoscopy in mice with chronic colitis, and significantly inhibited the production of IL-1ß, IL-6, IL-33, CCL-2, IFN-γ, TNF-α, and promoted the secretion of IL-4, IL-10, IL-13 and IgA. Importantly, curcumin markedly upregulated CD3- CD19+ CD1d+ , CD3- CD19+ CD25+ , CD3- CD19+ Foxp3+ Breg cells level and significantly down-regulated CD3- CD19+ PD-L1+ , CD3- CD19+ tim-1+ , CD3- CD19+ CD27+ Breg cells level. In addition, our results also showed that curcumin observably inhibited TLR2, TLR4, TLR5, MyD88, IRAK4, p-IRAK4, NF-κB P65, IRAK1, TRAF6, TAB1, TAB2, TAK1, MKK3, MKK6, p38MAPK, p-p38MAPK and CREB expression in TLR/MyD88 signaling pathway. These results suggest that curcumin can regulate the differentiation and function of Breg cell to alleviate DSS-induced colitis, which may be realized by inhibiting TLR/MyD88 pathway.


Assuntos
Linfócitos B Reguladores , Colite Ulcerativa , Colite , Curcumina , Camundongos , Animais , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/farmacologia , Quinases Associadas a Receptores de Interleucina-1/uso terapêutico , Linfócitos B Reguladores/metabolismo , Linfócitos B Reguladores/patologia , Curcumina/farmacologia , Curcumina/uso terapêutico , Fator 88 de Diferenciação Mieloide/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Transdução de Sinais , Colo , NF-kappa B/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças
5.
Cell Tissue Res ; 389(1): 41-70, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35536444

RESUMO

Inflammatory bowel disease (IBD) is a chronic gut inflammation with periods of acute flares and remission. Beneficial effects of a single dose of mesenchymal stem cell (MSC)-based treatment have been demonstrated in acute models of colitis. No studies investigated therapeutic effects of MSCs for the attenuation of enteric neuropathy in a chronic model of colitis. The short and long-term effects of MSC treatment in modulating inflammation and damage to the enteric nervous system (ENS) were studied in the Winnie mouse model of spontaneous chronic colitis highly representative of human IBD. Winnie mice received a single dose of either 1 × 106 human bone marrow-derived MSCs or 100µL PBS by intracolonic enema. C57BL/6 mice received 100µL PBS. Colon tissues were collected at 3 and 60 days post MSC administration to evaluate the short-term and long-term effects of MSCs on inflammation and enteric neuropathy by histological and immunohistochemical analyses. In a separate set of experiments, multiple treatments with 4 × 106 and 2 × 106 MSCs were performed and tissue collected at 3 days post treatment. Chronic intestinal inflammation in Winnie mice was associated with persistent diarrhea, perianal bleeding, morphological changes, and immune cell infiltration in the colon. Significant changes to the ENS, including impairment of cholinergic, noradrenergic and sensory innervation, and myenteric neuronal loss were prominent in Winnie mice. Treatment with a single dose of bone marrow-derived MSCs was ineffective in attenuating chronic inflammation and enteric neuropathy in Winnie.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Pseudo-Obstrução Intestinal , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Colite/patologia , Modelos Animais de Doenças , Inflamação/patologia , Doenças Inflamatórias Intestinais/complicações , Pseudo-Obstrução Intestinal/terapia , Camundongos , Camundongos Endogâmicos C57BL
6.
Pharmacol Res ; 182: 106309, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35716915

RESUMO

The pathological features of inflammatory bowel disease necessitate therapeutic strategies aimed at restoring intestinal mucosal barrier function in addition to controlling inflammation. Paeoniflorin, a bioactive herbal constituent isolated from the root of Paeonia albiflora Pall, has been reported to protect against acute colitis in mice. However, the direct molecular target of paeoniflorin in preventing colitis remains elusive. Here, we evaluated the therapeutical effects of Paeoniflorin using IL-10-/- chronic colitis model, and explored the precise mechanism of action involved. Our results demonstrated that intragastric administration of Paeoniflorin significantly ameliorated inflammatory response and restored the aberrant intestinal proliferation and differentiation in IL-10-/-colitis mice. By utilizing a chemical biology approach, we identified C1qa, a crucial component of C1q, is the direct target of Paeoniflorin. Binding of Paeoniflorin to C1qa prevented the cleavage of C1q on macrophages, resulting in the aggregation of surface membrane-anchored C1q and the diminished C1q secretion. The excessive surface membrane-anchored C1q significantly enhanced the phagocytic capability of macrophages and promoted the elimination of infiltrated bacteria and inflammatory cells in mouse colon. The reduced C1q secretion conferred by Paeoniflorin dampened Wnt/ß-catenin signaling activation, thereby rectifying the aberrant proliferation and differentiation of intestinal stem cells (ISCs). In summary, our study demonstrates that Paeoniflorin can orchestrate mucosal healing and intestinal inflammation elimination through C1q-bridged macrophage-ISCs crosstalk, highlighting a novel strategy to treat chronic colitis by restoring mucosal homeostasis via targeting C1q.


Assuntos
Colite , Interleucina-10 , Animais , Proliferação de Células , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Complemento C1q/metabolismo , Complemento C1q/uso terapêutico , Sulfato de Dextrana , Modelos Animais de Doenças , Glucosídeos , Inflamação/metabolismo , Interleucina-10/metabolismo , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monoterpenos , Células-Tronco/metabolismo
7.
World J Microbiol Biotechnol ; 39(1): 8, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36350434

RESUMO

Nattokinase with excellent anti-thrombotic, anti-inflammatory, anti-tumor, and anti-hypertension properties has been used in the development of several healthcare products in many countries. The probiotic Escherichia coli Nissle 1917 (EcN) with anti-inflammatory effect is commonly used to treat inflammatory bowel disease. To determine whether nattokinase could enhance the therapeutic efficacy of EcN in colitis, a recombinant E. coli Nissle 1917 strain (EcNnatto) with nattokinase-expressing ability was successfully constructed, and the protective effect of the engineered strain on mice with experimental chronic colitis was investigated. Although both EcN and EcNnatto strains substantially alleviated the clinical symptoms and pathological abnormalities in colitis mice by regulating gut flora and maintaining intestinal barrier function, the EcNnatto strain was found to perform better than the control strain, based on a further increase in colon length and a downregulation in pro-inflammatory cytokines (IL-6 and TNF-α). Nattokinase expressed in EcN attenuated DSS-induced epithelial damage and restored the mucosal integrity by upregulating the levels of tight junction proteins, including ZO-1 and occludin. The expression level of Lgr5, a marker of intestinal stem cells, was also increased. Moreover, constitutively expressed nattokinase in EcN reversed the gut microbial richness and diversity in colitis mice. Based on our findings, nattokinase could strengthen the capacity of EcN to treat intestinal inflammation.


Assuntos
Colite , Infecções por Escherichia coli , Probióticos , Animais , Camundongos , Anti-Inflamatórios/metabolismo , Colite/induzido quimicamente , Colite/prevenção & controle , Colite/tratamento farmacológico , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/metabolismo , Modelos Animais de Doenças , Escherichia coli/metabolismo , Infecções por Escherichia coli/prevenção & controle , Probióticos/farmacologia
8.
Zhongguo Zhong Yao Za Zhi ; 47(19): 5316-5326, 2022 Oct.
Artigo em Zh | MEDLINE | ID: mdl-36472039

RESUMO

To elucidate the mechanism of Euodiae Fructus stir-fried with water decoction of Coptidis Rhizoma in the treatment of chronic colitis, this study employed ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS), network pharmacology, and experimental verification to predict the involved targets and signaling pathways. The chronic colitis mouse model was constructed to verify the core targets. A total of 48 compounds in the herbal medicine were identified by UPLC-Q-TOF-MS. SwissTargetPrediction was used to screen the potential active components and drug targets. GeneCards, OMIM, PharmGKB, and TDD were used to search for the disease targets. A total of 31 active ingredients, 453 targets of the herbal medicine, and 3 960 targets of chronic colitis were obtained. The common targets shared by the herbal medicine and chronic colitis were introduced into STRING to construct the protein-protein interaction(PPI) network, and CytoNCA plug-in was used to screen the key targets. A total of 90 key targets were obtained, and the key active components included isorhamnetin, quercetin, limonin, and oxyberberine. GO annotation and KEGG pathway enrichment for the key targets were carried out via DAVID. The targets were mainly involved in the positive regulation of protein phosphorylation, positive regulation of nitric oxide biosynthetic process, and negative regulation of apoptotic process. The medicine may treat chronic colitis through PI3 K-Akt, VEGF, HIF-1, and TNF signaling pathways. A mouse model of chronic colitis was established and then treated with Euodiae Fructus stir-fried with the water decoction of Coptidis Rhizoma. The experimental results demonstrated that the medicine can alleviate the pathological damage of colon, significantly reduce the levels of IL-1ß, IL-6, and TNF-α, inhibit the activation of PI3 K/Akt pathway, and down-regulate the expression of VEGFA in the treatment of chronic colitis.


Assuntos
Colite , Medicamentos de Ervas Chinesas , Animais , Camundongos , Água , Medicamentos de Ervas Chinesas/farmacologia , Farmacologia em Rede , Proteínas Proto-Oncogênicas c-akt , Colite/tratamento farmacológico , Doença Crônica , Simulação de Acoplamento Molecular
9.
J Cell Mol Med ; 25(15): 7257-7269, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34184406

RESUMO

Our previous study has found that aureusidin can inhibit inflammation by targeting myeloid differentiation 2 (MD2) protein. Structural optimization of aureusidin gave rise to a derivative named CNQX. LPS was used to induce inflammation in intestinal macrophages; flow cytometry, PI staining and Hoechst 33342 staining were used to detect the apoptotic level of macrophages; enzyme-linked immunosorbent assay (ELISA) was utilized to detect the expression level of inflammatory factors (including IL-1ß, IL-18 and TNF-α); immunofluorescence staining was used to investigate the expression of MD2; Western blot was employed to measure the protein level of TLR4, MD2, MyD88 and p-P65. As a result, CNQX with IC50 of 2.5 µM can significantly inhibit the inflammatory damage of macrophages, decrease apoptotic level, reduce the expression level of inflammatory factors and simultaneously decrease the expression level of TLR4, MD2, MyD88 as well as p-P65. Caco-2 cell line was used to simulate the intestinal mucosal barrier in vitro, LPS was employed to induce cell injury in Caco-2 (to up-regulate barrier permeability), and CNQX with IC50 of 2.5 µl was used for intervention. Flow cytometry was used to detect the apoptotic level of Caco-2 cells, trans-epithelial electric resistance (TEER) was measured, FITC-D was used to detect the permeability of the intestinal mucosa, and Western blot was used to detect the expression levels of tight junction proteins (including occludin, claudin-1, MyD88, TLR4 and MD2). As a result, CNQX decreased the apoptotic level of Caco-2 cells, increased TEER value, decreased the expression levels of MyD88, TLR4 and MD2, and increased the protein levels of tight junction proteins (including occludin and claudin-1). C57BL/6 wild-type mice were treated with drinking water containing Dextran sulphate sodium (DSS) to establish murine chronic colitis model. After CQNX intervention, we detected the bodyweight, DAI score and H&E tissue staining to evaluate the life status and pathological changes. Immunohistochemistry (IHC) staining was used to detect the expression of MD2 protein, tight junction protein (including occludin and claudin-1). Transmission electron microscopy and FITC-D were used to detect intestinal mucosal permeability. Western blot was used to detect the expression levels of tight junction proteins (including occludin, claudin-1, MyD88, TLR4 and MD2) in the intestinal mucosa tissue. Consequently, CNQX can inhibit the intestinal inflammatory response in mice with colitis, inhibit the mucosal barrier injury, increase the expression of tight junction proteins (including occludin and claudin-1) and decrease the expression levels of MyD88, TLR4 and MD2. Mechanistically, pull-down and immunoprecipitation assays showed that CNQX can inhibit the activation of TLR4/MD2-NF-κB by binding to MD2 protein. Collectively, in this study, we found that CNQX can suppress the activation of TLR4 signals by targeting MD2 protein, thereby inhibiting inflammation and mucosal barrier damage of chronic colitis.


Assuntos
6-Ciano-7-nitroquinoxalina-2,3-diona/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Antígeno 96 de Linfócito/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Células CACO-2 , Colite Ulcerativa/metabolismo , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição RelA/metabolismo
10.
BMC Microbiol ; 21(1): 279, 2021 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-34654370

RESUMO

BACKGROUND: Dextran sulfate sodium (DSS) replicates ulcerative colitis (UC)-like colitis in murine models. However, the microbial characteristics of DSS-triggered colitis require further clarification. To analyze the changes in gut microbiota associated with DSS-induced acute and chronic colitis. METHODS: Acute colitis was induced in mice by administering 3% DSS for 1 week in the drinking water, and chronic colitis was induced by supplementing drinking water with 2.5% DSS every other week for 5 weeks. Control groups received the same drinking water without DSS supplementation. The histopathological score and length of the colons, and disease activity index (DAI) were evaluated to confirm the presence of experimental colitis. Intestinal microbiota was profiled by 16S rDNA sequencing of cecal content. RESULTS: Mice with both acute and chronic DSS-triggered colitis had significantly higher DAI and colon histopathological scores in contrast to the control groups (P < 0.0001, P < 0.0001), and the colon was remarkably shortened (P < 0.0001, P < 0.0001). The gut microbiota α-diversity was partly downregulated in both acute and chronic colitis groups in contrast to their respective control groups (Pielou index P = 0.0022, P = 0.0649; Shannon index P = 0.0022, P = 0.0931). The reduction in the Pielou and Shannon indices were more obvious in mice with acute colitis (P = 0.0022, P = 0.0043). The relative abundance of Bacteroides and Turicibacter was increased (all P < 0.05), while that of Lachnospiraceae, Ruminococcaceae, Ruminiclostridium, Rikenella, Alistipes, Alloprevotella, and Butyricicoccus was significantly decreased after acute DSS induction (all P < 0.05). The relative abundance of Bacteroides, Akkermansia, Helicobacter, Parabacteroides, Erysipelatoclostridium, Turicibacter and Romboutsia was also markedly increased (all P < 0.05), and that of Lachnospiraceae_NK4A136_group, Alistipes, Enterorhabdus, Prevotellaceae_UCG-001, Butyricicoccus, Ruminiclostridium_6, Muribaculum, Ruminococcaceae_NK4A214_group, Family_XIII_UCG-001 and Flavonifractor was significantly decreased after chronic DSS induction (all P < 0.05). CONCLUSION: DSS-induced acute and chronic colitis demonstrated similar symptoms and histopathological changes. The changes in the gut microbiota of the acute colitis model were closer to that observed in UC. The acute colitis model had greater abundance of SCFAs-producing bacteria and lower α-diversity compared to the chronic colitis model.


Assuntos
Biodiversidade , Colite/induzido quimicamente , Colite/microbiologia , Sulfato de Dextrana , Microbioma Gastrointestinal/fisiologia , Doença Aguda , Animais , Doença Crônica , Colite/patologia , Modelos Animais de Doenças , Camundongos
11.
Arkh Patol ; 83(6): 14-19, 2021.
Artigo em Russo | MEDLINE | ID: mdl-34859981

RESUMO

OBJECTIVE: To revise the existing criteria to improve the definition of chronic colitis stages in inflammatory bowel diseases (IBDs). MATERIAL AND METHODS: A total of 100 cases of IBDs (ulcerative colitis (n=70) and Crohn's disease (n=30) diagnosed in 2017 to 2019 were examined. Thirty patients with colitis were selected for a comparison group, who were assigned to an infective colitis group or a drug-induced colitis one at the final diagnosis. RESULTS: The sequence of chronic colitis stages was defined from Stage 1 (early changes) to Stage 3, which are characterized by progressive mucosal structural rearrangement. Mainly at Stage 3 that characterizes the final stage of structural rearrangement in the mucous membrane, where dysplastic changes (the onset of tumor transformation) are detected. CONCLUSION: For the diagnosis of chronic colitis in IBD, it is mandatory to detect mucosal structural rearrangement. Stages 1 and 2 are characterized by early structural changes in the mucous membrane, whereas the process becomes irreversible at Stage 3. The identification of colitis stages is of diagnostic and, undoubtedly, prognostic value.


Assuntos
Colite Ulcerativa , Colite , Doença de Crohn , Doenças Inflamatórias Intestinais , Colite/diagnóstico , Colite Ulcerativa/diagnóstico , Humanos , Mucosa Intestinal
12.
Zhongguo Zhong Yao Za Zhi ; 46(4): 865-876, 2021 Feb.
Artigo em Zh | MEDLINE | ID: mdl-33645091

RESUMO

The network pharmacology and molecular docking methods were used to explore the mechanism of Jinweitai Capsules in the treatment of acute and chronic gastritis, gastric and duodenal ulcers, and chronic colitis. The chemical components of herbs in Jinweitai Capsules were collected through TCMSP, CNKI and PubMed. Target prediction was performed through PubChem and SwissTargetPrediction databases; genes relating to acute and chronic gastritis, gastric and duodenal ulcers, chronic colitis were collected from OMIM database; potential targets of Jinweitai Capsules for relevant gastrointestinal diseases were obtained by Venny analysis; DAVID database was used to perform GO and KEGG enrichment analysis; protein interactions were obtained by STRING database and visua-lized by Cytoscape; AutoDockVina was used for molecular docking of AKT1, EGFR, PTPN11 and its reverse-selected chemical components. Potential mechanisms of Jinweitai Capsules in treating relevant gastrointestinal diseases were clarified according to the results of the docking. The results showed 86 potential active ingredients of Jinweitai Capsules and 268 potential targets for treatment of acute and chronic gastritis, gastric and duodenal ulcers, and chronic colitis. KEGG pathway enrichment analysis showed that 20 pathways relating to acute and chronic gastritis, gastric and duodenal ulcers, and chronic colitis mainly involved calcium signaling pathway and chemokine signaling pathway. Molecular docking showed a good binding activity between AKT1, EGFR, PTPN11 and its reverse screening chemical components. Jinweitai Capsules may exert an effect in the treatment of acute and chronic gastritis, gastric and duodenal ulcers, and chronic colitis by acting on AKT1, EGFR, PTPN11 and other targets in 15 signal pathways relating to cell inflammation and immunity, cell proliferation and apoptosis, Helicobacter pylori infection, and gastrointestinal tract.


Assuntos
Medicamentos de Ervas Chinesas , Gastroenteropatias , Infecções por Helicobacter , Helicobacter pylori , Medicina , Cápsulas , Gastroenteropatias/tratamento farmacológico , Humanos , Simulação de Acoplamento Molecular
13.
J Cell Physiol ; 234(11): 21089-21099, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31032920

RESUMO

The present study was designed to investigate the mechanism of myeloid differentiation protein 2 (MD2) on intestinal mucosa destruction in mice with chronic colitis. Briefly, a chronic colitis mouse model was established by the administration of dextran sulfate sodium (DSS) in transgenic mice of MD2 overexpression (Transgenic, MD2-Tg) and C57BL/6 wild-type mice (MD2-WT). In addition, Caco-2 cells were cultured to form a monolayer cell model in vitro. The small interfering RNA was utilized to silence the MD2 gene in Caco-2 cells, and tumor necrosis factor-α (TNF-α) was used to establish the model of intestinal mucosal inflammation. After DSS induction, the intestinal mucosal tissue inflammation was more severe in MD2-Tg mice than MD2-WT. In addition, the intestinal mucosa was severely damaged, the intestinal mucosal permeability was increased, bacterial translocation was obvious, and the expression levels of MD2, MyD88, Toll-like receptor 4 (TLR4), and HMGB1 in mucosal tissues were significantly increased, while the expression levels of tight junction proteins, occludin, and claudin-1 were significantly lower in MD2-Tg mice compared with those in MD2-WT mice. TNF-α could induce inflammatory apoptosis in Caco-2 cell models. After MD2 silencing, the apoptotic level was decreased, the value of transepithelial electrical resistance was increased, the permeability of intestinal mucosa was decreased, the cellular expression levels of MD2, MyD88, TLR4, and HMGB1 were decreased, while the expression levels of tight junction proteins, occludin and claudin-1 were increased. MD2 could aggravate the destruction of intestinal mucosa in chronic colitis through the HMGB1-TLR4-MyD88 pathway.


Assuntos
Colite/metabolismo , Colite/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Antígeno 96 de Linfócito/metabolismo , Adulto , Idoso , Animais , Células CACO-2 , Feminino , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Permeabilidade , Junções Íntimas/metabolismo , Junções Íntimas/patologia
14.
Am J Physiol Gastrointest Liver Physiol ; 316(6): G692-G700, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30735453

RESUMO

Inflammatory bowel diseases (IBD) are characterized by repetition of flares and remission periods leading to chronic postinflammatory sequelae. Among postinflammatory sequelae, one-third of patients with IBD are suffering from functional symptoms or psychological comorbidities that persist during remission. The aim of our study was to assess functional and behavioral sequelae of chronic colitis in rats with quiescent intestinal inflammation. Chronic colitis was induced by a weekly intrarectal injection of increasing concentrations of trinitrobenzene sulfonic acid (TNBS) for 3 wk (15-45 mg of TNBS) in 30 rats, whereas the control rats (n = 24) received the vehicle. At 50 days post-TNBS, visceral sensitivity was assessed by visceromotor response to colorectal distension, and transient receptor potential vanilloid type 1 (TRPV1) expression was also quantified in the colon and dorsal root ganglia. Barrier function and inflammatory response were assessed by studying intestinal permeability, tight junction protein, myeloperoxidase activity, histological score, and cytokine production (IL-6, IL-10, and TNF-α). Anxiety behavioral tests were performed from 50 to 64 days after the last TNBS injection. Chronic TNBS induced 1) a visceral hypersensitivity (P = 0.03), 2) an increased colon weight-to-length ratio (P = 0.01), 3) higher inflammatory and fibrosis scores (P = 0.0390 and P = 0.0016, respectively), and 4) a higher colonic IL-6 and IL-10 production (P = 0.008 and P = 0.005, respectively) compared with control rats. Intestinal permeability, colonic production of TNF-α, myeloperoxidase activity, and TRPV1 expression did not differ among groups. Chronic TNBS increased anxiety-related behavior in the open-field test and in the acoustic stress test. In conclusion, chronic colitis induced functional sequelae such as visceral hypersensitivity and increased anxiety with a low-grade intestinal inflammation. Development of a representative animal model will allow defining novel therapeutic approaches to achieve a better management of IBD-related sequelae. NEW & NOTEWORTHY Patients with inflammatory bowel diseases have impaired quality of life. Therapeutic progress to control mucosal inflammation provides us an opportunity to develop novel approaches to understand mechanisms behind postinflammatory sequelae. We used a chronic colitis model to study long-term sequelae on visceral pain, gut barrier function, and psychological impact. Chronic colitis induced functional symptoms and increased anxiety in the remission period. It might define novel therapeutic approaches to achieve a better inflammatory bowel disease-related sequelae management.


Assuntos
Ansiedade , Colo , Motilidade Gastrointestinal , Doenças Inflamatórias Intestinais , Dor Visceral , Animais , Ansiedade/etiologia , Ansiedade/fisiopatologia , Comportamento Animal/fisiologia , Colite/imunologia , Colite/fisiopatologia , Colite/psicologia , Colo/inervação , Colo/metabolismo , Colo/fisiopatologia , Citocinas/análise , Modelos Animais de Doenças , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/fisiopatologia , Doenças Inflamatórias Intestinais/psicologia , Masculino , Permeabilidade , Peroxidase/análise , Ratos , Proteínas de Junções Íntimas/análise , Dor Visceral/etiologia , Dor Visceral/imunologia , Dor Visceral/fisiopatologia , Dor Visceral/psicologia
15.
BMC Med Genet ; 19(1): 123, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-30029636

RESUMO

BACKGROUND: Wiskott-Aldrich syndrome is an X-linked recessive immunodeficiency due to mutations in Wiskott-Aldrich syndrome (WAS) gene. WAS gene is encoded for a multifunctional protein with key roles in actin polymerization, signaling pathways, and cytoskeletal rearrangement. Therefore, the impaired protein or its absence cause phenotypic spectrum of the disease. Since identification of novel mutations in WAS gene can help uncover the exact pathogenesis of Wiskott-Aldrich syndrome, the purpose of this study was to investigate disease causing-mutation in an Iranian male infant suspicious of this disorder. CASE PRESENTATION: The patient had persistent thrombocytopenia from birth, sepsis, and recurrent gastrointestinal bleeding suggestive of both Wiskott-Aldrich syndrome and chronic colitis in favor of inflammatory bowel disease (IBD). To find mutated gene in the proband, whole exome sequencing was performed for the patient and its data showed a novel, private, hemizygous splice site mutation in WAS gene (c.360 + 1G > C). CONCLUSIONS: Our study found a novel, splice-site mutation in WAS gene and help consider the genetic counselling more precisely for families with clinical phenotypes of both Wiskott-Aldrich syndrome and inflammatory bowel disease and may suggest linked pathways between these two diseases.


Assuntos
Colite/genética , Mutação/genética , Sítios de Splice de RNA/genética , Proteína da Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/genética , Éxons/genética , Humanos , Lactente , Doenças Inflamatórias Intestinais/genética , Irã (Geográfico) , Masculino , Proteínas/genética , Trombocitopenia/genética
16.
Parasite Immunol ; 40(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29266481

RESUMO

Encouraged by our earlier results of promising therapeutic effect of filarial recombinant proteins BmALT2, BmCys and WbL2 individually in the mouse model of acute ulcerative colitis, in this study, these proteins have been explored individually and in different combinations for their therapeutic potential in dextran sulphate sodium (DSS)-induced chronic colitis mice. These mice, treated with filarial proteins, showed reduced disease parameters including body weight loss, disease activity index, macroscopic and histopathological scores of colon and myeloperoxidase activity in colonic mucosa. Among various treatment schemes, rBmALT2 + rBmCys which showed most pronounced therapeutic implication was found to downregulate the mRNA expressions of IFN-γ and TNF-α and upregulate IL-10 and TGF-ß expression in the splenocytes. Also, increase in level of IgG1 and IgG2a isotypes in the sera of rBmALT2 + rBmCys-treated colitis mice was noted. Activated NF-κB level was found to be reduced in the colon of treated colitis mice compared to untreated one. In conclusion, filarial proteins in combination have been shown to improve the clinicopathologic status of chronic colitis through suppression of pro-inflammatory immune response most possibly in NF-κB-dependent manner. We propose this therapeutic strategy to be tested further to be considered as an effective option in chronic colitis.


Assuntos
Filarioidea/química , Proteínas de Helminto/uso terapêutico , Proteínas Recombinantes/uso terapêutico , Animais , Colite/induzido quimicamente , Colite Ulcerativa , Colo/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Feminino , Filarioidea/classificação , Humanos , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
17.
BMC Gastroenterol ; 18(1): 127, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30103680

RESUMO

BACKGROUND: A variety of extra-intestinal manifestations (EIMs), including hepatobiliary complications, are associated with inflammatory bowel disease (IBD). Mesenchymal stem cells (MSCs) have been shown to play a potential role in the therapy of IBD. This study was designed to investigate the effect and mechanism of MSCs on chronic colitis-associated hepatobiliary complications using mouse chronic colitis models induced by dextran sulfate sodium (DSS). METHODS: DSS-induced mouse chronic colitis models were established and treated with MSCs. Severity of colitis was evaluated by disease activity index (DAI), body weight (BW), colon length and histopathology. Serum lipopolysaccharide (LPS) levels were detected by limulus amebocyte lysate test (LAL-test). Histology and liver function of the mice were checked correspondingly. Serum LPS levels and bacterial translocation of mesenteric lymph nodes (MLN) were detected. Pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-1ß (IL-1ß), interleukin-17A (IL-17A), Toll receptor 4 (TLR4), TNF receptor-associated factor 6 (TRAF6) and nuclear factor kappa B (NF-κB) were detected by immunohistochemical staining, western blot analysis and real-time PCR, respectively. RESULTS: The DSS-induced chronic colitis model was characterized by reduced BW, high DAI, worsened histologic inflammation, and high levels of LPS and E. coli. Liver histopathological lesions, impaired liver function, enhanced proteins and mRNA levels of TNF-α, IFN-γ, IL-1ß, IL-17A, TLR4, TRAF6 and NF-κB were observed after DSS administration. MSCs transplantation markedly ameliorated the pathology of colon and liver by reduction of LPS levels and proteins and mRNA expressions of TNF-α, IFN-γ, IL-1ß, IL-17A, TLR4, TRAF6 and NF-κB. CONCLUSIONS: MSCs can improve chronic colitis-associated hepatobiliary complications, probably by inhibition of enterogenous endotoxemia and hepatic inflammation through LPS/TLR4 pathway. MSCs may represent a novel therapeutic approach for chronic colitis-associated hepatobiliary complications.


Assuntos
Doenças Biliares/prevenção & controle , Colite/complicações , Colite/terapia , Hepatopatias/prevenção & controle , Transplante de Células-Tronco Mesenquimais , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Translocação Bacteriana , Doenças Biliares/etiologia , Doença Crônica , Colite/metabolismo , Colite/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Intestinos/microbiologia , Lipopolissacarídeos/sangue , Hepatopatias/etiologia , Linfonodos/microbiologia , Masculino , Mesentério , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Receptor 4 Toll-Like/metabolismo
18.
Am J Physiol Gastrointest Liver Physiol ; 312(1): G85-G102, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881401

RESUMO

The Winnie mouse, carrying a missense mutation in Muc2, is a model for chronic intestinal inflammation demonstrating symptoms closely resembling inflammatory bowel disease (IBD). Alterations to the immune environment, morphological structure, and innervation of Winnie mouse colon have been identified; however, analyses of intestinal transit and colonic functions have not been conducted. In this study, we investigated in vivo intestinal transit in radiographic studies and in vitro motility of the isolated colon in organ bath experiments. We compared neuromuscular transmission using conventional intracellular recording between distal colon of Winnie and C57BL/6 mice and smooth muscle contractions using force displacement transducers. Chronic inflammation in Winnie mice was confirmed by detection of lipocalin-2 in fecal samples over 4 wk and gross morphological damage to the colon. Colonic transit was faster in Winnie mice. Motility was altered including decreased frequency and increased speed of colonic migrating motor complexes and increased occurrence of short and fragmented contractions. The mechanisms underlying colon dysfunctions in Winnie mice included inhibition of excitatory and fast inhibitory junction potentials, diminished smooth muscle responses to cholinergic and nitrergic stimulation, and increased number of α-smooth muscle actin-immunoreactive cells. We conclude that diminished excitatory responses occur both prejunctionally and postjunctionally and reduced inhibitory purinergic responses are potentially a prejunctional event, while diminished nitrergic inhibitory responses are probably due to a postjunction mechanism in the Winnie mouse colon. Many of these changes are similar to disturbed motor functions in IBD patients indicating that the Winnie mouse is a model highly representative of human IBD. NEW & NOTEWORTHY: This is the first study to provide analyses of intestinal transit and whole colon motility in an animal model of spontaneous chronic colitis. We found that cholinergic and purinergic neuromuscular transmission, as well as the smooth muscle cell responses to cholinergic and nitrergic stimulation, is altered in the chronically inflamed Winnie mouse colon. The changes to intestinal transit and colonic function we identified in the Winnie mouse are similar to those seen in inflammatory bowel disease patients.


Assuntos
Colite/fisiopatologia , Colo/fisiopatologia , Motilidade Gastrointestinal/fisiologia , Trânsito Gastrointestinal/fisiologia , Contração Muscular/fisiologia , Transmissão Sináptica/fisiologia , Animais , Colite/genética , Modelos Animais de Doenças , Fezes/química , Feminino , Inflamação/genética , Inflamação/fisiopatologia , Lipocalina-2/análise , Masculino , Camundongos , Mucina-2/genética , Músculo Liso/fisiopatologia , Mutação de Sentido Incorreto
19.
Cell Tissue Res ; 366(2): 285-299, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27477670

RESUMO

Rectal prolapse is associated with diminished anal sensitivity and rectal motor activity. Both sensory and motor functions are controlled by the extrinsic and intrinsic (enteric nervous system) innervation of the gastrointestinal tract. Studies of changes in intestinal innervation in humans and in animal models with rectal prolapse are extremely scarce. The Winnie mouse model of spontaneous chronic colitis closely represents human inflammatory bowel disease and is prone to develop rectal prolapse. We have investigated changes in the myenteric and inhibitory motor neurons and evaluated changes in the density of sensory afferent, sympathetic, and parasympathetic fibers in the rectal colon of Winnie mice with and without rectal prolapse. Our results demonstrate that rectal prolapse in Winnie mice with chronic colitis is correlated with enhanced levels of inflammation, gross morphological damage, and muscular hypertrophy of the rectum. Animals with prolapse have more severe damage to the rectal innervation compared with Winnie mice without prolapse. This includes more severe neuronal loss in the myenteric plexus, involving a decrease in nNOS-immunoreactive neurons (not observed in Winnie mice without prolapse) and a more pronounced loss of VAChT-immunoreactive fibers. Both Winnie mice with and without prolapse have comparable levels of noradrenergic and sensory fiber loss in the rectum. This is the first study providing evidence that the damage and death of enteric neurons, including nitrergic neurons in myenteric ganglia and the loss of cholinergic nerve fibers, are important factors in structural changes in the rectum of mice with rectal prolapse.


Assuntos
Colite/complicações , Colite/patologia , Prolapso Retal/complicações , Prolapso Retal/patologia , Reto/inervação , Reto/patologia , Animais , Contagem de Células , Feminino , Inflamação/patologia , Leucócitos/patologia , Masculino , Camundongos Endogâmicos C57BL , Fibras Nervosas/patologia , Neurônios/patologia
20.
Arch Toxicol ; 90(5): 1093-102, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26070365

RESUMO

Colorectal cancer is one of the most frequent cancers in Western countries. Chronic intestinal diseases such as Crohn's disease and ulcerative colitis, in which the intestinal barrier is massively disturbed, significantly raise the risk of developing a colorectal tumour. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a genotoxic heterocyclic aromatic amine that is formed after strongly heating fish and meat. In this study, the hypothesis that PhIP uptake in the gut is increased during chronic colitis was tested. Chronic colitis was induced by oral administration of dextran sulphate sodium (DSS) to Fischer 344 rats. The transport of PhIP in eight different rat intestinal segments was examined in Ussing chambers. The tissues were incubated with 10 µM PhIP for 90 min, and the concentration of PhIP was determined in the mucosal and serosal compartments of the Ussing chambers as well as in the clamped tissues by LC-MS. Although chronic colitis was clearly induced in the rats, no differences in the intestinal transport of PhIP were observed between control and DSS-treated animals. The hypothesis that in the course of chronic colitis more PhIP is taken up by the intestinal epithelium, thereby increasing the risk of developing colorectal cancer, could not be confirmed in the present report.


Assuntos
Carcinógenos/metabolismo , Colite/metabolismo , Sulfato de Dextrana , Imidazóis/metabolismo , Absorção Intestinal , Mucosa Intestinal/metabolismo , Animais , Carcinógenos/toxicidade , Cromatografia Líquida , Doença Crônica , Colite/induzido quimicamente , Colite/patologia , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/metabolismo , Modelos Animais de Doenças , Imidazóis/toxicidade , Intestinos/patologia , Cinética , Masculino , Ratos Endogâmicos F344 , Fatores de Risco , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA