Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.940
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(25): 5587-5605.e27, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38029745

RESUMO

The number one cause of human fetal death are defects in heart development. Because the human embryonic heart is inaccessible and the impacts of mutations, drugs, and environmental factors on the specialized functions of different heart compartments are not captured by in vitro models, determining the underlying causes is difficult. Here, we established a human cardioid platform that recapitulates the development of all major embryonic heart compartments, including right and left ventricles, atria, outflow tract, and atrioventricular canal. By leveraging 2D and 3D differentiation, we efficiently generated progenitor subsets with distinct first, anterior, and posterior second heart field identities. This advance enabled the reproducible generation of cardioids with compartment-specific in vivo-like gene expression profiles, morphologies, and functions. We used this platform to unravel the ontogeny of signal and contraction propagation between interacting heart chambers and dissect how mutations, teratogens, and drugs cause compartment-specific defects in the developing human heart.


Assuntos
Cardiopatias , Ventrículos do Coração , Coração , Humanos , Transcriptoma/genética , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Cardiopatias/genética , Cardiopatias/metabolismo
2.
Cell ; 185(5): 794-814.e30, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35182466

RESUMO

Congenital heart disease (CHD) is present in 1% of live births, yet identification of causal mutations remains challenging. We hypothesized that genetic determinants for CHDs may lie in the protein interactomes of transcription factors whose mutations cause CHDs. Defining the interactomes of two transcription factors haplo-insufficient in CHD, GATA4 and TBX5, within human cardiac progenitors, and integrating the results with nearly 9,000 exomes from proband-parent trios revealed an enrichment of de novo missense variants associated with CHD within the interactomes. Scoring variants of interactome members based on residue, gene, and proband features identified likely CHD-causing genes, including the epigenetic reader GLYR1. GLYR1 and GATA4 widely co-occupied and co-activated cardiac developmental genes, and the identified GLYR1 missense variant disrupted interaction with GATA4, impairing in vitro and in vivo function in mice. This integrative proteomic and genetic approach provides a framework for prioritizing and interrogating genetic variants in heart disease.


Assuntos
Fator de Transcrição GATA4/metabolismo , Cardiopatias Congênitas , Proteínas Nucleares/metabolismo , Oxirredutases/metabolismo , Fatores de Transcrição , Animais , Cardiopatias Congênitas/genética , Camundongos , Mutação , Proteômica , Proteínas com Domínio T/genética , Fatores de Transcrição/genética
3.
Genes Dev ; 36(11-12): 652-663, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35835508

RESUMO

Congenital heart defects (CHDs) are among the most common birth defects, but their etiology has long been mysterious. In recent decades, the development of a variety of experimental models has led to a greater understanding of the molecular basis of CHDs. In this review, we contrast mouse models of CHD, which maintain the anatomical arrangement of the heart, and human cellular models of CHD, which are more likely to capture human-specific biology but lack anatomical structure. We also discuss the recent development of cardiac organoids, which are a promising step toward more anatomically informative human models of CHD.


Assuntos
Cardiopatias Congênitas , Organoides , Animais , Modelos Animais de Doenças , Coração , Cardiopatias Congênitas/genética , Humanos , Camundongos
4.
Am J Hum Genet ; 111(2): 338-349, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38228144

RESUMO

Clinical exome and genome sequencing have revolutionized the understanding of human disease genetics. Yet many genes remain functionally uncharacterized, complicating the establishment of causal disease links for genetic variants. While several scoring methods have been devised to prioritize these candidate genes, these methods fall short of capturing the expression heterogeneity across cell subpopulations within tissues. Here, we introduce single-cell tissue-specific gene prioritization using machine learning (STIGMA), an approach that leverages single-cell RNA-seq (scRNA-seq) data to prioritize candidate genes associated with rare congenital diseases. STIGMA prioritizes genes by learning the temporal dynamics of gene expression across cell types during healthy organogenesis. To assess the efficacy of our framework, we applied STIGMA to mouse limb and human fetal heart scRNA-seq datasets. In a cohort of individuals with congenital limb malformation, STIGMA prioritized 469 variants in 345 genes, with UBA2 as a notable example. For congenital heart defects, we detected 34 genes harboring nonsynonymous de novo variants (nsDNVs) in two or more individuals from a set of 7,958 individuals, including the ortholog of Prdm1, which is associated with hypoplastic left ventricle and hypoplastic aortic arch. Overall, our findings demonstrate that STIGMA effectively prioritizes tissue-specific candidate genes by utilizing single-cell transcriptome data. The ability to capture the heterogeneity of gene expression across cell populations makes STIGMA a powerful tool for the discovery of disease-associated genes and facilitates the identification of causal variants underlying human genetic disorders.


Assuntos
Cardiopatias Congênitas , Transcriptoma , Humanos , Animais , Camundongos , Exoma/genética , Cardiopatias Congênitas/genética , Sequenciamento do Exoma , Aprendizado de Máquina , Análise de Célula Única/métodos , Enzimas Ativadoras de Ubiquitina/genética
5.
Hum Mol Genet ; 33(10): 884-893, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38340456

RESUMO

Patent ductus arteriosus (PDA) is a common form of congenital heart disease. The MYH6 gene has important effects on cardiovascular growth and development, but the effect of variants in the MYH6 gene promoter on ductus arteriosus is unknown. DNA was extracted from blood samples of 721 subjects (428 patients with isolated and sporadic PDA and 293 healthy controls) and analyzed by sequencing for MYH6 gene promoter region variants. Cellular function experiments with three cell lines (HEK-293, HL-1, and H9C2 cells) and bioinformatics analyses were performed to verify their effects on gene expression. In the MYH6 gene promoter, 11 variants were identified. Four variants were found only in patients with PDA and 2 of them (g.3434G>C and g.4524C>T) were novel. Electrophoretic mobility shift assay showed that the transcription factors bound by the promoter variants were significantly altered in comparison to the wild-type in all three cell lines. Dual luciferase reporter showed that all the 4 variants reduced the transcriptional activity of the MYH6 gene promoter (P < 0.05). Prediction of transcription factors bound by the variants indicated that these variants alter the transcription factor binding sites. These pathological alterations most likely affect the contraction of the smooth muscle of ductus arteriosus, leading to PDA. This study is the first to focus on variants at the promoter region of the MYH6 gene in PDA patients with cellular function tests. Therefore, this study provides new insights to understand the genetic basis and facilitates further studies on the mechanism of PDA formation.


Assuntos
Miosinas Cardíacas , Permeabilidade do Canal Arterial , Cadeias Pesadas de Miosina , Regiões Promotoras Genéticas , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Miosinas Cardíacas/genética , Estudos de Casos e Controles , Linhagem Celular , Permeabilidade do Canal Arterial/genética , Permeabilidade do Canal Arterial/patologia , Células HEK293 , Cadeias Pesadas de Miosina/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Annu Rev Med ; 75: 493-512, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285514

RESUMO

Congenital heart disease (CHD), a heterogeneous group of structural abnormalities of the cardiovascular system, is the most frequent cause of severe birth defects. Related to improved pediatric outcomes, there are now more adults living with CHD, including complex lesions, than children. Adults with CHD are at high risk for complications related to their underlying anatomy and past surgical palliative interventions. Adults with CHD require close monitoring and proactive management strategies to improve outcomes.


Assuntos
Cardiopatias Congênitas , Adulto , Humanos , Cardiopatias Congênitas/cirurgia
7.
Development ; 150(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038666

RESUMO

De novo variants affecting monoubiquitylation of histone H2B (H2Bub1) are enriched in human congenital heart disease. H2Bub1 is required in stem cell differentiation, cilia function, post-natal cardiomyocyte maturation and transcriptional elongation. However, how H2Bub1 affects cardiogenesis is unknown. We show that the H2Bub1-deposition complex (RNF20-RNF40-UBE2B) is required for mouse cardiogenesis and for differentiation of human iPSCs into cardiomyocytes. Mice with cardiac-specific Rnf20 deletion are embryonic lethal and have abnormal myocardium. We then analyzed H2Bub1 marks during differentiation of human iPSCs into cardiomyocytes. H2Bub1 is erased from most genes at the transition from cardiac mesoderm to cardiac progenitor cells but is preserved on a subset of long cardiac-specific genes. When H2Bub1 is reduced in iPSC-derived cardiomyocytes, long cardiac-specific genes have fewer full-length transcripts. This correlates with H2Bub1 accumulation near the center of these genes. H2Bub1 accumulation near the center of tissue-specific genes was also observed in embryonic fibroblasts and fetal osteoblasts. In summary, we show that normal H2Bub1 distribution is required for cardiogenesis and cardiomyocyte differentiation, and suggest that H2Bub1 regulates tissue-specific gene expression by increasing the amount of full-length transcripts.


Assuntos
Cardiopatias Congênitas , Histonas , Ubiquitina-Proteína Ligases , Animais , Humanos , Camundongos , Coração/embriologia , Histonas/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
8.
Genes Dev ; 32(21-22): 1443-1458, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366904

RESUMO

Bcl9 and Pygopus (Pygo) are obligate Wnt/ß-catenin cofactors in Drosophila, yet their contribution to Wnt signaling during vertebrate development remains unresolved. Combining zebrafish and mouse genetics, we document a conserved, ß-catenin-associated function for BCL9 and Pygo proteins during vertebrate heart development. Disrupting the ß-catenin-BCL9-Pygo complex results in a broadly maintained canonical Wnt response yet perturbs heart development and proper expression of key cardiac regulators. Our work highlights BCL9 and Pygo as selective ß-catenin cofactors in a subset of canonical Wnt responses during vertebrate development. Moreover, our results implicate alterations in BCL9 and BCL9L in human congenital heart defects.


Assuntos
Cardiopatias Congênitas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fatores de Transcrição/genética , Via de Sinalização Wnt , Proteínas de Peixe-Zebra/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Coração/embriologia , Camundongos , Mutação , Miocárdio/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , beta Catenina/metabolismo
9.
Am J Hum Genet ; 109(5): 961-966, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35397206

RESUMO

The well-established manifestation of mitochondrial mutations in functional cardiac disease (e.g., mitochondrial cardiomyopathy) prompted the hypothesis that mitochondrial DNA (mtDNA) sequence and/or copy number (mtDNAcn) variation contribute to cardiac defects in congenital heart disease (CHD). MtDNAcns were calculated and rare, non-synonymous mtDNA mutations were identified in 1,837 CHD-affected proband-parent trios, 116 CHD-affected singletons, and 114 paired cardiovascular tissue/blood samples. The variant allele fraction (VAF) of heteroplasmic variants in mitochondrial RNA from 257 CHD cardiovascular tissue samples was also calculated. On average, mtDNA from blood had 0.14 rare variants and 52.9 mtDNA copies per nuclear genome per proband. No variation with parental age at proband birth or CHD-affected proband age was seen. mtDNAcns in valve/vessel tissue (320 ± 70) were lower than in atrial tissue (1,080 ± 320, p = 6.8E-21), which were lower than in ventricle tissue (1,340 ± 280, p = 1.4E-4). The frequency of rare variants in CHD-affected individual DNA was indistinguishable from the frequency in an unaffected cohort, and proband mtDNAcns did not vary from those of CHD cohort parents. In both the CHD and the comparison cohorts, mtDNAcns were significantly correlated between mother-child, father-child, and mother-father. mtDNAcns among people with European (mean = 52.0), African (53.0), and Asian haplogroups (53.5) were calculated and were significantly different for European and Asian haplogroups (p = 2.6E-3). Variant heteroplasmic fraction (HF) in blood correlated well with paired cardiovascular tissue HF (r = 0.975) and RNA VAF (r = 0.953), which suggests blood HF is a reasonable proxy for HF in heart tissue. We conclude that mtDNA mutations and mtDNAcns are unlikely to contribute significantly to CHD risk.


Assuntos
DNA Mitocondrial , Cardiopatias Congênitas , Variações do Número de Cópias de DNA/genética , DNA Mitocondrial/genética , Cardiopatias Congênitas/genética , Humanos , Mitocôndrias/genética , Mutação/genética
10.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38836834

RESUMO

Congenital heart disease affects 1% of infants and is associated with impaired neurodevelopment. Right- or left-sided sulcal features correlate with executive function among people with Tetralogy of Fallot or single ventricle congenital heart disease. Studies of multiple congenital heart disease types are needed to understand regional differences. Further, sulcal pattern has not been studied in people with d-transposition of the great arteries. Therefore, we assessed the relationship between sulcal pattern and executive function, general memory, and processing speed in a meta-regression of 247 participants with three congenital heart disease types (114 single ventricle, 92 d-transposition of the great arteries, and 41 Tetralogy of Fallot) and 94 participants without congenital heart disease. Higher right hemisphere sulcal pattern similarity was associated with improved executive function (Pearson r = 0.19, false discovery rate-adjusted P = 0.005), general memory (r = 0.15, false discovery rate P = 0.02), and processing speed (r = 0.17, false discovery rate P = 0.01) scores. These positive associations remained significant in for the d-transposition of the great arteries and Tetralogy of Fallot cohorts only in multivariable linear regression (estimated change ß = 0.7, false discovery rate P = 0.004; ß = 4.1, false discovery rate P = 0.03; and ß = 5.4, false discovery rate P = 0.003, respectively). Duration of deep hypothermic circulatory arrest was also associated with outcomes in the multivariate model and regression tree analysis. This suggests that sulcal pattern may provide an early biomarker for prediction of later neurocognitive challenges among people with congenital heart disease.


Assuntos
Cardiopatias Congênitas , Criança , Feminino , Humanos , Masculino , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Córtex Cerebral/crescimento & desenvolvimento , Função Executiva/fisiologia , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/patologia , Imageamento por Ressonância Magnética , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/patologia , Adolescente , Adulto Jovem
11.
Cell Mol Life Sci ; 81(1): 112, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433139

RESUMO

Down syndrome (DS) arises from a genetic anomaly characterized by an extra copy of chromosome 21 (exCh21). Despite high incidence of congenital diseases among DS patients, direct impacts of exCh21 remain elusive. Here, we established a robust DS model harnessing human-induced pluripotent stem cells (hiPSCs) from mosaic DS patient. These hiPSC lines encompassed both those with standard karyotype and those carrying an extra copy of exCh21, allowing to generate isogenic cell lines with a consistent genetic background. We unraveled that exCh21 inflicted disruption upon the cellular transcriptome, ushering in alterations in metabolic processes and triggering DNA damage. The impact of exCh21 was also manifested in profound modifications in chromatin accessibility patterns. Moreover, we identified two signature metabolites, 5-oxo-ETE and Calcitriol, whose biosynthesis is affected by exCh21. Notably, supplementation with 5-oxo-ETE promoted DNA damage, in stark contrast to the protective effect elicited by Calcitriol against such damage. We also found that exCh21 disrupted cardiogenesis, and that this impairment could be mitigated through supplementation with Calcitriol. Specifically, the deleterious effects of 5-oxo-ETE unfolded in the form of DNA damage induction and the repression of cardiogenesis. On the other hand, Calcitriol emerged as a potent activator of its nuclear receptor VDR, fostering amplified binding to chromatin and subsequent facilitation of gene transcription. Our findings provide a comprehensive understanding of exCh21's metabolic implications within the context of Down syndrome, offering potential avenues for therapeutic interventions for Down syndrome treatment.


Assuntos
Síndrome de Down , Humanos , Síndrome de Down/genética , Calcitriol/farmacologia , Cromatina , Linhagem Celular , Dano ao DNA
12.
Eur Heart J ; 45(23): 2066-2075, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743452

RESUMO

BACKGROUND AND AIMS: Many adult patients with congenital heart disease (ACHD) are still afflicted by premature death. Previous reports suggested natriuretic peptides may identify ACHD patients with adverse outcome. The study investigated prognostic power of B-type natriuretic peptide (BNP) across the spectrum of ACHD in a large contemporary cohort. METHODS: The cohort included 3392 consecutive ACHD patients under long-term follow-up at a tertiary ACHD centre between 2006 and 2019. The primary study endpoint was all-cause mortality. RESULTS: A total of 11 974 BNP measurements were analysed. The median BNP at baseline was 47 (24-107) ng/L. During a median follow-up of 8.6 years (29 115 patient-years), 615 (18.1%) patients died. On univariable and multivariable analysis, baseline BNP [hazard ratio (HR) 1.16, 95% confidence interval (CI) 1.15-1.18 and HR 1.13, 95% CI 1.08-1.18, respectively] and temporal changes in BNP levels (HR 1.22, 95% CI 1.19-1.26 and HR 1.19, 95% CI 1.12-1.26, respectively) were predictive of mortality (P < .001 for both) independently of congenital heart disease diagnosis, complexity, anatomic/haemodynamic features, and/or systolic systemic ventricular function. Patients within the highest quartile of baseline BNP (>107 ng/L) and those within the highest quartile of temporal BNP change (>35 ng/L) had significantly increased risk of death (HR 5.8, 95% CI 4.91-6.79, P < .001, and HR 3.6, 95% CI 2.93-4.40, P < .001, respectively). CONCLUSIONS: Baseline BNP and temporal BNP changes are both significantly associated with all-cause mortality in ACHD independent of congenital heart disease diagnosis, complexity, anatomic/haemodynamic features, and/or systolic systemic ventricular function. B-type natriuretic peptide levels represent an easy to obtain and inexpensive marker conveying prognostic information and should be used for the routine surveillance of patients with ACHD.


Assuntos
Biomarcadores , Cardiopatias Congênitas , Peptídeo Natriurético Encefálico , Humanos , Peptídeo Natriurético Encefálico/sangue , Peptídeo Natriurético Encefálico/metabolismo , Cardiopatias Congênitas/mortalidade , Cardiopatias Congênitas/sangue , Feminino , Masculino , Adulto , Prognóstico , Biomarcadores/sangue , Pessoa de Meia-Idade , Causas de Morte , Seguimentos
13.
Eur Heart J ; 45(3): 198-210, 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-37874971

RESUMO

BACKGROUND AND AIMS: Transcatheter pulmonary valve implantation (TPVI) is indicated to treat right-ventricular outflow tract (RVOT) dysfunction related to congenital heart disease (CHD). Outcomes of TPVI with the SAPIEN 3 valve that are insufficiently documented were investigated in the EUROPULMS3 registry of SAPIEN 3-TPVI. METHODS: Patient-related, procedural, and follow-up outcome data were retrospectively assessed in this observational cohort from 35 centres in 15 countries. RESULTS: Data for 840 consecutive patients treated in 2014-2021 at a median age of 29.2 (19.0-41.6) years were obtained. The most common diagnosis was conotruncal defect (70.5%), with a native or patched RVOT in 50.7% of all patients. Valve sizes were 20, 23, 26, and 29 mm in 0.4%, 25.5%, 32.1%, and 42.0% of patients, respectively. Valve implantation was successful in 98.5% [95% confidence interval (CI), 97.4%-99.2%] of patients. Median follow-up was 20.3 (7.1-38.4) months. Eight patients experienced infective endocarditis; 11 required pulmonary valve replacement, with a lower incidence for larger valves (P = .009), and four experienced pulmonary valve thrombosis, including one who died and three who recovered with anticoagulation. Cumulative incidences (95%CI) 1, 3, and 6 years after TPVI were as follows: infective endocarditis, 0.5% (0.0%-1.0%), 0.9% (0.2%-1.6%), and 3.8% (0.0%-8.4%); pulmonary valve replacement, 0.4% (0.0%-0.8%), 1.3% (0.2%-2.4%), and 8.0% (1.2%-14.8%); and pulmonary valve thrombosis, 0.4% (0.0%-0.9%), 0.7% (0.0%-1.3%), and 0.7% (0.0%-1.3%), respectively. CONCLUSIONS: Outcomes of SAPIEN 3 TPVI were favourable in patients with CHD, half of whom had native or patched RVOTs.


Assuntos
Endocardite Bacteriana , Endocardite , Cardiopatias Congênitas , Implante de Prótese de Valva Cardíaca , Próteses Valvulares Cardíacas , Insuficiência da Valva Pulmonar , Valva Pulmonar , Trombose , Adulto , Humanos , Cateterismo Cardíaco/efeitos adversos , Endocardite/epidemiologia , Endocardite Bacteriana/complicações , Cardiopatias Congênitas/complicações , Próteses Valvulares Cardíacas/efeitos adversos , Implante de Prótese de Valva Cardíaca/efeitos adversos , Desenho de Prótese , Valva Pulmonar/cirurgia , Insuficiência da Valva Pulmonar/epidemiologia , Insuficiência da Valva Pulmonar/cirurgia , Sistema de Registros , Estudos Retrospectivos , Trombose/etiologia , Resultado do Tratamento
14.
Dev Biol ; 499: 75-88, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37172641

RESUMO

Congenital heart disease (CHD) is the most common and lethal birth defect, affecting 1.3 million individuals worldwide. During early embryogenesis, errors in Left-Right (LR) patterning called Heterotaxy (Htx) can lead to severe CHD. Many of the genetic underpinnings of Htx/CHD remain unknown. In analyzing a family with Htx/CHD using whole-exome sequencing, we identified a homozygous recessive missense mutation in CFAP45 in two affected siblings. CFAP45 belongs to the coiled-coil domain-containing protein family, and its role in development is emerging. When we depleted Cfap45 in frog embryos, we detected abnormalities in cardiac looping and global markers of LR patterning, recapitulating the patient's heterotaxy phenotype. In vertebrates, laterality is broken at the Left-Right Organizer (LRO) by motile monocilia that generate leftward fluid flow. When we analyzed the LRO in embryos depleted of Cfap45, we discovered "bulges" within the cilia of these monociliated cells. In addition, epidermal multiciliated cells lost cilia with Cfap45 depletion. Via live confocal imaging, we found that Cfap45 localizes in a punctate but static position within the ciliary axoneme, and depletion leads to loss of cilia stability and eventual detachment from the cell's apical surface. This work demonstrates that in Xenopus, Cfap45 is required to sustain cilia stability in multiciliated and monociliated cells, providing a plausible mechanism for its role in heterotaxy and congenital heart disease.


Assuntos
Cardiopatias Congênitas , Síndrome de Heterotaxia , Proteínas de Xenopus , Animais , Padronização Corporal/genética , Cílios/genética , Cílios/metabolismo , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Síndrome de Heterotaxia/genética , Mutação de Sentido Incorreto , Fenótipo , Xenopus/anormalidades , Proteínas de Xenopus/metabolismo
15.
Dev Biol ; 495: 42-53, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36572140

RESUMO

Congenital Heart Disease (CHD) is the most common birth defect and leading cause of infant mortality, yet molecular mechanisms explaining CHD remain mostly unknown. Sequencing studies are identifying CHD candidate genes at a brisk rate including MINK1, a serine/threonine kinase. However, a plausible molecular mechanism connecting CHD and MINK1 is unknown. Here, we reveal that mink1 is required for proper heart development due to its role in left-right patterning. Mink1 regulates canonical Wnt signaling to define the cell fates of the Spemann Organizer and the Left-Right Organizer, a ciliated structure that breaks bilateral symmetry in the vertebrate embryo. To identify Mink1 targets, we applied an unbiased proteomics approach and identified the high mobility group architectural transcription factor, Hmga2. We report that Hmga2 is necessary and sufficient for regulating Spemann's Organizer. Indeed, we demonstrate that Hmga2 can induce Spemann Organizer cell fates even when ß-catenin, a critical effector of the Wnt signaling pathway, is depleted. In summary, we discover a transcription factor, Hmga2, downstream of Mink1 that is critical for the regulation of Spemann's Organizer, as well as the LRO, defining a plausible mechanism for CHD.


Assuntos
Gástrula , Organizadores Embrionários , Animais , Padronização Corporal/genética , Diferenciação Celular , Gástrula/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Organizadores Embrionários/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Xenopus laevis/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
16.
Circulation ; 147(12): 930-938, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36571845

RESUMO

BACKGROUND: The survival of children with congenital heart disease has increased substantially over the past decades, with 97% currently reaching adulthood. The total effect of advanced treatment on future mortality and morbidity in adult survivors with congenital heart disease (CHD) is less well described. METHODS: We used data from the Swedish National Inpatient, Outpatient, and Cause of Death Register to identify patients with CHD who were born between 1950 and 1999 and were alive at 18 years of age. Ten controls identified from the Total Population Register were matched for year of birth and sex and with each patient with CHD. Follow-up was from 1968 and 18 years of age until death or at the end of the study (2017). Survival percentage with 95% CI for all-cause mortality were performed with Kaplan-Meier survival function. Cox proportional hazard regression models with hazard ratios (HRs) and 95% CI were used to estimate the risk of all-cause mortality. RESULTS: We included 37 278 patients with adult CHD (ACHD) and 412 799 controls. Mean follow-up was 19.2 years (±13.6). Altogether, 1937 patients with ACHD (5.2%) and 6690 controls (1.6%) died, a death rate of 2.73 per 1000 person-years and 0.84 per 1000 person years, respectively. Mortality was 3.2 times higher (95% CI, 3.0-3.4; P<0.001) among patients with ACHD compared with matched controls. Up to the maximum of 50 years of follow-up, >75% of patients with ACHD were still alive. Mortality was highest among patients with conotruncal defects (HR, 10.13 [95% CI, 8.78-11.69]), but also significantly higher for the more benign lesions, with the lowest risk in patients with atrial septal defects (HR, 1.36 [95% CI, 1.19-1.55]). At least 75% of patients with ACHD alive at 18 years of age lived past middle age and became sexagenerians. CONCLUSIONS: In this large, nationwide, register-based cohort study of patients with ACHD surviving to 18 years of age, the risk of mortality up to 68 years of age was >3 times higher compared with matched controls without ACHD. Despite this, at least 75% of patients with CHD alive at 18 years of age lived past middle age and became sexagenerians. A notable risk decline in the mortality for patients with ACHD was seen for those born after 1975.


Assuntos
Cardiopatias Congênitas , Criança , Humanos , Adulto , Pessoa de Meia-Idade , Estudos de Coortes , Intervalo Livre de Progressão , Cardiopatias Congênitas/epidemiologia , Modelos de Riscos Proporcionais , Causas de Morte
17.
Circulation ; 147(7): 549-561, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36780387

RESUMO

BACKGROUND: Studies focused on pregnant women with congenital heart disease (CHD)-associated pulmonary hypertension (PH) are scarce and limited by small sample sizes and single-center design. This study sought to describe the pregnancy outcomes in women with CHD with and without PH. METHODS: Outcomes for pregnant women with CHD were evaluated retrospectively from 1993 to 2016 and prospectively from 2017 to 2019 from 7 tertiary hospitals. PH was diagnosed on the basis of echocardiogram or catheterization. The incidence of maternal death, cardiac complications, and obstetric and offspring complications was compared for women with CHD and no PH, mild, and moderate-to-severe PH. RESULTS: A total of 2220 pregnant women with CHD had completed pregnancies. PH associated with CHD was identified in 729 women, including 398 with mild PH (right ventricle to right atrium gradient 30-50 mm Hg) and 331 with moderate-to-severe PH (right ventricle to right atrium gradient >50 mm Hg). Maternal mortality occurred in 1 (0.1%), 0, and 19 (5.7%) women with CHD and no, mild, or moderate-to-severe PH, respectively. Of the 729 patients with PH, 619 (85%) had CHD-associated pulmonary arterial hypertension, and 110 (15%) had other forms of PH. Overall, patients with mild PH had better maternal outcomes than those with moderate-to-severe PH, including the incidence of maternal mortality or heart failure (7.8% versus 39.6%; P<0.001), other cardiac complications (9.0% versus 32.3%; P<0.001), and obstetric complications (5.3% versus 15.7%; P<0.001). Brain natriuretic peptide >100 ng/L (odds ratio, 1.9 [95% CI, 1.0-3.4], P=0.04) and New York Heart Association class III to IV (odds ratio, 2.9 [95% CI, 1.6-5.3], P<0.001) were independently associated with adverse maternal cardiac events in pregnancy with PH, whereas follow-up with a multidisciplinary team (odds ratio, 0.4 [95% CI, 0.2-0.6], P<0.001) and strict antenatal supervision (odds ratio, 0.5 [95% CI, 0.3-0.7], P=0.001) were protective. CONCLUSIONS: Women with CHD-associated mild PH appear to have better outcomes compared with women with CHD-associated moderate-to-severe PH, and with event rates similar for most outcomes with women with CHD and no PH. Multimodality risk assessment, including PH severity, brain natriuretic peptide level, and New York Heart Association class, may be useful in risk stratification in pregnancy with PH. Follow-up with a multidisciplinary team and strict antenatal supervision during pregnancy may also help to mitigate the risk of adverse maternal cardiac events.


Assuntos
Cardiopatias Congênitas , Hipertensão Pulmonar , Complicações Cardiovasculares na Gravidez , Hipertensão Arterial Pulmonar , Gravidez , Feminino , Humanos , Masculino , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/complicações , Gestantes , Estudos Retrospectivos , Peptídeo Natriurético Encefálico , Complicações Cardiovasculares na Gravidez/diagnóstico , Resultado da Gravidez , Cardiopatias Congênitas/diagnóstico
18.
BMC Genomics ; 25(1): 256, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454350

RESUMO

BACKGROUND: Congenital heart defects (CHD) are structural defects of the heart affecting approximately 1% of newborns. They exhibit low penetrance and non-Mendelian patterns of inheritance as varied and complex traits. While genetic factors are known to play an important role in the development of CHD, the specific genetics remain unknown for the majority of patients. To elucidate the underlying genetic risk, we performed a genome wide association study (GWAS) of CHDs in general and specific CHD subgroups using the FinnGen Release 10 (R10) (N > 393,000), followed by functional fine-mapping through eQTL and co-localization analyses using the GTEx database. RESULTS: We discovered three genome-wide significant loci associated with general CHD. Two of them were located in chromosome 17: 17q21.32 (rs2316327, intronic: LRRC37A2, Odds ratio (OR) [95% Confidence Interval (CI)] = 1.17[1.12-1.23], p = 1.5 × 10-9) and 17q25.3 (rs1293973611, nearest: BAHCC1, OR[95%CI] = 4.48[2.80-7.17], p = 7.0 × 10-10), respectively, and in addition to general CHD, the rs1293973611 locus was associated with the septal defect subtype. The third locus was in band 1p21.2 (rs35046143, nearest: PALMD, OR[95%CI] = 1.15[1.09-1.21], p = 7.1 × 10-9), and it was associated with general CHD and left-sided lesions. In the subgroup analysis, two additional loci were associated with septal defects (rs75230966 and rs6824295), and one with left-sided lesions (rs1305393195). In the eQTL analysis the variants rs2316327 (general CHD), and rs75230966 (septal defects) both located in 17q21.32 (with a LD r2 of 0.41) were both predicted to significantly associate with the expression of WNT9B in the atrial appendage tissue category. This effect was further confirmed by co-localization analysis, which also implicated WNT3 expression in the atrial appendage. A meta-analysis of general CHD together with the UK Biobank (combined N = 881,678) provided a different genome-wide significant locus in LRRC37A2; rs16941382 (OR[95%CI] = 1.15[1.11-1.20], p = 1.5 × 10-9) which is in significant LD with rs2316327. CONCLUSIONS: Our results of general CHD and different CHD subcategories identified a complex risk locus on chromosome 17 near BAHCC1 and LRRC37A2, interacting with the genes WNT9B, WNT3 and MYL4, may constitute potential novel CHD risk associated loci, warranting future experimental tests to determine their role.


Assuntos
Estudo de Associação Genômica Ampla , Cardiopatias Congênitas , Humanos , Recém-Nascido , Predisposição Genética para Doença , Cardiopatias Congênitas/genética , Fatores de Risco , Bases de Dados Genéticas
19.
Neuroimage ; 297: 120721, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38968977

RESUMO

Individuals with congenital heart disease (CHD) have an increased risk of neurodevelopmental impairments. Given the hypothesized complexity linking genomics, atypical brain structure, cardiac diagnoses and their management, and neurodevelopmental outcomes, unsupervised methods may provide unique insight into neurodevelopmental variability in CHD. Using data from the Pediatric Cardiac Genomics Consortium Brain and Genes study, we identified data-driven subgroups of individuals with CHD from measures of brain structure. Using structural magnetic resonance imaging (MRI; N = 93; cortical thickness, cortical volume, and subcortical volume), we identified subgroups that differed primarily on cardiac anatomic lesion and language ability. In contrast, using diffusion MRI (N = 88; white matter connectivity strength), we identified subgroups that were characterized by differences in associations with rare genetic variants and visual-motor function. This work provides insight into the differential impacts of cardiac lesions and genomic variation on brain growth and architecture in patients with CHD, with potentially distinct effects on neurodevelopmental outcomes.

20.
J Clin Immunol ; 44(3): 69, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393459

RESUMO

Congenital heart disease (CHD) is the most common birth defect, and up to 50% of infants with CHD require cardiovascular surgery early in life. Current clinical practice often involves thymus resection during cardiac surgery, detrimentally affecting T-cell immunity. However, epidemiological data indicate that CHD patients face an elevated risk for infections and immune-mediated diseases, independent of thymectomy. Hence, we examined whether the cardiac defect impacts thymus function in individuals with CHD. We investigated thymocyte development in 58 infants categorized by CHD complexity. To assess the relationship between CHD complexity and thymic function, we analyzed T-cell development, thymic output, and biomarkers linked to cardiac defects, stress, or inflammation. Patients with highly complex CHD exhibit thymic atrophy, resulting in low frequencies of recent thymic emigrants in peripheral blood, even prior to thymectomy. Elevated plasma cortisol levels were detected in all CHD patients, while high NT-proBNP and IL-6 levels were associated with thymic atrophy. Our findings reveal an association between complex CHD and thymic atrophy, resulting in reduced thymic output. Consequently, thymus preservation during cardiovascular surgery could significantly enhance immune function and the long-term health of CHD patients.


Assuntos
Cardiopatias Congênitas , Timo , Lactente , Humanos , Linfócitos T , Cardiopatias Congênitas/cirurgia , Cardiopatias Congênitas/patologia , Atrofia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA