Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Med Inform Decis Mak ; 24(1): 34, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308256

RESUMO

BACKGROUND: Concept drift and covariate shift lead to a degradation of machine learning (ML) models. The objective of our study was to characterize sudden data drift as caused by the COVID pandemic. Furthermore, we investigated the suitability of certain methods in model training to prevent model degradation caused by data drift. METHODS: We trained different ML models with the H2O AutoML method on a dataset comprising 102,666 cases of surgical patients collected in the years 2014-2019 to predict postoperative mortality using preoperatively available data. Models applied were Generalized Linear Model with regularization, Default Random Forest, Gradient Boosting Machine, eXtreme Gradient Boosting, Deep Learning and Stacked Ensembles comprising all base models. Further, we modified the original models by applying three different methods when training on the original pre-pandemic dataset: (Rahmani K, et al, Int J Med Inform 173:104930, 2023) we weighted older data weaker, (Morger A, et al, Sci Rep 12:7244, 2022) used only the most recent data for model training and (Dilmegani C, 2023) performed a z-transformation of the numerical input parameters. Afterwards, we tested model performance on a pre-pandemic and an in-pandemic data set not used in the training process, and analysed common features. RESULTS: The models produced showed excellent areas under receiver-operating characteristic and acceptable precision-recall curves when tested on a dataset from January-March 2020, but significant degradation when tested on a dataset collected in the first wave of the COVID pandemic from April-May 2020. When comparing the probability distributions of the input parameters, significant differences between pre-pandemic and in-pandemic data were found. The endpoint of our models, in-hospital mortality after surgery, did not differ significantly between pre- and in-pandemic data and was about 1% in each case. However, the models varied considerably in the composition of their input parameters. None of our applied modifications prevented a loss of performance, although very different models emerged from it, using a large variety of parameters. CONCLUSIONS: Our results show that none of our tested easy-to-implement measures in model training can prevent deterioration in the case of sudden external events. Therefore, we conclude that, in the presence of concept drift and covariate shift, close monitoring and critical review of model predictions are necessary.


Assuntos
COVID-19 , Pandemias , Humanos , COVID-19/epidemiologia , Algoritmos , Mortalidade Hospitalar , Aprendizado de Máquina
2.
Mol Pharm ; 20(3): 1758-1767, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36745394

RESUMO

Machine learning (ML) has become an indispensable tool to predict absorption, distribution, metabolism, and excretion (ADME) properties in pharmaceutical research. ML algorithms are trained on molecular structures and corresponding ADME assay data to develop quantitative structure-property relationship (QSPR) models. Traditional QSPR models were trained on compound sets of limited size. With the advent of more complex ML algorithms and data availability, training sets have become larger and more diverse. Most common training approaches consist in either training a model with a small set of similar compounds, namely, compounds designed for the same drug discovery project or chemical series (local model approach) or with a larger set of diverse compounds (global model approach). Global models are built with all experimental data available for an assay, combining compound data from different projects and disease areas. Despite the ML progress made so far, the choice of the appropriate data composition for building ML models is still unclear. Herein, a systematic evaluation of local and global ML models was performed for 10 different experimental assays and 112 drug discovery projects. Results show a consistent superior performance of global models for ADME property predictions. Diagnostic analyses were also carried out to investigate the influence of training set size, structural diversity, and data shift in the relative performance of local and global ML models. Training set and structural diversity did not have an impact in the relative performance on the methods. Instead, data shift helped to identify the projects with larger performance differences between local and global models. Results presented in this work can be leveraged to improve ML-based ADME properties predictions and thus decision-making in drug discovery projects.


Assuntos
Descoberta de Drogas , Aprendizado de Máquina , Descoberta de Drogas/métodos , Algoritmos , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade , Preparações Farmacêuticas , Farmacocinética
3.
Nanomaterials (Basel) ; 13(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37887929

RESUMO

When designing nano-structured metamaterials with an iterative optimization method, a fast deep learning solver is desirable to replace a time-consuming numerical solver, and the related issue of data shift is a subtle yet easily overlooked challenge. In this work, we explore the data shift challenge in an AI-based electromagnetic solver and present innovative solutions. Using a one-dimensional grating coupler as a case study, we demonstrate the presence of data shift through the probability density method and principal component analysis, and show the degradation of neural network performance through experiments dealing with data affected by data shift. We propose three effective strategies to mitigate the effects of data shift: mixed training, adding multi-head attention, and a comprehensive approach that combines both. The experimental results validate the efficacy of these approaches in addressing data shift. Specifically, the combination of mixed training and multi-head attention significantly reduces the mean absolute error, by approximately 36%, when applied to data affected by data shift. Our work provides crucial insights and guidance for AI-based electromagnetic solvers in the optimal design of nano-structured metamaterials.

4.
Ther Innov Regul Sci ; 51(3): 352-354, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-30231697

RESUMO

Rapid advances in technology and our understanding of disease will lead to a shift in how the health care system thinks about data, which will in turn challenge current regulatory constructs. In the future, there will be a shift away from milestone-based data to continuous, contextual data; we believe this data shift will impact the current model of medical product regulation, with potential implications across the regulatory landscape, reflecting the convergence of clinical development and clinical practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA