Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.041
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(20): e2320674121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38684007

RESUMO

Identifying and protecting hotspots of endemism and species richness is crucial for mitigating the global biodiversity crisis. However, our understanding of spatial diversity patterns is far from complete, which severely limits our ability to conserve biodiversity hotspots. Here, we report a comprehensive analysis of amphibian species diversity in China, one of the most species-rich countries on Earth. Our study combines 20 y of field surveys with new molecular analyses of 521 described species and also identifies 100 potential cryptic species. We identify 10 hotspots of amphibian diversity in China, each with exceptional species richness and endemism and with exceptional phylogenetic diversity and phylogenetic endemism (based on a new time-calibrated, species-level phylogeny for Chinese amphibians). These 10 hotspots encompass 59.6% of China's described amphibian species, 49.0% of cryptic species, and 55.6% of species endemic to China. Only four of these 10 hotspots correspond to previously recognized biodiversity hotspots. The six new hotspots include the Nanling Mountains and other mountain ranges in South China. Among the 186 species in the six new hotspots, only 9.7% are well covered by protected areas and most (88.2%) are exposed to high human impacts. Five of the six new hotspots are under very high human pressure and are in urgent need of protection. We also find that patterns of richness in cryptic species are significantly related to those in described species but are not identical.


Assuntos
Anfíbios , Biodiversidade , Filogenia , Animais , Anfíbios/classificação , China , Conservação dos Recursos Naturais
2.
Proc Natl Acad Sci U S A ; 119(14): e2103400119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344422

RESUMO

SignificanceOnly an estimated 1 to 10% of Earth's species have been formally described. This discrepancy between the number of species with a formal taxonomic description and actual number of species (i.e., the Linnean shortfall) hampers research across the biological sciences. To explore whether the Linnean shortfall results from poor taxonomic practice or not enough taxonomic effort, we applied machine-learning techniques to build a predictive model to identify named species that are likely to contain hidden diversity. Results indicate that small-bodied species with large, climatically variable ranges are most likely to contain hidden species. These attributes generally match those identified in the taxonomic literature, indicating that the Linnean shortfall is caused by societal underinvestment in taxonomy rather than poor taxonomic practice.


Assuntos
Biodiversidade , Mamíferos , Animais , Filogenia
3.
Mol Biol Evol ; 40(3)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36869752

RESUMO

Song is considered to play an important role in the maintenance of prezygotic reproductive isolation between closely related songbird species. Therefore, song mixing in a contact zone between closely related species is often considered as evidence of hybridization. The Sichuan Leaf Warbler Phylloscopus forresti and the Gansu Leaf Warbler Phylloscopus kansuensis, which diverged 2 million years ago, have formed a contact zone in the south of the Gansu Province of China, where mixed songs have been observed. In this study, we investigated the potential causes and consequences of song mixing by integrating bioacoustic, morphological, mitochondrial, and genomic data with field ecological observations. We found that the two species display no apparent morphological differences, whereas their songs differ dramatically. We demonstrated that ∼11% of the males in the contact zone sang mixed songs. Two males singing mixed song were genotyped, and both were found to be P. kansuensis. Despite the presence of mixed singers, population genomic analyses detected no signs of recent gene flow between the two species, although two possible cases of mitochondrial introgression were identified. We conclude that the rather limited song mixing does not lead to, or result from, hybridization, and hence does not result in the breakdown of reproductive barriers between these cryptic species.


Assuntos
Passeriformes , Aves Canoras , Masculino , Animais , Aves Canoras/genética , Fluxo Gênico , Passeriformes/genética , Isolamento Reprodutivo , Genômica , Vocalização Animal
4.
Proc Biol Sci ; 291(2027): 20231988, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39045694

RESUMO

Understanding the dispersal potential of different species is essential for predicting recovery trajectories following local disturbances and the potential for adaptive loci to spread to populations facing extreme environmental changes. However, dispersal distances have been notoriously difficult to estimate for scleractinian corals, where sexually (as gametes or larvae) or asexually (as fragments or larvae) derived propagules disperse through vast oceans. Here, we demonstrate that generational dispersal distances for sexually produced propagules can be indirectly inferred for corals using individual-based isolation-by-distance (IbD) analyses by combining reduced-representation genomic sequencing with photogrammetric spatial mapping. Colonies from the genus Agaricia were densely sampled across plots at four locations and three depths in Curaçao. Seven cryptic taxa were found among the three nominal species (Agaricia agaricites, Agaricia humilis and Agaricia lamarcki), with four taxa showing generational dispersal distances within metres (two taxa within A. agaricites and two within A. humilis). However, no signals of IbD were found in A. lamarcki taxa and thus these taxa probably disperse relatively longer distances. The short distances estimated here imply that A. agaricites and A. humilis populations are reliant on highly localized replenishment and demonstrate the need to estimate dispersal distances quantitatively for more coral species.


Assuntos
Distribuição Animal , Antozoários , Recifes de Corais , Animais , Antozoários/fisiologia
5.
Mol Phylogenet Evol ; 191: 107987, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081401

RESUMO

Ancient lakes are a hotspot of biodiversity. Freshwater species often experience spectacular species radiation after colonizing lakes from riverine habitats. Therefore, the relationship between the fauna of the ancient lakes and the surrounding riverine system has a special significance in understanding their origin and evolutionary history. The study of ancient lake species often focused on the lake colonization of riverine species. In contrast, far less attention has been placed on the reverse direction: the riverine colonization of the lake species, despite its importance in disentangling their complex evolutionary history. The freshwater snails in the genus Semisulcospira involve endemic groups that radiated in the ancient Lake Biwa. Using genetics and fossil records, we inferred that the ancestors of these lake-endemic Semisulcospira snails historically colonized the riverine habitats at least three times during the Middle Pleistocene. Each colonization resulted in the formation of a new lineage that was genetically and morphologically distinct from other lineages. Further, one of these colonizations was followed by hybridization with a cosmopolitan riverine species, which potentially facilitated the population persistence of the colonizers in the new environment. Despite their complex histories, all these colonizers were currently grouped within a single species, Semisulcospira kurodai, suggesting cryptic diversity in this species. This study highlights the significance of the riverine colonizations of the lake species to fully understand the diversification history of freshwater fauna in and around the ancient lakes.


Assuntos
Evolução Biológica , Lagos , Animais , Filogenia , Caramujos/genética , Caramujos/anatomia & histologia , Ecossistema
6.
Mol Phylogenet Evol ; 197: 108091, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38719080

RESUMO

Cryptic diversity poses a great obstacle in our attempts to assess the current biodiversity crisis and may hamper conservation efforts. The gekkonid genus Mediodactylus, a well-known case of hidden species and genetic diversity, has been taxonomically reclassified several times during the last decade. Focusing on the Mediterranean populations, a recent study within the M. kotschyi species complex using classic mtDNA/nuDNA markers suggested the existence of five distinct species, some being endemic and some possibly threatened, yet their relationships have not been fully resolved. Here, we generated genome-wide SNPs (using ddRADseq) and applied molecular species delimitation approaches and population genomic analyses to further disentangle these relationships. Τhe most extensive nuclear dataset, so far, encompassing 2,360 loci and âˆ¼ 699,000 bp from across the genome of Mediodactylus gecko, enabled us to resolve previously obscure phylogenetic relationships among the five, recently elevated, Mediodactylus species and to support the hypothesis that the taxon includes several new, undescribed species. Population genomic analyses within each of the proposed species showed strong genetic structure and high levels of genetic differentiation among populations.


Assuntos
Lagartos , Filogenia , Filogeografia , Animais , Região do Mediterrâneo , Lagartos/genética , Lagartos/classificação , Polimorfismo de Nucleotídeo Único , Variação Genética , Genética Populacional , DNA Mitocondrial/genética , Análise de Sequência de DNA
7.
Mol Phylogenet Evol ; 190: 107944, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37844854

RESUMO

Molecular phylogenetics has revolutionized the taxonomy of crustose lichens and revealed an extensive amount of cryptic diversity. Resolving the relationships between genera in the crustose lichen family Tephromelataceae has proven difficult and the taxon limits within the genus Calvitimela are only partly understood. In this study, we tested the monophyly of Calvitimela and investigated phylogenetic relationships at different taxonomic levels using an integrative taxonomic approach. We performed a global sampling of all species currently assigned to Calvitimela and conducted additional sampling of C. melaleuca sensu lato across Norway. We included 108 specimens and produced more than 300 sequences from five different loci (ITS, LSU, MCM7, mtSSU, TEF1-α). We inferred phylogenetic relationships and estimated divergence times in Calvitimela. Moreover, we analyzed chemical and morphological characters to test their diagnostic values in the genus. Our molecular phylogenetic results show evolutionarily old and deeply divergent lineages in Calvitimela. The morphological characters are overlapping between divergent subgenera within this genus. Chemical characters, however, are largely informative at the level of subgenera, but are often homoplastic at the species level. The subgenus Calvitimela is found to include four distinct genetic lineages. Detailed morphological examinations of C. melaleuca s. lat. reveal differences between taxa previously assumed to be morphologically cryptic. Furthermore, young evolutionary ages and signs of gene tree discordance indicate a recent divergence and possibly incomplete lineage sorting in the subgenus Calvitimela. Phylogenetic analysis and morphological observations revealed that C. austrochilensis and C. uniseptata are extraneous to Calvitimela (Tephromelataceae). We also found molecular evidence supporting C. septentrionalis being sister to C. cuprea. In the subgenus Severidea, one new grouping is recovered as a highly supported sister to C. aglaea. Lastly, two fertile specimens were found to be phylogenetically nested within the sorediate species C. cuprea. We discuss the need for an updated classification of Calvitimela and the evolution of cryptic species. Through generic circumscription and species delimitation we propose a practical taxonomy of Calvitimela.


Assuntos
Ascomicetos , Líquens , Filogenia , Líquens/genética , Análise de Sequência de DNA , DNA Fúngico/genética , Ascomicetos/genética
8.
Mol Phylogenet Evol ; 195: 108065, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38531492

RESUMO

Poison frogs (Dendrobatidae) are famous for their aposematic species, having a combination of diverse color patterns and defensive skin toxins, yet most species in this family are inconspicuously colored and considered non-aposematic. Epipedobates is among the youngest genus-level clades of Dendrobatidae that includes both aposematic and inconspicuous species. Using Sanger-sequenced mitochondrial and nuclear markers, we demonstrate deep genetic divergences among inconspicuous species of Epipedobates but relatively shallow genetic divergences among conspicuous species. Our phylogenetic analysis includes broad geographic sampling of the inconspicuous lineages typically identified as E. boulengeri and E. espinosai, which reveals two putative new species, one in west-central Colombia (E. sp. 1) and the other in north-central Ecuador (E. aff. espinosai). We conclude that E. darwinwallacei is a junior subjective synonym of E. espinosai. We also clarify the geographic distributions of inconspicuous Epipedobates species including the widespread E. boulengeri. We provide a qualitative assessment of the phenotypic diversity in each nominal species, with a focus on the color and pattern of inconspicuous species. We conclude that Epipedobates contains eight known valid species, six of which are inconspicuous. A relaxed molecular clock analysis suggests that the most recent common ancestor of Epipedobates is âˆ¼11.1 million years old, which nearly doubles previous estimates. Last, genetic information points to a center of species diversity in the Chocó at the southwestern border of Colombia with Ecuador. A Spanish translation of this text is available in the supplementary materials.


Assuntos
Anuros , Rãs Venenosas , Animais , Filogenia , Anuros/genética , Mitocôndrias , Equador
9.
Glob Chang Biol ; 30(1): e17125, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273487

RESUMO

Climate change may be an important threat to global biodiversity, potentially leading to the extinction of numerous species. But how many? There have been various attempts to answer this question, sometimes yielding strikingly different estimates. Here, we review these estimates, assess their disagreements and methodology, and explore how we might reach better estimates. Large-scale studies have estimated the extinction of ~1% of sampled species up to ~70%, even when using the same approach (species distribution models; SDMs). Nevertheless, worst-case estimates often converge near 20%-30% species loss, and many differences shrink when using similar assumptions. We perform a new review of recent SDM studies, which show ~17% loss of species to climate change under worst-case scenarios. However, this review shows that many SDM studies are biased by excluding the most vulnerable species (those known from few localities), which may lead to underestimating global species loss. Conversely, our analyses of recent climate change responses show that a fundamental assumption of SDM studies, that species' climatic niches do not change over time, may be frequently violated. For example, we find mean rates of positive thermal niche change across species of ~0.02°C/year. Yet, these rates may still be slower than projected climate change by ~3-4 fold. Finally, we explore how global extinction levels can be estimated by combining group-specific estimates of species loss with recent group-specific projections of global species richness (including cryptic insect species). These preliminary estimates tentatively forecast climate-related extinction of 14%-32% of macroscopic species in the next ~50 years, potentially including 3-6 million (or more) animal and plant species, even under intermediate climate change scenarios.


Assuntos
Mudança Climática , Ecossistema , Animais , Biodiversidade , Plantas , Previsões
10.
Syst Biol ; 72(6): 1209-1219, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37478480

RESUMO

Mangrove pit vipers of the Trimeresurus purpureomaculatus-erythrurus complex are the only species of viper known to naturally inhabit mangroves. Despite serving integral ecological functions in mangrove ecosystems, the evolutionary history, distribution, and species boundaries of mangrove pit vipers remain poorly understood, partly due to overlapping distributions, confusing phenotypic variations, and the lack of focused studies. Here, we present the first genomic study on mangrove pit vipers and introduce a robust hypothesis-driven species delimitation framework that considers gene flow and phylogenetic uncertainty in conjunction with a novel application of a new class of speciation-based delimitation model implemented through the program Delineate. Our results showed that gene flow produced phylogenetic conflict in our focal species and substantiates the artefactual branch effect where highly admixed populations appear as divergent nonmonophyletic lineages arranged in a stepwise manner at the basal position of clades. Despite the confounding effects of gene flow, we were able to obtain unequivocal support for the recognition of a new species based on the intersection and congruence of multiple lines of evidence. This study demonstrates that an integrative hypothesis-driven approach predicated on the consideration of multiple plausible evolutionary histories, population structure/differentiation, gene flow, and the implementation of a speciation-based delimitation model can effectively delimit species in the presence of gene flow and phylogenetic conflict.


Assuntos
Crotalinae , Trimeresurus , Animais , Filogenia , Fluxo Gênico , Ecossistema
11.
Syst Biol ; 72(5): 1101-1118, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37314057

RESUMO

In the age of genome sequencing, whole-genome data is readily and frequently generated, leading to a wealth of new information that can be used to advance various fields of research. New approaches, such as alignment-free phylogenetic methods that utilize k-mer-based distance scoring, are becoming increasingly popular given their ability to rapidly generate phylogenetic information from whole-genome data. However, these methods have not yet been tested using environmental data, which often tends to be highly fragmented and incomplete. Here, we compare the results of one alignment-free approach (which utilizes the D2 statistic) to traditional multi-gene maximum likelihood trees in 3 algal groups that have high-quality genome data available. In addition, we simulate lower-quality, fragmented genome data using these algae to test method robustness to genome quality and completeness. Finally, we apply the alignment-free approach to environmental metagenome assembled genome data of unclassified Saccharibacteria and Trebouxiophyte algae, and single-cell amplified data from uncultured marine stramenopiles to demonstrate its utility with real datasets. We find that in all instances, the alignment-free method produces phylogenies that are comparable, and often more informative, than those created using the traditional multi-gene approach. The k-mer-based method performs well even when there are significant missing data that include marker genes traditionally used for tree reconstruction. Our results demonstrate the value of alignment-free approaches for classifying novel, often cryptic or rare, species, that may not be culturable or are difficult to access using single-cell methods, but fill important gaps in the tree of life.


Assuntos
Genoma , Metagenômica , Metagenômica/métodos , Filogenia , Sequência de Bases
12.
Parasitology ; : 1-8, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38719483

RESUMO

Sculpins (coastrange and slimy) and sticklebacks (ninespine and threespine) are widely distributed fishes cohabiting 2 south-central Alaskan lakes (Aleknagik and Iliamna), and all these species are parasitized by cryptic diphyllobothriidean cestodes in the genus Schistocephalus. The goal of this investigation was to test for host-specific parasitic relationships between sculpins and sticklebacks based upon morphological traits (segment counts) and sequence variation across the NADH1 gene. A total of 446 plerocercoids was examined. Large, significant differences in mean segment counts were found between cestodes in sculpin (mean = 112; standard deviation [s.d.] = 15) and stickleback (mean = 86; s.d. = 9) hosts within and between lakes. Nucleotide sequence divergence between parasites from sculpin and stickleback hosts was 20.5%, and Bayesian phylogenetic analysis recovered 2 well-supported clades of cestodes reflecting intermediate host family (i.e. sculpin, Cottidae vs stickleback, Gasterosteidae). Our findings point to the presence of a distinct lineage of cryptic Schistocephalus in sculpins from Aleknagik and Iliamna lakes that warrants further investigation to determine appropriate evolutionary and taxonomic recognition.

13.
J Phycol ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38922955

RESUMO

Cyanobacterial taxonomy is entering the genomic era, but only a few taxonomic studies have employed population genomics, which provides a framework and a multitude of tools to understand species boundaries. Phylogenomic and population genomic analyses previously suggested that several cryptic lineages emerged within the genus Laspinema. Here, we apply population genomics to define boundaries between these lineages and propose two new cryptic species, Laspinema olomoucense and L. palackyanum. Moreover, we sampled soil and puddles across Central Europe and sequenced the 16S rRNA gene and 16S-23S ITS region of the isolated Laspinema strains. Together with database mining of 16S rRNA gene sequences, we determined that the genus Laspinema has a cosmopolitan distribution and inhabits a wide variety of habitats, including freshwater, saline water, mangroves, soil crusts, soils, puddles, and the human body.

14.
Med Vet Entomol ; 38(1): 83-98, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37867259

RESUMO

In this study, we analysed the molecular and morphometric differences of several populations of the putative sand fly vector Psychodopygus davisi (Root, 1934) (Diptera, Psychodidae, Phlebotominae) in Brazil. We amplified the 658 base pair fragments of the DNA barcoding region-cytochrome c oxidase subunit 1 (COI) gene-for 57 specimens of P. davisi and three specimens of Psychodopygus claustrei (Abonnenc, Léger & Fauran, 1979). We merged our data with public sequences of the same species available from GenBank. Then, the combined dataset-87 sequences and 20 localities-was analysed using population structure analysis and different species delimitation approaches. Geometric morphometry of wings was performed for 155 specimens of P. davisi populations from the North, Midwest and Southeast Brazilian regions, analysing the differences in centroid sizes and canonical variates. Molecular analysis indicated high intraspecific genetic distance values for P. davisi (maximum p distance = 5.52%). All algorithms identified P. davisi and P. claustrei as distinct molecular taxonomic units, despite the low interspecific distance (p distance to the nearest neighbour = 4.79%). P. davisi sequences were split into four genetic clusters by population structure analysis and at least five genetic lineages using intermediate scenarios of the species delimitation algorithms. The species validation analysis of BPP strongly supported the five-species model in our dataset. We found high genetic diversity in this taxon, which is in agreement with its wide geographic distribution in Brazil. Furthermore, the wing analysis showed that specimens from the Southeast Region of Brazil are different from those in the North and the Midwest. The evolutionary patterns of P. davisi populations in Brazil suggest the presence of candidate species, which need to be validated in future studies using a more comprehensive approach with both genomic data and morphological characters.


Assuntos
Phlebotomus , Psychodidae , Animais , Brasil , Psychodidae/genética , Evolução Biológica , Algoritmos , Código de Barras de DNA Taxonômico/veterinária , Filogenia
15.
Adv Exp Med Biol ; 1454: 391-440, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008272

RESUMO

The trematodes are a species-rich group of parasites, with some estimates suggesting that there are more than 24,000 species. However, the complexities associated with their taxonomic status and nomenclature can hinder explorations of the biology of wildlife trematodes, including fundamental aspects such as host use, life cycle variation, pathology, and disease. In this chapter, we review work on selected trematodes of amphibians, birds, mammals, and their snail intermediate hosts, with the goal of providing a tool kit on how to study trematodes of wildlife. We provide a brief introduction to each group of wildlife trematodes, followed by some examples of the challenges each group of trematodes has relative to the goal of their identification and understanding of the biology and interactions these organisms have with their wildlife hosts.


Assuntos
Animais Selvagens , Aves , Interações Hospedeiro-Parasita , Trematódeos , Infecções por Trematódeos , Animais , Trematódeos/fisiologia , Trematódeos/classificação , Animais Selvagens/parasitologia , Infecções por Trematódeos/parasitologia , Infecções por Trematódeos/veterinária , Aves/parasitologia , Anfíbios/parasitologia , Caramujos/parasitologia , Mamíferos/parasitologia , Estágios do Ciclo de Vida
16.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34465621

RESUMO

The genetic architecture of speciation, i.e., how intrinsic genomic incompatibilities promote reproductive isolation (RI) between diverging lineages, is one of the best-kept secrets of evolution. To directly assess whether incompatibilities arise in a limited set of large-effect speciation genes, or in a multitude of loci, we examined the geographic and genomic landscapes of introgression across the hybrid zones of 41 pairs of frog and toad lineages in the Western Palearctic region. As the divergence between lineages increases, phylogeographic transitions progressively become narrower, and larger parts of the genome resist introgression. This suggests that anuran speciation proceeds through a gradual accumulation of multiple barrier loci scattered across the genome, which ultimately deplete hybrid fitness by intrinsic postzygotic isolation, with behavioral isolation being achieved only at later stages. Moreover, these loci were disproportionately sex linked in one group (Hyla) but not in others (Rana and Bufotes), implying that large X-effects are not necessarily a rule of speciation with undifferentiated sex chromosomes. The highly polygenic nature of RI and the lack of hemizygous X/Z chromosomes could explain why the speciation clock ticks slower in amphibians compared to other vertebrates. The clock-like dynamics of speciation combined with the analytical focus on hybrid zones offer perspectives for more standardized practices of species delimitation.


Assuntos
Anuros/genética , Loci Gênicos , Especiação Genética , Animais , Genoma , Isolamento Reprodutivo
17.
J Insect Sci ; 24(4)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38989844

RESUMO

The Canary Islands is a Macaronesian volcanic archipelago with a depauperate community of three species of Kalotermitidae, including Kalotermes dispar. A total of 54 Kalotermes colonies were collected from Gran Canaria, Tenerife, La Gomera, La Palma, and El Hierro islands. Soldiers and imagos were morphologically examined and sequenced for four mitochondrial markers. Although morphological differences could not be detected, phylogenetic analysis of both cox1/tRNA/cox2 and rrnL markers revealed two distinct clades of K. dispar, suggesting cryptic diversity. The diversification within the Canary Kalotermes lineage most likely occurred around 7.5 Mya, while the divergence within the two clades was reconstructed at about 3.6 Mya and 1.9 Mya. Kalotermes approximatus from the southeastern Nearctic constitutes a sister to the Canary Kalotermes, while the Palearctic K. flavicollis, K. italicus, and K. phoenicae form a separate clade. It is hypothesized that a faunal exchange of Kalotermes from the Nearctic to the Canary Islands occurred via transoceanic rafting during the mid-Miocene.


Assuntos
Baratas , Filogenia , Animais , Espanha , Baratas/classificação
18.
BMC Genomics ; 24(1): 278, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226080

RESUMO

Apicomplexa are ancient and diverse organisms which have been poorly characterized by modern genomics. To better understand the evolution and diversity of these single-celled eukaryotes, we sequenced the genome of Ophryocystis elektroscirrha, a parasite of monarch butterflies, Danaus plexippus. We contextualize our newly generated resources within apicomplexan genomics before answering longstanding questions specific to this host-parasite system. To start, the genome is miniscule, totaling only 9 million bases and containing fewer than 3,000 genes, half the gene content of two other sequenced invertebrate-infecting apicomplexans, Porospora gigantea and Gregarina niphandrodes. We found that O. elektroscirrha shares different orthologs with each sequenced relative, suggesting the true set of universally conserved apicomplexan genes is very small indeed. Next, we show that sequencing data from other potential host butterflies can be used to diagnose infection status as well as to study diversity of parasite sequences. We recovered a similarly sized parasite genome from another butterfly, Danaus chrysippus, that was highly diverged from the O. elektroscirrha reference, possibly representing a distinct species. Using these two new genomes, we investigated potential evolutionary response by parasites to toxic phytochemicals their hosts ingest and sequester. Monarch butterflies are well-known to tolerate toxic cardenolides thanks to changes in the sequence of their Type II ATPase sodium pumps. We show that Ophryocystis completely lacks Type II or Type 4 sodium pumps, and related proteins PMCA calcium pumps show extreme sequence divergence compared to other Apicomplexa, demonstrating new avenues of research opened by genome sequencing of non-model Apicomplexa.


Assuntos
Apicomplexa , Borboletas , Parasitos , Animais , Borboletas/genética , ATPase Trocadora de Sódio-Potássio , Apicomplexa/genética , Sódio
19.
Mol Ecol ; 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37461158

RESUMO

Genomic-scale datasets, sophisticated analytical techniques, and conceptual advances have disproportionately failed to resolve species boundaries in some groups relative to others. To understand the processes that underlie taxonomic intractability, we dissect the speciation history of an Australian lizard clade that arguably represents a "worst-case" scenario for species delimitation within vertebrates: the Ctenotus inornatus species group, a clade beset with decoupled genetic and phenotypic breaks, uncertain geographic ranges, and parallelism in purportedly diagnostic morphological characters. We sampled hundreds of localities to generate a genomic perspective on population divergence, structure, and admixture. Our results revealed rampant paraphyly of nominate taxa in the group, with lineages that are either morphologically cryptic or polytypic. Isolation-by-distance patterns reflect spatially continuous differentiation among certain pairs of putative species, yet genetic and geographic distances are decoupled in other pairs. Comparisons of mitochondrial and nuclear gene trees, tests of nuclear introgression, and historical demographic modelling identified gene flow between divergent candidate species. Levels of admixture are decoupled from phylogenetic relatedness; gene flow is often higher between sympatric species than between parapatric populations of the same species. Such idiosyncratic patterns of introgression contribute to species boundaries that are fuzzy while also varying in fuzziness. Our results suggest that "taxonomic disaster zones" like the C. inornatus species group result from spatial variation in the porosity of species boundaries and the resulting patterns of genetic and phenotypic variation. This study raises questions about the origin and persistence of hybridizing species and highlights the unique insights provided by taxa that have long eluded straightforward taxonomic categorization.

20.
Mol Phylogenet Evol ; 182: 107748, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36858082

RESUMO

Freshwater annelids are globally widespread in aquatic ecosystems, but their diversity is severely underestimated. Obvious morphological features to define taxa are sparse, and molecular phylogenetic analyses regularly discover cryptic diversity within taxa. Despite considerable phylogenetic work on certain clades, many groups of freshwater annelids remain poorly understood. Included among these are water nymph worms of the genus Chaetogaster (Clitellata: Tubificida: Naididae: Naidinae). These worms have diverged from the detritivorous diet of most oligochaetes to become more predatory and exist as omnivores, generalist predators, parasites, or symbionts on other invertebrates. Despite their unusual trophic ecology, the true diversity of Chaetogaster and the phylogenetic relationships within the genus are uncertain. Only three species are commonly referenced in the literature (Chaetogaster diaphanus, Chaetogaster limnaei, and Chaetogaster diastrophus), but additional species have been described and prior molecular data suggests that there is cryptic diversity within named species. To clarify the phylogenetic diversity of Chaetogaster, we generated the first molecular phylogeny of the genus using mitochondrial and nuclear sequence data from 128 worms collected primarily across North America and Europe. Our phylogenetic analyses suggest that the three commonly referenced species are a complex of 24 mostly cryptic species. In our dataset, Chaetogaster "diaphanus" is represented by two species, C. "limnaei" is represented by three species, and C. "diastrophus" is represented by 19 species. North American and European sequences are largely interspersed across the phylogeny, with four pairs of clades involving distinct North American and European sister groupings. Overall, our study demonstrates that the species diversity of Chaetogaster has been underestimated and that carnivory has evolved at least twice in the genus. Chaetogaster is being used as a model for symbiotic evolution and the loss of regenerative ability, and our study indicates that researchers must be careful to identify which species of Chaetogaster they are working with in future studies.


Assuntos
Ecossistema , Oligoquetos , Animais , Filogenia , Oligoquetos/genética , Água Doce , Ecologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA