Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 34(41)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37406617

RESUMO

A series of interlaced 'tripe-shaped' nanoflake catalysts made of CuMn2O4werein situprepared on Ti mesh substrate through the associated methods of plasma electrolyte oxidation and hydrothermal technique. The surface morphology, elemental distribution and chemical state, phase composition and microstructure of CuMn2O4nanostructures prepared under different conditions were systemically investigated. To evaluate the catalytic activity, the CO oxidation as a probe reaction was used, and the results showed that 12h-Cu1Mn2-300 (hydrothermal reaction at 150 °C for 12 h, Cu/Mn = 1/2 in initial precursor, heat treatment temperature at 300 °C) exhibited the best CO oxidation capability withT100= 150 °C owe to the formation of uniform CuMn2O4nanosheet layersin situgrown on flexible Ti mesh and the synergistic effect of Cu and Mn species in spinel CuMn2O4, which makes it more active towards CO oxidation than pure copper/manganese oxides.

2.
Nanomaterials (Basel) ; 13(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36986018

RESUMO

The development of battery-type electrode materials with hierarchical nanostructures has recently gained considerable attention in high-rate hybrid supercapacitors. For the first time, in the present study novel hierarchical CuMn2O4 nanosheet arrays (NSAs) nanostructures are developed using a one-step hydrothermal route on a nickel foam substrate and utilized as an enhanced battery-type electrode material for supercapacitors without the need of binders or conducting polymer additives. X-ray diffraction, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques are used to study the phase, structural, and morphological characteristics of the CuMn2O4 electrode. SEM and TEM studies show that CuMn2O4 exhibits a nanosheet array morphology. According to the electrochemical data, CuMn2O4 NSAs give a Faradic battery-type redox activity that differs from the behavior of carbon-related materials (such as activated carbon, reduced graphene oxide, graphene, etc.). The battery-type CuMn2O4 NSAs electrode showed an excellent specific capacity of 125.56 mA h g-1 at 1 A g-1 with a remarkable rate capability of 84.1%, superb cycling stability of 92.15% over 5000 cycles, good mechanical stability and flexibility, and low internal resistance at the interface of electrode and electrolyte. Due to their excellent electrochemical properties, high-performance CuMn2O4 NSAs-like structures are prospective battery-type electrodes for high-rate supercapacitors.

3.
Environ Sci Pollut Res Int ; 30(46): 102880-102893, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37670093

RESUMO

The escalating levels of surface ozone concentration pose detrimental effects on public health and the environment. Catalytic decomposition presents an optimal solution for surface ozone removal. Nevertheless, catalyst still encounters challenges such as poisoning and deactivation in the high humidity environment. The influence of support on catalytic ozone decomposition was examined at a gas hourly space velocity of 300 L·g-1·h-1 and 85% relative humidity under ambient temperature using Cu-Mn-doped oxide catalysts synthesized via a straightforward coprecipitation method. Notably, the Cu-Mn/SiO2 catalyst exhibited remarkable performance on ozone decomposition, achieving 98% ozone conversion and stability for 10 h. Further characterization analysis indicated that the catalyst's enhanced water resistance and activity could be attributed to factors such as an increased number of active sites, a large surface area, abundant active oxygen species, and a lower Mn oxidation state. The catalytic environment created by mixed oxides can offer a clearer understanding of their synergistic effects on catalytic ozone decomposition, providing significant insights into the development of water-resistant catalysts with superior performance.

4.
J Colloid Interface Sci ; 622: 577-590, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35526415

RESUMO

Environmental H2O is an influential factor in the low-temperature catalytic oxidation of volatile organic compounds (VOCs), and it significantly impacts the reaction process and mechanism. Here, a series of rod-like Cu-Mn oxides were synthesised by pyrolysing Cu/Mn-BTC for acetone oxidation. The results confirm that the formation of multiphase interfaces have more excellent catalytic performance compared to single-phase catalysis. This phenomenon can be attributed to the formation of multiphase interfaces, which resulted in the synthesized catalysts with more active oxygen species and defective sites. The CuMn2Ox catalyst exhibited superior catalytic performance (T90 = 150 °C), high water resistance and long-term stability. Furthermore, in situ diffuse reflectance infrared Fourier transform spectroscopy and thermal desorption-gas chromatography-mass spectrometry results indicated that the degradation pathway of acetone was as follows: acetone ((CH3)2CO*) â†’ enolate complexes ((CH2) = C(CH3) O*) â†’ acetaldehyde ((CH3CHO*) â†’ acetate (CH3COO*) â†’ formate (HCOO*) â†’ CO2 and H2O. At a low-temperature, water vapour dissociated a large number of activated hydroxyl groups on the multiphase interface, which promoted the dissociation of enolate complexes and acetaldehyde species. This composite oxide is a promising catalyst for removing oxygenated VOCs at high humidity.


Assuntos
Óxidos , Compostos Orgânicos Voláteis , Acetaldeído , Acetona , Catálise , Oxirredução , Óxidos/química , Compostos Orgânicos Voláteis/química
5.
Environ Sci Pollut Res Int ; 27(34): 43150-43162, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32729040

RESUMO

A series of spinel CuM2O4 (M = Mn, Fe, and Al) was used as the catalyst to investigate the effective degradation of toluene, and then CuMn2O4 with better catalytic activity was selected as the research object to study its activity at different ratios of Cu and Mn. Meanwhile, CeO2 was introduced to modify CuMn bimetallic oxide to improve its catalytic performance. The structure, morphology, and valence states of surface elements of as-prepared catalysts were characterized by XRD, TEM, SEM, N2 adsorption-desorption, XPS, and H2-TPR. Using toluene as a probe molecule, the catalytic activity of the catalyst was tested and the results showed that the conversion rate of toluene catalyzed by CeO2-CuMn2O4 catalyst can reach 90% at 200 °C (T90) and 100% at 240 °C (T100). The CO2 yield can also reach 100% at 248 °C. Moreover, the possible catalytic mechanism for toluene by the CeO2-CuMn2O4 was briefly explored. The catalytic oxidation of toluene over the oxide follows the Mars-van Krevelen mechanism.


Assuntos
Óxidos , Tolueno , Adsorção , Catálise , Oxirredução
6.
J Hazard Mater ; 388: 121738, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31812479

RESUMO

AMn2O4 (A= Cu, Ni and Zn) spinel sorbents synthesized by a low-temperature sol-gel auto-combustion method were for the first time used to eliminate elemental mercury (Hg0) from syngas. CuMn2O4 sorbent exhibits the highest Hg0 adsorption performance under simulated syngas, higher than 95 % Hg0 capture efficiency is obtained at 200 °C. Adsorption-regeneration experiments demonstrate that the regenerability of CuMn2O4 is excellent. The influences of syngas compositions on Hg0 elimination over CuMn2O4 were examined. H2S plays the most important role in Hg0 removal from syngas, which can be adsorbed on CuMn2O4 surface and transformed into active sulfur species to react with Hg0 to form surface-bonded HgS. X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD) experiments prove that HgS is formed on the spent sorbent. The surface Cu2+ cations and chemisorbed/lattice oxygens participate in Hg0 adsorption and transformation. HCl promotes Hg0 removal by forming surface active chlorine species. H2, CO, and H2O inhibit Hg0 removal under N2 atmosphere. However, they exhibit no obvious effect on Hg0 removal with the assistance of H2S. The excellent Hg0 capture performance, good regenerability and H2O resistance of CuMn2O4 make it to be a very promising sorbent for Hg0 removal from syngas at higher temperature.

7.
J Hazard Mater ; 344: 1229-1239, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29198887

RESUMO

A novel catalytic ceramic membrane (CM) for improving ozonation and filtration performance was fabricated by surface coating CuMn2O4 particles on a tubular CM. The degradation of ultraviolet (UV) absorbers, reduction of toxicity, elimination of membrane fouling and catalytic mechanism were investigated. The characterization results suggested the particles were well-fixed on membrane surface. The modified membrane showed improved benzophenone-3 removal performance (from 28% to 34%), detoxification (EC50 as 12.77%) and the stability of catalytic activity. In the degradation performance of model UV absorbers, the developed membrane significantly decreased the UV254 and DOC values in effluent. Compared with a virgin CM, this CM ozonation increased water flux as 29.9% by in-situ degrade effluent organic matters. The CuMn2O4 modified membrane enhanced the ozone self-decompose to generate O2- and initiated the chain reaction of ozone decomposition, and subsequently reacted with molecule ozone to produce OH. Additionally, CM was able to promote the interaction between ozone and catalyst/organic chemicals to form H2O2 that promoted the formation of OH. This catalytic ceramic membrane combining with ozonation showed potential applications in emerging pollutant degradation and membrane fouling elimination, and acted as a novel ternary technology for wastewater treatment and water reuse.

8.
J Hazard Mater ; 357: 332-340, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29906640

RESUMO

To achieve efficient degradation of toluene, a series of Cu1-yMn2CeyOx/sepiolite catalysts (y = 0.1, 0.2, and 0.3) with different Cu1-yMn2CeyOx loadings (10%, 20%, and 30%) were prepared via the co-precipitation method. The structure-activity and surficial elemental species of Cu1-yMn2CeyOx/sepiolite were characterized by XRD, TEM, SEM, BET, ICP-MS and XPS. The catalytic activity of the catalysts was tested in the oxidation reaction of toluene, results showed that 20%Cu0.8Mn2Ce0.2Ox/sepiolite remains able to remove toluene completely with high efficiency at a temperature of 289 °C. Two kinetic models have been selected and tested to describe the oxidation of toluene, the Mars-van krevele (MVK) model provided a good fit (R2 ≥ 0.99). And the optimal relation of the surface oxidation activation energy (26.074 kJ mol-1) and surface reduction activation energy (23.591 kJ mol-1) were calculated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA