RESUMO
Desynchrony of phenological responses to climate change is a major concern for ecological communities. Potential uncoupling between one of the most fundamental divisions within populations, males and females, has not been well studied. To address this gap, we examined sex-specific plasticity in hibernation phenology in two populations of Columbian ground squirrels (Urocitellus columbianus). We find that both sexes display similar phenological plasticity to spring snowmelt dates in their timing of torpor termination and behavioural emergence from hibernation. As a result of this plasticity, the degree of protandry (i.e. males' emergences from hibernation preceding those of females) did not change significantly over the 27-year study. Earlier male behavioural emergence, relative to females, improved the likelihood of securing a breeding territory and increased annual reproductive success. Sexual selection favouring earlier male emergence from hibernation may maintain protandry in this population, but did not contribute to further advances in male phenology. Together, our results provide evidence that the sexes should remain synchronized, at least in response to the weather variation investigated here, and further support the role of sexual selection in the evolution of protandry in sexually reproducing organisms.
Assuntos
Sexo , Seleção Sexual , Feminino , Animais , Masculino , Reprodução/fisiologia , Adaptação Fisiológica , Estações do Ano , Sciuridae/fisiologiaRESUMO
Parasites play an important role in the evolution of host traits via natural selection, coevolution and sexually selected ornaments used in mate choice. These evolutionary scenarios assume fitness costs for hosts. To test this assumption, we conducted an ectoparasite removal experiment in free-living Columbian ground squirrels (Urocittelus columbianus) in four populations over three years. Adult females were randomly chosen to be either experimentally treated with anti-parasite treatments (spot-on solution and flea powder, N = 61) or a sham treatment (control, N = 44). We expected that experimental females would show better body condition, increased reproductive success and enhanced survival. Contrary to our expectations, body mass was not significantly different between treatments at mating, birth of litter or weaning of young. Further, neither number nor size of young at weaning differed significantly between the two treatments. Survival to the next spring for adult females and juveniles was not significantly different between experimental and control treatments. Finally, annual fitness was not affected by the treatments. We concluded that females and their offspring were able compensate for the presence of ectoparasites, suggesting little or no fitness costs of parasites for females in the different colonies and during the years of our experiments.