Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 90: 165-191, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33792375

RESUMO

Double-strand DNA breaks (DSBs) are the most lethal type of DNA damage, making DSB repair critical for cell survival. However, some DSB repair pathways are mutagenic and promote genome rearrangements, leading to genome destabilization. One such pathway is break-induced replication (BIR), which repairs primarily one-ended DSBs, similar to those formed by collapsed replication forks or telomere erosion. BIR is initiated by the invasion of a broken DNA end into a homologous template, synthesizes new DNA within the context of a migrating bubble, and is associated with conservative inheritance of new genetic material. This mode of synthesis is responsible for a high level of genetic instability associated with BIR. Eukaryotic BIR was initially investigated in yeast, but now it is also actively studied in mammalian systems. Additionally, a significant breakthrough has been made regarding the role of microhomology-mediated BIR in the formation of complex genomic rearrangements that underly various human pathologies.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Replicação do DNA , Mamíferos/genética , Homeostase do Telômero/genética , Animais , Reparo do DNA por Junção de Extremidades , Humanos , Mutação , Leveduras/genética
2.
Cell ; 174(5): 1127-1142.e19, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30078706

RESUMO

Replication origins, fragile sites, and rDNA have been implicated as sources of chromosomal instability. However, the defining genomic features of replication origins and fragile sites are among the least understood elements of eukaryote genomes. Here, we map sites of replication initiation and breakage in primary cells at high resolution. We find that replication initiates between transcribed genes within nucleosome-depleted structures established by long asymmetrical poly(dA:dT) tracts flanking the initiation site. Paradoxically, long (>20 bp) (dA:dT) tracts are also preferential sites of polar replication fork stalling and collapse within early-replicating fragile sites (ERFSs) and late-replicating common fragile sites (CFSs) and at the rDNA replication fork barrier. Poly(dA:dT) sequences are fragile because long single-strand poly(dA) stretches at the replication fork are unprotected by the replication protein A (RPA). We propose that the evolutionary expansion of poly(dA:dT) tracts in eukaryotic genomes promotes replication initiation, but at the cost of chromosome fragility.


Assuntos
Replicação do DNA , DNA Ribossômico/química , Nucleossomos/metabolismo , Poli dA-dT/química , Origem de Replicação , Motivos de Aminoácidos , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Instabilidade Cromossômica , Sítios Frágeis do Cromossomo , Fragilidade Cromossômica , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Saccharomyces cerevisiae , Schizosaccharomyces , Sítio de Iniciação de Transcrição , Transcrição Gênica
3.
Cell ; 170(3): 507-521.e18, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28735753

RESUMO

In this study, we show that evolutionarily conserved chromosome loop anchors bound by CCCTC-binding factor (CTCF) and cohesin are vulnerable to DNA double strand breaks (DSBs) mediated by topoisomerase 2B (TOP2B). Polymorphisms in the genome that redistribute CTCF/cohesin occupancy rewire DNA cleavage sites to novel loop anchors. While transcription- and replication-coupled genomic rearrangements have been well documented, we demonstrate that DSBs formed at loop anchors are largely transcription-, replication-, and cell-type-independent. DSBs are continuously formed throughout interphase, are enriched on both sides of strong topological domain borders, and frequently occur at breakpoint clusters commonly translocated in cancer. Thus, loop anchors serve as fragile sites that generate DSBs and chromosomal rearrangements. VIDEO ABSTRACT.


Assuntos
Fragilidade Cromossômica , Quebras de DNA de Cadeia Dupla , Neoplasias/genética , Animais , Linfócitos B/metabolismo , Fator de Ligação a CCCTC , Linhagem Celular Tumoral , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas Repressoras/metabolismo
4.
Mol Cell ; 82(20): 3794-3809.e8, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36206766

RESUMO

Neuronal activity induces topoisomerase IIß (Top2B) to generate DNA double-strand breaks (DSBs) within the promoters of neuronal early response genes (ERGs) and facilitate their transcription, and yet, the mechanisms that control Top2B-mediated DSB formation are unknown. Here, we report that stimulus-dependent calcium influx through NMDA receptors activates the phosphatase calcineurin to dephosphorylate Top2B at residues S1509 and S1511, which stimulates its DNA cleavage activity and induces it to form DSBs. Exposing mice to a fear conditioning paradigm also triggers Top2B dephosphorylation at S1509 and S1511 in the hippocampus, indicating that calcineurin also regulates Top2B-mediated DSB formation following physiological neuronal activity. Furthermore, calcineurin-Top2B interactions following neuronal activity and sites that incur activity-induced DSBs are preferentially localized at the nuclear periphery in neurons. Together, these results reveal how radial gene positioning and the compartmentalization of activity-dependent signaling govern the position and timing of activity-induced DSBs and regulate gene expression patterns in neurons.


Assuntos
Calcineurina , Quebras de DNA de Cadeia Dupla , DNA Topoisomerases Tipo II , Neurônios , Animais , Camundongos , Calcineurina/genética , Calcineurina/metabolismo , Cálcio/metabolismo , DNA , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/genética
5.
Mol Cell ; 82(9): 1751-1767.e8, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35320753

RESUMO

Chromosome inheritance depends on centromeres, epigenetically specified regions of chromosomes. While conventional human centromeres are known to be built of long tandem DNA repeats, much of their architecture remains unknown. Using single-molecule techniques such as AFM, nanopores, and optical tweezers, we find that human centromeric DNA exhibits complex DNA folds such as local hairpins. Upon binding to a specific sequence within centromeric regions, the DNA-binding protein CENP-B compacts centromeres by forming pronounced DNA loops between the repeats, which favor inter-chromosomal centromere compaction and clustering. This DNA-loop-mediated organization of centromeric chromatin participates in maintaining centromere position and integrity upon microtubule pulling during mitosis. Our findings emphasize the importance of DNA topology in centromeric regulation and stability.


Assuntos
Centrômero , Proteínas Cromossômicas não Histona , Autoantígenos/genética , Autoantígenos/metabolismo , Centrômero/genética , Centrômero/metabolismo , Proteína Centromérica A/genética , Proteína Centromérica A/metabolismo , Cromatina , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA/genética , Humanos
6.
Eur J Immunol ; : e2350958, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046890

RESUMO

In developing B cells, V(D)J gene recombination is initiated by the RAG1/2 endonuclease complex, introducing double-stranded DNA breaks (DSBs) in V, D, and J genes and resulting in the formation of the hypervariable parts of immunoglobulins (Ig). Persistent or aberrant RAG1/2 targeting is a potential threat to genome integrity. While RAG1 and RAG2 have been shown to bind various regions genome-wide, the in vivo off-target DNA damage instigated by RAG1/2 endonuclease remains less well understood. In the current study, we identified regions containing RAG1/2-induced DNA breaks in mouse pre-B cells on a genome-wide scale using a global DNA DSB detection strategy. We detected 1489 putative RAG1/2-dependent DSBs, most of which were located outside the Ig loci. DNA sequence motif analysis showed a specific enrichment of RAG1/2-induced DNA DSBs at GA- and CA-repeats and GC-rich motifs. These findings provide further insights into RAG1/2 off-target activity. The ability of RAG1/2 to introduce DSBs on the non-Ig loci during the endogenous V(D)J recombination emphasizes its genotoxic potential in developing lymphocytes.

7.
EMBO Rep ; 24(1): e55429, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36382770

RESUMO

Developing B cells generate DNA double-stranded breaks (DSBs) to assemble immunoglobulin receptor (Ig) genes necessary for the expression of a mature B cell receptor. These physiologic DSBs are made by the RAG endonuclease, which is comprised of the RAG1 and RAG2 proteins. In pre-B cells, RAG-mediated DSBs activate the ATM kinase to coordinate canonical and non-canonical DNA damage responses (DDR) that trigger DSB repair and B cell developmental signals, respectively. Whether this broad cellular response is distinctive to RAG DSBs is poorly understood. To delineate the factors that direct DDR signaling in B cells, we express a tetracycline-inducible Cas9 nuclease in Rag1-deficient pre-B cells. Both RAG- and Cas9-mediated DSBs at Ig genes activate canonical DDR. In contrast, RAG DSBs, but not Cas9 DSBs, induce the non-canonical DDR-dependent developmental program. This unique response to RAG DSBs is, in part, regulated by non-core regions of RAG1. Thus, B cells trigger distinct cellular responses to RAG DSBs through unique properties of the RAG endonuclease that promotes activation of B cell developmental programs.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Homeodomínio , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Linfócitos B/metabolismo , Transdução de Sinais , Células Precursoras de Linfócitos B , Dano ao DNA
8.
J Allergy Clin Immunol ; 153(4): 1113-1124.e7, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38065233

RESUMO

BACKGROUND: Patients with deleterious variants in MYSM1 have an immune deficiency characterized by B-cell lymphopenia, hypogammaglobulinemia, and increased radiosensitivity. MYSM1 is a histone deubiquitinase with established activity in regulating gene expression. MYSM1 also localizes to sites of DNA injury but its function in cellular responses to DNA breaks has not been elucidated. OBJECTIVES: This study sought to determine the activity of MYSM1 in regulating DNA damage responses (DDRs) to DNA double-stranded breaks (DSBs) generated during immunoglobulin receptor gene (Ig) recombination and by ionizing radiation. METHODS: MYSM1-deficient pre- and non-B cells were used to determine the role of MYSM1 in DSB generation, DSB repair, and termination of DDRs. RESULTS: Genetic testing in a newborn with abnormal screen for severe combined immune deficiency, T-cell lymphopenia, and near absence of B cells identified a novel splice variant in MYSM1 that results in nearly absent protein expression. Radiosensitivity testing in patient's peripheral blood lymphocytes showed constitutive γH2AX, a marker of DNA damage, in B cells in the absence of irradiation, suggesting a role for MYSM1 in response to DSBs generated during Ig recombination. Suppression of MYSM1 in pre-B cells did not alter generation or repair of Ig DSBs. Rather, loss of MYSM1 resulted in persistent DNA damage foci and prolonged DDR signaling. Loss of MYSM1 also led to protracted DDRs in U2OS cells with irradiation induced DSBs. CONCLUSIONS: MYSM1 regulates termination of DNA damage responses but does not function in DNA break generation and repair.


Assuntos
Dano ao DNA , Reparo do DNA , Linfopenia , Humanos , Recém-Nascido , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Histonas/genética , Histonas/metabolismo , Linfopenia/genética , Transativadores/genética , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo
9.
Mod Pathol ; 37(1): 100382, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951357

RESUMO

Patients with Wilms tumor (WT) in general have excellent survival, but the prognosis of patients belonging to the subgroup of WT with diffuse anaplasia (DA) is poor due to frequent resistance to chemotherapy. We hypothesized that DA WT cells might undergo changes, such as acquiring a persistent tolerance to DNA damage and copy number aberrations (CNAs), which could eventually lead to their resistance to chemotherapy treatment. Tissue sections from chemotherapy-treated DA WTs (n = 12) were compared with chemotherapy-treated nonanaplastic WTs (n = 15) in a tissue microarray system, enabling analysis of 769 tumor regions. All regions were scored for anaplastic features and immunohistochemistry was used to quantify p53 expression, proliferation index (Ki67), and DNA double-strand breaks (γH2AX). CNAs were assessed by array-based genotyping and TP53 mutations using targeted sequencing. Proliferation index and the frequency of DNA double-strand breaks (γH2AX dot expression) increased with higher anaplasia scores. Almost all (95.6%) areas with full-scale anaplasia had TP53 mutations or loss of heterozygosity, along with an increased amount of CNAs. Interestingly, areas with wild-type TP53 with loss of heterozygosity and only one feature of anaplasia (anaplasia score 1) also had significantly higher proliferation indices, more DNA double-strand breaks, and more CNAs than regions without any anaplastic features (score 0); such areas may be preanaplastic cell populations under selective pressure for TP53 mutations. In conclusion, we suggest that chemoresistance of DA WTs may be partly explained by a high proliferative capability of anaplastic cells, which also have a high burden of double-stranded DNA breaks and CNAs, and that there is a gradual emergence of anaplasia in WT.


Assuntos
Neoplasias Renais , Tumor de Wilms , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Anaplasia/genética , Tumor de Wilms/genética , Tumor de Wilms/tratamento farmacológico , Tumor de Wilms/patologia , Mutação , Prognóstico , DNA
10.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396662

RESUMO

Deoxyribonucleic acid (DNA) represents the main reservoir of genetic information in the cells, which is why it is protected in the nucleus. Entry into the nucleus is, in general, difficult, as the nuclear membrane is a selective barrier to molecules longer than 40 kDa. However, in some cases, the size of certain nanoparticles (NPs) allows their internalization into the nucleus, thus causing a direct effect on the DNA structure. NPs can also induce indirect effects on DNA through reactive oxygen species (ROS) generation. In this context, nanomaterials are emerging as a disruptive tool for the development of novel therapies in a broad range of biomedical fields; although their effect on cell viability is commonly studied, further interactions with DNA or indirect alterations triggered by the internalization of these materials are not always clarified, since the small size of these materials makes them perfectly suitable for interaction with subcellular structures, such as the nucleus. In this context, and using as a reference the predicted interactions presented in a computational model, we describe and discuss the observed direct and indirect effects of the implicated nanomaterials on DNA.


Assuntos
Nanopartículas , Nanoestruturas , Ácidos Nucleicos , Espécies Reativas de Oxigênio , DNA
11.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39063016

RESUMO

DNA strand breaks excessively accumulate in the brains of patients with Alzheimer's disease (AD). While traditionally considered random, deleterious events, neuron activity itself induces DNA breaks, and these "adaptive" breaks help mediate synaptic plasticity and memory formation. Recent studies mapping the brain DNA break landscape reveal that despite a net increase in DNA breaks in ectopic genomic hotspots, adaptive DNA breaks around synaptic genes are lost in AD brains, and this is associated with transcriptomic dysregulation. Additionally, relationships exist between mitochondrial dysfunction, a hallmark of AD, and DNA damage, such that mitochondrial dysfunction may perturb adaptive DNA break formation, while DNA breaks may conversely impair mitochondrial function. A failure of DNA break physiology could, therefore, potentially contribute to AD pathogenesis.


Assuntos
Doença de Alzheimer , Mitocôndrias , Neurônios , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Humanos , Neurônios/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Animais , Quebras de DNA , Plasticidade Neuronal/genética , Encéfalo/metabolismo , Encéfalo/patologia , Dano ao DNA
12.
Semin Cell Dev Biol ; 113: 38-46, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32938550

RESUMO

As the primary catalyst of homologous recombination (HR) in vertebrates, RAD51 has been extensively studied in the context of repair of double-stranded DNA breaks (DSBs). With recent advances in the understanding of RAD51 function extending beyond DSBs, the importance of RAD51 throughout DNA metabolism has become increasingly clear. Here we review the suggested roles of RAD51 beyond HR, specifically focusing on their interplay with DNA replication and the maintenance of genomic stability, in which RAD51 function emerges as a double-edged sword.


Assuntos
Instabilidade Genômica/genética , Rad51 Recombinase/metabolismo , Quebras de DNA de Cadeia Dupla , Humanos
13.
J Biol Chem ; 298(4): 101825, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35288189

RESUMO

Immune cells kill invading microbes by producing reactive oxygen and nitrogen species, primarily hydrogen peroxide (H2O2) and nitric oxide (NO). We previously found that NO inhibits catalases in Escherichia coli, stabilizing H2O2 around treated cells and promoting catastrophic chromosome fragmentation via continuous Fenton reactions generating hydroxyl radicals. Indeed, H2O2-alone treatment kills catalase-deficient (katEG) mutants similar to H2O2+NO treatment. However, the Fenton reaction, in addition to H2O2, requires Fe(II), which H2O2 excess instantly converts into Fenton-inert Fe(III). For continuous Fenton when H2O2 is stable, a supply of reduced iron becomes necessary. We show here that this supply is ensured by Fe(II) recruitment from ferritins and Fe(III) reduction by flavin reductase. Our observations also concur with NO-mediated respiration inhibition that drives Fe(III) reduction. We modeled this NO-mediated inhibition via inactivation of ndh and nuo respiratory enzymes responsible for the step of NADH oxidation, which results in increased NADH pools driving flavin reduction. We found that, like the katEG mutant, the ndh nuo double mutant is similarly sensitive to H2O2-alone and H2O2+NO treatments. Moreover, the quadruple katEG ndh nuo mutant lacking both catalases and efficient respiration was rapidly killed by H2O2-alone, but this killing was delayed by NO, rather than potentiated by it. Taken together, we conclude that NO boosts the levels of both H2O2 and Fe(II) Fenton reactants, making continuous hydroxyl-radical production feasible and resulting in irreparable oxidative damage to the chromosome.


Assuntos
Cromossomos , Escherichia coli , Peróxido de Hidrogênio , Óxido Nítrico , Cromossomos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/genética , Compostos Férricos/química , Compostos Ferrosos/química , Peróxido de Hidrogênio/farmacologia , Radical Hidroxila/química , NAD/metabolismo , Óxido Nítrico/química , Óxido Nítrico/farmacologia , Oxirredução
14.
Chemistry ; 29(56): e202301713, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37452669

RESUMO

Herein, we report the synthesis of a series of colibactin warhead model compounds using two newly developed metal-free photocatalytic cyclopropanation reactions. These mild cyclopropanations expand the known applications of eosin within synthesis. A halogen atom transfer reaction mode has been harnessed so that dihalides can be used as the cyclopropanating agents. The colibactin warhead models were then used to provide new insight into two key mechanisms in colibactin chemistry. An explanation is provided for why the colibactin warhead sometimes undergoes a ring expansion-addition reaction to give fused cyclobutyl products while at other times nucleophiles add directly to the cyclopropyl unit (as when DNA adds to colibactin). Finally, we provide some evidence that Cu(II) chelated to colibactin may catalyze an important oxidation of the colibactin-DNA adduct. The Cu(I) generated as a result could then also play a role in inducing double strand breaks in DNA.

15.
Arch Toxicol ; 97(6): 1753-1764, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36995427

RESUMO

Carbamazepine (CBZ, an antiepileptic) is metabolized by multiple CYP enzymes to its epoxide and hydroxides; however, whether it is genotoxic remains unclear. In this study, molecular docking (CBZ to CYPs) and cytogenotoxic toxicity assays were employed to investigate the activation of CBZ for mutagenic effects, in various mammalian cell models. Docking results indicated that CBZ was valid as a substrate of human CYP2B6 and 2E1, while not for CYP1A1, 1A2, 1B1 or 3A4. In the Chinese hamster (V79) cell line and its derivatives genetically engineered for the expression of human CYP1A1, 1A2, 1B1, 2E1 or 3A4 CBZ (2.5 ~ 40 µM) did not induce micronucleus, while in human CYP2B6-expressing cells CBZ significantly induced micronucleus formation. In a human hepatoma C3A cell line, which endogenously expressed CYP2B6 twofold higher than in HepG2 cells, CBZ induced micronucleus potently, which was blocked by 1-aminobenzotriazole (inhibitor of CYPs) and ticlopidine (specific CYP2B6 inhibitor). In HepG2 cells CBZ did not induce micronucleus; however, pretreatment of the cells with CICTO (CYP2B6 inducer) led to micronucleus formation by CBZ, while rifampicin (CYP3A4 inducer) or PCB126 (CYP1A inducer) did not change the negative results. Immunofluorescent assay showed that CBZ selectively induced centromere-free micronucleus. Moreover, CBZ induced double-strand DNA breaks (γ-H2AX elevation, by Western blot) and PIG-A gene mutations (by flowcytometry) in C3A (threshold being 5 µM, lower than its therapeutic serum concentrations, 17 ~ 51 µM), with no effects in HepG2 cells. Clearly, CBZ may induce clastogenesis and gene mutations at its therapeutic concentrations, human CYP2B6 being a major activating enzyme.


Assuntos
Citocromo P-450 CYP1A1 , Neoplasias Hepáticas , Cricetinae , Animais , Humanos , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP1A1/genética , Simulação de Acoplamento Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , Carbamazepina/farmacologia , Mutação , Cricetulus , Dano ao DNA
16.
Proc Natl Acad Sci U S A ; 117(21): 11624-11635, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32385154

RESUMO

Activation-induced cytidine deaminase (AID) is the key enzyme for class switch recombination (CSR) and somatic hypermutation (SHM) to generate antibody memory. Previously, heterogeneous nuclear ribonucleoprotein K (hnRNP K) was shown to be required for AID-dependent DNA breaks. Here, we defined the function of major RNA-binding motifs of hnRNP K, GXXGs and RGGs in the K-homology (KH) and the K-protein-interaction (KI) domains, respectively. Mutation of GXXG, RGG, or both impaired CSR, SHM, and cMyc/IgH translocation equally, showing that these motifs were necessary for AID-dependent DNA breaks. AID-hnRNP K interaction is dependent on RNA; hence, mutation of these RNA-binding motifs abolished the interaction with AID, as expected. Some of the polypyrimidine sequence-carrying prototypical hnRNP K-binding RNAs, which participate in DNA breaks or repair bound to hnRNP K in a GXXG and RGG motif-dependent manner. Mutation of the GXXG and RGG motifs decreased nuclear retention of hnRNP K. Together with the previous finding that nuclear localization of AID is necessary for its function, lower nuclear retention of these mutants may worsen their functional deficiency, which is also caused by their decreased RNA-binding capacity. In summary, hnRNP K contributed to AID-dependent DNA breaks with all of its major RNA-binding motifs.


Assuntos
Anticorpos , Citidina Desaminase , Quebras de DNA , Ribonucleoproteínas Nucleares Heterogêneas Grupo K , Motivos de Ligação ao RNA/genética , Animais , Anticorpos/química , Anticorpos/genética , Anticorpos/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/química , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Humanos , Switching de Imunoglobulina/genética , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/metabolismo , Camundongos , Hipermutação Somática de Imunoglobulina/genética
17.
J Assist Reprod Genet ; 40(4): 745-751, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36823317

RESUMO

PURPOSE: The main objective of this opinion paper was to bring to light and enhance our understanding of the amount of double-strand DNA breaks in sperm and whether there is a threshold of no return when considering repair by the oocyte/embryo. METHODS: A brief review of literature related to the theories proposed for the appearance of double-strand breaks in human spermatozoa. Further commentary regarding their detection, how oocytes or embryos may deal with them, and what are the consequences if they are not repaired. Finally, a strategy for dealing with patients who have higher levels of double-strand DNA breaks in sperm is proposed by reviewing and presenting data using testicular extracted sperm. RESULTS: We propose a theory that a threshold may exist in the oocyte that allows either complete or partial DNA repair of impaired sperm. The closer that an embryo is exposed to the threshold, the more the effect on the ensuing embryo will fail to reach various milestones, including blastocyst stage, implantation, pregnancy loss, an adverse delivery outcome, or offspring health. We also present a summary of the role that testicular sperm extraction may play in improving outcomes for couples in which the male has a high double-strand DNA break level in his sperm. CONCLUSIONS: Double-strand DNA breaks in sperm provide a greater stress on repair mechanisms and challenge the threshold of repair in oocytes. It is therefore imperative that we improve our understanding and diagnostic ability of sperm DNA, and in particular, how double-strand DNA breaks originate and how an oocyte or embryo is able to deal with them.


Assuntos
Quebras de DNA de Cadeia Dupla , Sêmen , Gravidez , Feminino , Humanos , Masculino , Espermatozoides , Reparo do DNA/genética , Implantação do Embrião/genética
18.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768621

RESUMO

Transcription through nucleosomes by RNA polymerases (RNAP) is accompanied by formation of small intranucleosomal DNA loops (i-loops). The i-loops form more efficiently in the presence of single-strand breaks or gaps in a non-template DNA strand (NT-SSBs) and induce arrest of transcribing RNAP, thus allowing detection of NT-SSBs by the enzyme. Here we examined the role of histone tails and extranucleosomal NT-SSBs in i-loop formation and arrest of RNAP during transcription of promoter-proximal region of nucleosomal DNA. NT-SSBs present in linker DNA induce arrest of RNAP +1 to +15 bp in the nucleosome, suggesting formation of the i-loops; the arrest is more efficient in the presence of the histone tails. Consistently, DNA footprinting reveals formation of an i-loop after stalling RNAP at the position +2 and backtracking to position +1. The data suggest that histone tails and NT-SSBs present in linker DNA strongly facilitate formation of the i-loops during transcription through the promoter-proximal region of nucleosomal DNA.


Assuntos
Histonas , Nucleossomos , Nucleossomos/genética , Histonas/genética , Histonas/metabolismo , Transcrição Gênica , RNA Polimerase II/genética , Quebras de DNA de Cadeia Simples , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , DNA/genética , DNA de Cadeia Simples
19.
Mol Biol Evol ; 38(8): 3220-3234, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33830249

RESUMO

Antibiotic resistance often generates defects in bacterial growth called fitness cost. Understanding the causes of this cost is of paramount importance, as it is one of the main determinants of the prevalence of resistances upon reducing antibiotics use. Here we show that the fitness costs of antibiotic resistance mutations that affect transcription and translation in Escherichia coli strongly correlate with DNA breaks, which are generated via transcription-translation uncoupling, increased formation of RNA-DNA hybrids (R-loops), and elevated replication-transcription conflicts. We also demonstrated that the mechanisms generating DNA breaks are repeatedly targeted by compensatory evolution, and that DNA breaks and the cost of resistance can be increased by targeting the RNase HI, which specifically degrades R-loops. We further show that the DNA damage and thus the fitness cost caused by lack of RNase HI function drive resistant clones to extinction in populations with high initial frequency of resistance, both in laboratory conditions and in a mouse model of gut colonization. Thus, RNase HI provides a target specific against resistant bacteria, which we validate using a repurposed drug. In summary, we revealed key mechanisms underlying the fitness cost of antibiotic resistance mutations that can be exploited to specifically eliminate resistant bacteria.


Assuntos
Quebras de DNA , Farmacorresistência Bacteriana/genética , Aptidão Genética , Ribonuclease H/genética , Animais , Evolução Biológica , Replicação do DNA , Escherichia coli , Camundongos
20.
Trends Genet ; 35(11): 791-803, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31421911

RESUMO

The advent of affordable, large-scale DNA sequencing methods, coupled with advanced computing power, is empowering a detailed analysis of the structure and function of chromosomes. Genomic instability, involving chromosome number and structure changes, has been documented in multiple systems. In plants, haploid induction through genome elimination has recently been connected mechanistically to the formation of complex chromosome reorganizations, known collectively as chromoanagenesis. These abnormalities can be triggered by altering the specialized centromeric histone 3, the epigenetic determinant of centromeres, which leads to loss of centromere function and chromosome missegregation. Other historical and recent instances of genomic instability, at the same time, suggest multiple causes. Their study provides a unique opportunity for a synthesis encompassing genome evolution, its response to stress, as well as the possibility of recruiting the connected mechanisms for genome engineering-based plant breeding.


Assuntos
Genoma , Instabilidade Genômica , Haploidia , Animais , Evolução Biológica , Centrômero/genética , Centrômero/metabolismo , Proteína Centromérica A/metabolismo , Instabilidade Cromossômica , Segregação de Cromossomos , Cruzamentos Genéticos , Dano ao DNA , Amplificação de Genes , Micronúcleos com Defeito Cromossômico , Plantas/genética , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA