Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.064
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(1): e2304614, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670206

RESUMO

Nanowires (NWs) are among the most studied nanostructures as they have numerous promising applications thanks to their various unique properties. Furthermore, the properties of NWs can be tailored during synthesis by introducing structural defects such as nano-twins, periodic polytypes, and kinks, i.e., abrupt changes in their axial direction. Here, this work reports for the first time the postsynthesis formation of such defects, achieved by exploiting a peculiar plasticity that may occur in nanosized covalent materials. Specifically, in this work the authors found that single-crystal CuO NWs can form double kinks when subjected to external mechanical loading. Both the microscopy and atomistic modeling suggest that deformation-induced twinning along the ( 1 ¯ 10 ) $( {\bar{1}10} )$ plane is the mechanism behind this effect. In a single case the authors are able to unkink a NW back to its initial straight profile, indicating the possibility of reversible plasticity in CuO NWs, which is supported by the atomistic simulations. The phenomenon reported here provides novel insights into the mechanisms of plastic deformation in covalent NWs and offers potential avenues for developing techniques to customize the shape of NWs postsynthesis and introduce new functionalities.

2.
Small ; : e2400326, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813723

RESUMO

The latest research identifies that cysteine (Cys) is one of the key factors in tumor proliferation, metastasis, and recurrence. The direct depletion of intracellular Cys shows a profound antitumor effect. However, using nanozymes to efficiently deplete Cys for tumor therapy has not yet attracted widespread attention. Here, a (3-carboxypropyl) triphenylphosphonium bromide-derived hyaluronic acid-modified copper oxide nanorods (denoted as MitCuOHA) are designed with cysteine oxidase-like, glutathione oxidase-like and peroxidase-like activities to realize Cys depletion and further induce cellular ferroptosis and cuproptosis for synergistic tumor therapy. MitCuOHA nanozymes can efficiently catalyze the depletion of Cys and glutathione (GSH), accompanied by the generation of H2O2 and the subsequent conversion into highly active hydroxyl radicals, thereby successfully inducing ferroptosis in cancer cells. Meanwhile, copper ions released by MitCuOHA under tumor microenvironment stimulation directly bind to lipoylated proteins of the tricarboxylic acid cycle, leading to the abnormal aggregation of lipoylated proteins and subsequent loss of iron-sulfur cluster proteins, which ultimately triggers proteotoxic stress and cell cuproptosis. Both in vitro and in vivo results show the drastically enhanced anticancer efficacy of Cys oxidation catalyzed by the MitCuOHA nanozymes, demonstrating the high feasibility of such catalytic Cys depletion-induced synergistic ferroptosis and cuproptosis therapeutic concept.

3.
Small ; : e2402537, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711307

RESUMO

Cu-based catalysts are the most intensively studied in the field of electrocatalytic CO2 reduction reaction (CO2RR), demonstrating the capacity to yield diverse C1 and C2+ products albeit with unsatisfactory selectivity. Manipulation of the oxidation state of Cu sites during CO2RR process proves advantageous in modulating the selectivity of productions, but poses a formidable challenge. Here, an oxygen spillover strategy is proposed to enhance the oxidation state of Cu during CO2RR by incorporating the oxygen donor Sb2O4. The Cu-Sb bimetallic oxide catalyst attains a remarkable CO2-to-CO selectivity approaching unity, in stark contrast to the diverse product distribution observed with bare CuO. The exceptional Faradaic efficiency of CO can be maintained across a wide range of potential windows of ≈700 mV in 1 m KOH, and remains independent of the Cu/Sb ratio (ranging from 0.1:1 to 10:1). Correlative calculations and experimental results reveal that oxygen spillover from Sb2O4 to Cu sites maintains the relatively high valence state of Cu during CO2RR, which diminishes the binding strength of *CO, thereby achieving heightened selectivity in CO production. These findings propose the role of oxygen spillover in CO2RR over Cu-based catalysts, and shed light on the rational design of highly selective CO2 reduction catalysts.

4.
Small ; 20(1): e2304360, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649178

RESUMO

Developing single-crystal-based heterostructured ferroelectrics with high-performance photo-piezocatalytic activity is highly desirable to utilize large piezopotentials and more reactive charges that can trigger the desired redox reactions. To that end, a single-crystal-based (K,Na)NbO3 (KNN) microcuboid/CuO nanodot heterostructure with enhanced photo-piezocataytic activity, prepared using a facile strategy that leveraged the synergy between heterojunction formation and an intense single-crystal-based piezoelectric effect, is reported herein. The catalytic rhodamine B degrading activity of KNN/CuO is investigated under light irradiation, ultrasonication, or co-excitation with both stimulations. Compared to polycrystalline KNN powders and bare KNN single-crystals, single-crystal-based KNN/CuO exhibits a higher piezocurrent density and an optimal energy band structure, resulting in 5.23 and 2.37 times higher piezocatalytic degradation activities, respectively. Furthermore, the maximum photo-piezocatalytic rate constant (≈0.093 min-1 ) of KNN/CuO under 25 min ultrasonication and light irradiation is superior to that of other KNN-based catalysts, and 1.6 and 48.6 times higher than individual piezocatalytic and photocatalytic reaction rate constants, respectively. The excellent photo-piezocatalytic activity is attributed to the enhanced charge-carrier separation and proper alignment of band structure to the required redox levels by the appropriate p-n heterojunction and high piezoelectric potential. This report provides useful insight into the relationships between heterojunctions, piezoelectric responses, and catalytic mechanisms for single-crystal-based heterostructured catalysts.

5.
Nanotechnology ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121875

RESUMO

Metal organic framework (MOF) have gained considerable attention in the field of energy storage and supercapacitors applications. Herein, we synthesized copper oxide (CuO) through the precipitation method and concurrently derived from the solvothermal prepared copper-benzene dicarboxylate (Cu-BDC) by calcination. The integration of MOF-derived nanostructures with traditional CuO to form a hybrid electrode material, has not been extensively explored. The synthesized materials were characterized using XRD, FTIR, XPS, BET and morphological analysis was conducted using SEM, affirming the composite's nature. Electrochemical impedance spectroscopy, galvanostatic charge-discharge, and cyclic voltammetry were used to evaluate the electrochemical properties of electrode material. With a specific capacitance of 691 F g-1 for CuO obtained from Cu-BDC (benzene dicarboxylic acid) and 236 Fg-1 for CuO via the precipitation method, measured at a scan rate of 5 mV/s in 6 M KOH was found to be the optimal performance solution for the electrode material. The mesoporous structures are crucial for their absorption ability and improved ion transport, resulting in optimized electrochemical performance. Finally, we demonstrate significant improvements in specific capacitance and cycling stability compared to pure CuO-based electrodes, highlighting the potential of this composite structure for advanced supercapacitor applications.

6.
Nanotechnology ; 35(24)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38387088

RESUMO

The recombination of photoexcited electron-hole pairs greatly limits the degradation performance of photocatalysts. Ultrasonic cavitation and internal electric field induced by the piezoelectric effect are helpful for the separation of electron-hole pairs and degradation efficiency. The activated foam carbon (AFC) owing to its high surface area is often used as the substrate to grow catalysts to provide more reactive active sites. In this work, CuO@BaTiO3(CuO@BTO) heterostructure is prepared by hydrothermal method on the surface of AFC to investigate the ultrasonic piezoelectric catalysis effect. X-ray diffraction (XRD), Raman spectroscopy, energy dispersive x-ray spectroscopy (EDS) and scanning electron microscopy (SEM) were used to analyze the structure and morphology of CuO-BTO/AFC composite. It is found that the CuO-BTO/AFC composite exhibits excellent piezo-catalytic performance for the degradation of organics promoted by ultrasonic vibration. The CuO-BTO/AFC composite can decompose methyl orange and methylene blue with degradation efficiency as high as 93.9% and 97.6% within 25 min, respectively. The mechanism of piezoelectricity enhanced ultrasound supported catalysis effect of system CuO-BTO/AFC is discussed. The formed heterojunction structure between BTO and CuO promotes the separation of positive and negative charges caused by the piezoelectric effect.

7.
Nanotechnology ; 35(16)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38198713

RESUMO

The global COVID-19 pandemic has led to an increase in the importance of implementing effective measures to prevent the spread of microorganisms. Consequently, there is a growing demand for antimicrobial materials, specifically antimicrobial textiles and face masks, because of the surge in diseases caused by bacteria and viruses like SARS-CoV-2. Face masks that possess built-in antibacterial properties can rapidly deactivate microorganisms, enabling reuse and reducing the incidence of illnesses. Among the numerous types of inorganic nanomaterials, copper oxide nanoparticles (CuO NPs) have been identified as cost-effective and highly efficient antimicrobial agents for inactivating microbes. Furthermore, biosurfactants have recently been recognized for their potential antimicrobial effects, in addition to inorganic nanoparticles. Therefore, this research's primary focus is synthesizing biosurfactant-mediated CuO NPs, integrating them into natural and synthetic fabrics such as cotton and polypropylene and evaluating the resulting fabrics' antimicrobial activity. Using rhamnolipid (RL) as a biosurfactant and employing a hydrothermal method with a pH range of 9-11, RL-capped CuO NPs are synthesized (RL-CuO NPs). To assess their effectiveness against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) microorganisms, the RL-CuO NPs are subjected to antibacterial testing. The RL-capped CuO NPs exhibited antimicrobial activity at much lower concentrations than the individual RL, CuO. RL-CuO NPs have shown a minimum inhibitory concentration (MIC) of 1.2 mg ml-1and minimum bactericidal concentration (MBC) of 1.6 mg ml-1forE. coliand a MIC of 0.8 mg ml-1and a MBC of 1.2 mg ml-1forS. aureus, respectively. Furthermore, the developed RL-CuO NPs are incorporated into cotton and polypropylene fabrics using a screen-printing technique. Subsequently, the antimicrobial activity of the coated fabrics is evaluated, revealing that RL-CuO NPs coated fabrics exhibited remarkable antibacterial properties against both gram-positive and gram-negative bacteria.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanopartículas , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Polipropilenos/farmacologia , Pandemias , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Anti-Infecciosos/farmacologia , Nanopartículas/química , Têxteis , Nanopartículas Metálicas/química , Cobre/farmacologia , Cobre/química
8.
Nanotechnology ; 35(19)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38295405

RESUMO

The bimetallic metal-organic frameworks (MOFs), Cu/Co-MOF, was synthesized through a solvothermal method and calcined to obtain CuO/Co3O4composites. By adjusting the molar ratio between Cu and Co ions, a composite material of CuO/Co3O4(Cu:Co = 1:1) was developed and showed excellent sensing capabilities, and the response reached as high as 196.3 for 10 ppm H2S detection. Furthermore, the optimal operating temperature as low as 40 °C was found. In comparison with the sensors prepared by pristine CuO and pristine Co3O4, the sensor based on CuO/Co3O4composite exhibited a significant response. Additionally, the sensor can detect H2S gas down to 300 ppb. The gas sensing mechanism is discussed in depth from the perspective of p-p heterojunction formation between the p-type CuO and p-type Co3O4. The as-prepared CuO/Co3O4composite-based sensor is expected to find practical application in the low-power monitoring of H2S.

9.
Environ Sci Technol ; 58(1): 859-870, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38060830

RESUMO

The efficient removal of the highly toxic arsine gas (AsH3) from industrial tail gases under mild conditions remains a formidable challenge. In this study, we utilized the confinement effect of defective carbon nanotubes to fabricate a CuO cluster catalyst (CuO/ACNT), which exhibited a capacity much higher than that of CuO supported on pristine multiwalled carbon nanotubes (MWCNT) (CuO/PCNT) for catalytically oxidizing AsH3 under ambient conditions. The experimental and theoretical results show that nitric acid steam treatment could induce MWCNT surface structural defects, which facilitated more stable anchoring of CuO and then improved the oxygen activation ability, therefore leading to excellent catalytic performance. Density functional theory (DFT) calculations revealed that the catalytic oxidation of AsH3 proceeded through stepwise dehydrogenation and subsequent recombination with oxygen to form As2O3 as the final product.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , Temperatura , Gases , Oxigênio , Oxirredução
10.
Environ Sci Technol ; 58(10): 4802-4811, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38427711

RESUMO

Economic and environmentally friendly strategies are needed to promote the bifunctional catalytic removal of carbonyl sulfide (COS) by hydrolysis and hydrogen sulfide (H2S) by oxidation. N doping is considered to be an effective strategy, but the essential and intrinsic role of N dopants in catalysts is still not well understood. Herein, the conjugation of urea and biochar during Cu/biochar annealing produced pyridine N, which increased the combined COS/H2S capacity of the catalyst from 260.7 to 374.8 mg·g-1 and enhanced the turnover frequency of H2S from 2.50 × 10-4 to 5.35 × 10-4 s-1. The nucleophilic nature of pyridine N enhances the moderate basic sites of the catalyst, enabling the attack of protons and strong H2O dissociation. Moreover, pyridine N also forms cavity sites that anchor CuO, improving Cu dispersion and generating more reactive oxygen species. By providing original insight into the pyridine N-induced bifunctional catalytic removal of COS/H2S in a slightly oxygenated and humid atmosphere, this study offers valuable guidance for further C═S and C-S bond-breaking in the degradation of sulfur-containing pollutants.


Assuntos
Sulfeto de Hidrogênio , Óxidos de Enxofre , Sulfeto de Hidrogênio/metabolismo , Carvão Vegetal , Piridinas
11.
Environ Sci Technol ; 58(27): 12249-12259, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38935480

RESUMO

NH3 emissions from industrial sources and possibly future energy production constitute a threat to human health because of their toxicity and participation in PM2.5 formation. Ammonia selective catalytic oxidation to N2 (NH3-SCO) is a promising route for NH3 emission control, but the mechanistic origin of achieving high N2 selectivity remains elusive. Here we constructed a highly N2-selective CuO/TiO2 catalyst and proposed a CuOx dimer active site based on the observation of a quadratic dependence of NH3-SCO reaction rate on CuOx loading, ac-STEM, and ab initio thermodynamic analysis. Combining this with the identification of a critical N2H4 intermediate by in situ DRIFTS characterization, a comprehensive N2H4-mediated reaction pathway was proposed by DFT calculations. The high N2 selectivity originated from the preference for NH2 coupling to generate N2H4 over NH2 dehydrogenation on the CuOx dimer active site. This work could pave the way for the rational design of efficient NH3-SCO catalysts.


Assuntos
Amônia , Oxirredução , Amônia/química , Catálise , Nitrogênio/química , Cobre/química
12.
Environ Res ; 249: 118410, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38342204

RESUMO

With widespread and excessive use of antibiotics in medicine, poultry farming, and aquaculture, antibiotic residues have become a significant threat to both eco-environment and human health. In this paper, using hydroxyapatite nanowires (HApNWs) as an ecologically compatible carrier, a novel nano-hammer shaped conjunction with HApNW conjugating CuO microspheres (CuO@HApNWs) was successfully synthesized by in-situ agglomeration method. The catalytic degradation performance of the nano-hammer shaped CuO@HApNWs with Fenton-like activation was investigated by using tetracycline (TC) as a representative antibiotic pollutant. Remarkably, it exhibited excellent catalytic activity, which the removal rate of TC got to 92.0% within 40 min, and the pseudo-second-order reaction kinetic constant was 18.33 × 10-3 L mg-1·min-1, which was 26 times and 5 times than that of HApNWs and CuO, respectively. Furthermore, after recycling 6 times, the degradation efficiency of TC still remained above 85 %. Based on radical scavenger tests and electron paramagnetic resonance (EPR) spectroscopy, it demonstrated that the excellent activity of CuO@HApNWs was mainly attributed to the fact that Fenton-like activation promotes the circulation of Cu2+ and Cu+, the generated main active oxygen species (•OH and O2-•) achieve efficient degradation of TC. In summary, the nano-hammer shaped CuO@HApNWs could be in-situ synthesed, and used as an eco-friendly Fenton-like catalyst for effectively catalytic degradation of organic pollutants, which has great potential for wastewater treatment.


Assuntos
Antibacterianos , Cobre , Nanofios , Tetraciclina , Poluentes Químicos da Água , Cobre/química , Tetraciclina/química , Catálise , Antibacterianos/química , Nanofios/química , Poluentes Químicos da Água/química , Durapatita/química
13.
Environ Res ; 252(Pt 4): 119030, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677409

RESUMO

Bifunctional electrocatalysts are the attractive research in the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in the overall water-splitting reactions. The design and development of the cost-effective OER/HER bifunctional electrocatalysts with superior catalytic activity are still remaining as the big challenges. Herein, we have developed the CuO-ZnO nanocomposite as a bifunctional OER/HER electrocatalyst via simple chemical precipitation method. The nanocomposite was investigated for its crystalline structure, surface morphology and the functions of elements using XRD, FT-IR, SEM, TEM and XPS characterization techniques, respectively. The nanocomposite exhibited the excellent activity for the overall water-splitting in an alkaline medium. The CuO-ZnO nanocomposite showed the less onset potential of 1.4 and 0.15 V versus RHE in 1M KOH (Tafel slopes value of 0.180 and 0.400 V dec-1) for OER and HER, respectively. Hence, the as-prepared bifunctional electrocatalyst displayed the high stability for 10 h in the water electrolysis processes.


Assuntos
Cobre , Oxigênio , Óxido de Zinco , Cobre/química , Óxido de Zinco/química , Catálise , Oxigênio/química , Hidrogênio/química , Técnicas Eletroquímicas , Nanocompostos/química , Nanoestruturas/química , Água/química , Eletrólise
14.
Environ Res ; 259: 119574, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986800

RESUMO

Environmental pollution is increasing worldwide due to population and industrialization. Among the various forms of pollution, water pollution poses a significant challenge in contemporary times. In this study, we synthesized CuO-decorated montmorillonite K30 (MK30) nanosheets via a simple ultrasonication technique. The structural, morphological, compositional, and optical properties of the synthesized nanocomposites were evaluated using advanced instrumentation techniques. The morphology of CuO was cubic and cubic CuO evenly designed on the MK30, which was proved by Field Emission Scanning Electron Microscopy (FESEM). The adsorption photocatalytic activity of the synthesized cubic CuO/MK30 composites was examined through the degradation of MB under visible light irradiation. The apparent reaction rate constant of 20% CuO/MK30 was 12.5 folds higher than that of CuO. These conditions included a catalyst dosage ranging from 5 to 15 mg, a pH level ranging from to 3-11, and a pollutant concentration ranging from 5 to 20 mg/L. The optimal conditions for MB dye removal were determined using response surface methodology (RSM). A scavenger study of the composite was conducted and verified that •O2- and •OH radicals play an important role in the degradation process. This investigation addressed the process of adsorption and potential removal pathways, with a particular emphasis on the role of functional groups. The environmentally friendly CuO/MK30 nanocomposites exhibited potential as photocatalysts for efficiently absorbing and degrading MB dye and TC drug pollutants. They represent promising candidates for the treatment of industrial wastewater, aiming to mitigate the environmental threats posed by organic pollutants.

15.
Environ Res ; 258: 119395, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909944

RESUMO

In this study, we report the development of a novel CuOx(3 wt%)/CoFe2O4 nanocubes (NCs) photocatalyst through simple co-precipitation and wet impregnation methods for the efficient photocatalytic degradation of triclosan (TCS) pollutants. Initially, rod-shaped bare CoFe2O4 was synthesized using a simple co-precipitation technique. Subsequently, CuOx was loaded in various percentages (1, 2, and 3 wt%) onto the surface of bare CoFe2O4 nanorods (NRs) via the wet impregnation method. The synthesized materials were systematically characterized to evaluate their composition, structural and electrical characteristics. The CuOx(3 wt%)/CoFe2O4 NCs photocatalyst exhibited superior photocatalytic degradation efficiency of TCS (89.9%) compared to bare CoFe2O4 NRs (62.1 %), CuOx(1 wt%)/CoFe2O4 (80.1 %), CuOx(2 wt%)/CoFe2O4 (87.0 %) under visible light (VL) irradiation (λ ≥ 420 nm), respectively. This enhanced performance was attributed to the improved separation effectiveness of photogenerated electron (e-) and hole (h+) in CuOx(3 wt%)/CoFe2O4 NCs. Furthermore, the optimized CuOx(3 wt%)/CoFe2O4 NCs exhibited strong stability and reusability in TCS degradation, as demonstrated by three successive cycles. Genetic screening on Caenorhabditis elegans showed that CuOx(3 wt%)/CoFe2O4 NCs reduced ROS-induced oxidative stress during TCS photocatalytic degradation. ROS levels decreased at 30, 60, and 120-min intervals during TCS degradation, accompanied by improved egg hatching rates. Additionally, expression levels of stress-responsible antioxidant proteins like SOD-3GFP and HSP-16.2GFP were significantly normalized. This study demonstrates the efficiency of CuOx(3 wt%)/CoFe2O4 NCs in degrading TCS pollutants, offers insights into toxicity dynamics, and recommends its use for future environmental remediation.

16.
J Nanobiotechnology ; 22(1): 428, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030581

RESUMO

BACKGROUND: The increasing production and usage of copper oxide nanoparticles (Nano-CuO) raise human health concerns. Previous studies have demonstrated that exposure to Nano-CuO could induce lung inflammation, injury, and fibrosis. However, the potential underlying mechanisms are still unclear. Here, we proposed that matrix metalloproteinase-3 (MMP-3) might play an important role in Nano-CuO-induced lung inflammation, injury, and fibrosis. RESULTS: Exposure of mice to Nano-CuO caused acute lung inflammation and injury in a dose-dependent manner, which was reflected by increased total cell number, neutrophil count, macrophage count, lactate dehydrogenase (LDH) activity, and CXCL1/KC level in bronchoalveolar lavage fluid (BALF) obtained on day 3 post-exposure. The time-response study showed that Nano-CuO-induced acute lung inflammation and injury appeared as early as day 1 after exposure, peaked on day 3, and ameliorated over time. However, even on day 42 post-exposure, the LDH activity and macrophage count were still higher than those in the control group, suggesting that Nano-CuO caused chronic lung inflammation. The Nano-CuO-induced pulmonary inflammation was further confirmed by H&E staining of lung sections. Trichrome staining showed that Nano-CuO exposure caused pulmonary fibrosis from day 14 to day 42 post-exposure with an increasing tendency over time. Increased hydroxyproline content and expression levels of fibrosis-associated proteins in mouse lungs were also observed. In addition, Nano-CuO exposure induced MMP-3 overexpression and increased MMP-3 secretion in mouse lungs. Knocking down MMP-3 in mouse lungs significantly attenuated Nano-CuO-induced acute and chronic lung inflammation and fibrosis. Moreover, Nano-CuO exposure caused sustained production of cleaved osteopontin (OPN) in mouse lungs, which was also significantly decreased by knocking down MMP-3. CONCLUSIONS: Our results demonstrated that short-term Nano-CuO exposure caused acute lung inflammation and injury, while long-term exposure induced chronic pulmonary inflammation and fibrosis. Knocking down MMP-3 significantly ameliorated Nano-CuO-induced pulmonary inflammation, injury, and fibrosis, and also attenuated Nano-CuO-induced cleaved OPN level. Our study suggests that MMP-3 may play important roles in Nano-CuO-induced pulmonary inflammation and fibrosis via cleavage of OPN and may provide a further understanding of the mechanisms underlying Nano-CuO-induced pulmonary toxicity.


Assuntos
Líquido da Lavagem Broncoalveolar , Cobre , Metaloproteinase 3 da Matriz , Pneumonia , Fibrose Pulmonar , Animais , Cobre/toxicidade , Metaloproteinase 3 da Matriz/metabolismo , Camundongos , Pneumonia/induzido quimicamente , Pneumonia/patologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Líquido da Lavagem Broncoalveolar/química , Camundongos Endogâmicos C57BL , Pulmão/patologia , Pulmão/efeitos dos fármacos , Masculino , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química
17.
J Appl Toxicol ; 44(8): 1257-1268, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38700028

RESUMO

This study demonstrated that both copper oxide nanoparticles (CuO-NPs) and copper nanoparticles (Cu-NPs) can cause swelling, inflammation, and cause damage to the mitochondria of alveolar type II epithelial cells in mice. Cellular examinations indicated that both CuO-NPs and Cu-NPs can reduce cell viability and harm the mitochondria of human bronchial epithelial cells, particularly Beas-2B cells. However, it is clear that CuO-NPs exhibit a more pronounced detrimental effect compared with Cu-NPs. Using bafilomycin A1 (Bafi A1), an inhibitor of lysosomal acidification, was found to enhance cell viability and alleviate mitochondrial damage caused by CuO-NPs. Additionally, Bafi A1 also reduces the accumulation of dihydrolipoamide S-acetyltransferase (DLAT), a marker for mitochondrial protein toxicity, induced by CuO-NPs. This observation suggests that the toxicity of CuO-NPs depends on the distribution of copper particles within cells, a process facilitated by the acidic environment of lysosomes. The release of copper ions is thought to be triggered by the acidic conditions within lysosomes, which aligns with the lysosomal Trojan horse mechanism. However, this association does not seem to be evident with Cu-NPs.


Assuntos
Sobrevivência Celular , Cobre , Lisossomos , Macrolídeos , Nanopartículas Metálicas , Mitocôndrias , Cobre/toxicidade , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Animais , Humanos , Nanopartículas Metálicas/toxicidade , Macrolídeos/toxicidade , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular , Masculino
18.
Ecotoxicol Environ Saf ; 277: 116338, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38640799

RESUMO

Various phthalic acid esters (PAEs) such as dibutyl phthalate (DBP) and butyl benzyl phthalate (BBP) co-exist with nanopollutants in aquatic environment. In this study, Daphnia magna was exposed to nano-CuO and DBP or BBP at environmental relevant concentrations for 21-days to investigate these combined toxic effects. Acute EC50 values (48 h) of nano-CuO, DBP, and BBP were 12.572 mg/L, 8.978 mg/L, and 4.785 mg/L, respectively. Results showed that co-exposure with nano-CuO (500 µg/L) for 21 days significantly enhanced the toxicity of DBP (100 µg/L) and BBP (100 µg/L) to Daphnia magna by 18.37% and 18.11%, respectively. The activities of superoxide dismutase, catalase, and glutathione S-transferase were enhanced by 10.95% and 14.07%, 25.63% and 25.91%, and 39.93% and 35.01% in nano-CuO+DBP and nano-CuO+BBP treatments as compared to the individual exposure groups, verifying that antioxidative defense responses were activated. Furthermore, the co-exposure of nano-CuO and PAEs decreased the population richness and diversity microbiota, and changed the microbial community composition in Daphnia magna. Metabolomic analysis elucidated that nano-CuO + PAEs exposure induced stronger disturbance on metabolic network and molecular function, including amino acid, nucleotides, and lipid metabolism-related metabolic pathways, as comparison to PAEs single exposure treatments. In summary, the integration of physiological, microflora, and untargeted metabolomics analysis offers a fresh perspective into the potential ecological risk associated with nanopollutants and phthalate pollution in aquatic ecosystems.


Assuntos
Cobre , Daphnia , Dibutilftalato , Ácidos Ftálicos , Poluentes Químicos da Água , Animais , Daphnia/efeitos dos fármacos , Ácidos Ftálicos/toxicidade , Poluentes Químicos da Água/toxicidade , Cobre/toxicidade , Dibutilftalato/toxicidade , Nanopartículas Metálicas/toxicidade , Ésteres/toxicidade , Microbiota/efeitos dos fármacos , Glutationa Transferase/metabolismo , Metabolômica , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Metaboloma/efeitos dos fármacos , Daphnia magna
19.
Mikrochim Acta ; 191(3): 122, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319462

RESUMO

A cupric oxide (CuO) nanosheet-based chemical fluorescence sensor was developed to realize the detection of acetone in aqueous solutions. CuO is an oxidase mimic and can catalyze the oxidation of o-phenylenediamine (OPD) to form 2,3-diaminophenazine (oxOPD). Interestingly, acetone was found to possess the scavenging ability for superoxide anions generated in the CuO-catalyzed oxidation system, hence weakening the OPD oxidation and leading to a reduction in the fluorescence intensity of the catalyzing system at 574 nm under excitation at 425 nm. Based on this property of acetone, a fluorescent sensor was constructed to detect acetone. The sensor exhibits a linear range of 1.35 to 2 × 105 µmol L-1 and a detection limit of 1.08 µmol L-1. Additionally, a smartphone-free portable device was constructed to realize on-the-spot and rapid detection of acetone in cauliflower, mineral water, tap water, and lake water samples. The recoveries by the portable device are 93.2 to 108% for actual samples, with relative standard deviations of less than 4.3%, indicating a potential application prospect of the device in on-site detection.

20.
Mikrochim Acta ; 191(7): 409, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38898141

RESUMO

Amlodipine (AM) is a long active calcium channel blocker used to relax blood vessels by preventing calcium ion transport into the vascular walls and its supporting molecules acetaminophen (AP) and ascorbic acid (AA) are recommended for hypertension control and prevention. Considering their therapeutic importance and potential side effects due to over dosage, we have fabricated a sensor for individual and simultaneous determination of AA, AP, and AM in pharmaceuticals and human urine using novel Zn-doped Ca2CuO3 nanoparticles modified glassy carbon electrode (GCE). Optimally doped Ca2CuO3 (2.5 wt% Zn at Cu site) enhanced the detection of target molecules over much wider concentration ranges of 50 to 3130 µM for AA, 0.25 to 417 µM for AP, and 0.8 to 354 µM for AM with the corresponding lowest detection limits of 14 µM, 0.05 µM, and 0.07 µM, respectively. Furthermore, the Zn-Ca2CuO3/GCE exhibited excellent selectivity and high sensitivity even in the presence of several potential interfering agents. The usefulness of the developed electrode was tested using an amlodipine besylate tablet and urine samples of seven hypertension patients under medication. The results confirmed the presence of a significant amount of AP and AM in six patients' urine samples indicating that the personalized medication is essential and the quantum of medication need to be fixed by knowing the excess medicines excreted through urine. Thus, the Zn-Ca2CuO3/GCE with a high recovery percentage and good sensitivity shall be useful in the pharmaceutical and biomedical sectors.


Assuntos
Acetaminofen , Anlodipino , Ácido Ascórbico , Cobre , Eletrodos , Hipertensão , Zinco , Anlodipino/urina , Anlodipino/análise , Humanos , Ácido Ascórbico/urina , Cobre/química , Acetaminofen/urina , Zinco/química , Zinco/urina , Hipertensão/tratamento farmacológico , Hipertensão/urina , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Limite de Detecção , Nanopartículas Metálicas/química , Nanopartículas/química , Carbono/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA