Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 47(11): 4369-4382, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38973616

RESUMO

Plant resistance (R) genes play a crucial role in the detection of effector proteins secreted by pathogens, either directly or indirectly, as well as in the subsequent activation of downstream defence mechanisms. However, little is known about how R genes regulate the defence responses of conifers, particularly Pinus massoniana, against the destructive pine wood nematode (PWN; Bursaphelenchus xylophilus). Here, we isolated and characterised PmHs1pro-1, a nematode-resistance gene of P. massoniana, using bioinformatics, molecular biology, histochemistry and transgenesis. Tissue-specific expressional pattern and localisation of PmHs1pro-1 suggested that it was a crucial positive regulator in response to PWN attack in resistant P. massoniana. Meanwhile, overexpression of PmHs1pro-1 was found to activate reactive oxygen species (ROS) metabolism-related enzymes and the expressional level of their key genes, including superoxide dismutase, peroxidase and catalase. In addition, we showed that PmHs1pro-1 directly recognised the effector protein BxSCD1of PWN, and induced the ROS burst responding to PWN invasion in resistant P. massoniana. Our findings illustrated the molecular framework of R genes directly recognising the effector protein of pathology in pine, which offered a novel insight into the plant-pathogen arms race.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Pinus , Doenças das Plantas , Proteínas de Plantas , Espécies Reativas de Oxigênio , Pinus/parasitologia , Pinus/genética , Pinus/fisiologia , Animais , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Resistência à Doença/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Tylenchida/fisiologia , Plantas Geneticamente Modificadas , Genes de Plantas , Tylenchoidea/fisiologia
2.
Rev Infirm ; 73(302): 35-37, 2024.
Artigo em Francês | MEDLINE | ID: mdl-38901911

RESUMO

Caregiver-client communication is a process influenced by many specific elements arising from the context, the content and the form of the message, but also from the inner life of the patient and the caregiver. All these specific factors have an impact on the transmission and reception of the message.


Assuntos
Cuidadores , Comunicação , Relações Enfermeiro-Paciente , Humanos , Cuidadores/psicologia
3.
Bull Environ Contam Toxicol ; 110(2): 51, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36720730

RESUMO

Ecological effects in marine living can be understood via the determination of antioxidant molecules in aquatic organisms against pollutants. This study aims to evaluate the radionuclides and trace element stress with response molecules. Cystoseira crinita and Halopteris scoparia have been chosen as study materials because of their susceptibility to pollution. The radionuclides 210Po, 238U, 232Th and 40K and trace elements Al, Fe, Mn, Cr, As, Zn and Pb levels were analysed as well as antioxidants and antioxidant enzymes in two brown algae, seasonally. Marine pollutants in terms of radionuclides and trace elements were correlated with antioxidant molecules in these species and may be used as biomarkers for assessing the radioactive stress. The 210Po and Mn concentrations in C. crinita seem to activate catalase (CAT) and superoxide dismutase (SOD) enzyme activities while 210Po concentrations inclined the proline amount in H. scoparia. This study demonstrated the radiation stress-induced the antioxidant defence system in macroalgae, the primary producers of the marine environment.


Assuntos
Poluentes Ambientais , Alga Marinha , Oligoelementos , Antioxidantes , Radioisótopos
4.
Plant Cell Environ ; 44(1): 257-274, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32833225

RESUMO

Pine wood nematode (PWN; Bursaphelenchus xylophilus), a destructive pest of Pinus massoniana, is causing a severe epidemic of pine wilt disease in China. When invaded by PWN, resistant P. massoniana secretes an abundance of oleoresin terpenoids as a defensive strategy. However, regulatory mechanisms of this defence in resistant P. massoniana have yet to be elucidated. Here, we characterized two terpene synthase genes, α-pinene synthase (PmTPS4) and longifolene synthase (PmTPS21), identified in resistant P. massoniana and investigate the contribution of these genes to the oleoresin defence strategy in resistant masson pines. Up-regulation of these two genes in the stem supported their involvement in terpene biosynthesis as part of the defence against PWN. Recombinant protein expression revealed catalytic activity for the two PmTPSs, with PmTPS4 primarily producing α-pinene, while PmTPS21 produced α-pinene and longifolene simultaneously. The major enzymatic products of the two terpene synthases had inhibitory effects on PWN in vitro. We demonstrated that PmTPS4 and PmTPS21 played positive roles in terpene-defence mechanisms against PWN infestation. The major products of these terpene synthases could directly inhibit the survival rate of PWN in vitro. We revealed that PmTPS21 was a novel bifunctional enzyme capable of simultaneous production of both monoterpene and sesquiterpene.


Assuntos
Alquil e Aril Transferases/metabolismo , Nematoides , Pinus/metabolismo , Defesa das Plantas contra Herbivoria , Proteínas de Plantas/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/fisiologia , Animais , Deleção Clonal , Cromatografia Gasosa-Espectrometria de Massas , Filogenia , Pinus/genética , Pinus/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
5.
BMC Genomics ; 20(1): 390, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31109305

RESUMO

BACKGROUND: Phytohormones are key regulators of plant growth, development, and signalling networks involved in responses to diverse biotic and abiotic stresses. Transcriptional reference maps of hormone responses have been reported for several model plant species such as Arabidopsis thaliana, Oryza sativa, and Brachypodium distachyon. However, because of species differences and the complexity of the wheat genome, these transcriptome data are not appropriate reference material for wheat studies. RESULTS: We comprehensively analysed the transcriptomic responses in wheat spikes to seven phytohormones, including indole acetic acid (IAA), gibberellic acid (GA), abscisic acid (ABA), ethylene (ET), cytokinin (CK), salicylic acid (SA), and methyl jasmonic acid (MeJA). A total of 3386 genes were differentially expressed at 24 h after the hormone treatments. Furthermore, 22.7% of these genes exhibited overlapping transcriptional responses for at least two hormones, implying there is crosstalk among phytohormones. We subsequently identified genes with expression levels that were significantly and differentially induced by a specific phytohormone (i.e., hormone-specific responses). The data for these hormone-responsive genes were then compared with the transcriptome data for wheat spikes exposed to biotic (Fusarium head blight) and abiotic (water deficit) stresses. CONCLUSION: Our data were used to develop a transcriptional reference map of hormone responses in wheat spikes.


Assuntos
Reguladores de Crescimento de Plantas/farmacologia , Transcriptoma , Triticum/genética , Desidratação/genética , Desidratação/metabolismo , Flores/efeitos dos fármacos , Flores/genética , Flores/metabolismo , Fusarium , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Transcriptoma/efeitos dos fármacos , Triticum/efeitos dos fármacos , Triticum/metabolismo , Triticum/microbiologia
6.
Plant Cell Rep ; 38(10): 1217-1233, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31175394

RESUMO

KEY MESSAGE: Excessive bioaccumulation of fluoride in IR-64 caused low abscisic acid level, inhibition of polyamine biosynthesis and ascorbate-glutathione cycle but not in Gobindobhog which had higher antioxidant activity. The current study presents regulation of diverse metabolic and molecular defence pathways during fluoride stress in non-aromatic rice variety, IR-64 and aromatic rice variety, Gobindobhog (GB). Increasing concentration of fluoride affected fresh weight, dry weight, vigour index and relative water content to a lesser extent in GB compared to IR-64. GB exhibited lower methylglyoxal accumulation and lipoxygenase activity compared to IR-64 during stress. The level of osmolytes (proline, amino acids and glycine-betaine) increased in both the stressed varieties. The biosynthesis of higher polyamines was stimulated in stressed GB. IR-64 accumulated higher amount of putrescine due to degradation of higher polyamines as supported by gene expression analysis. Unlike IR-64, GB efficiently maintained the ascorbate-glutathione cycle due to much lower fluoride bioaccumulation, compared to IR-64. GB adapted to fluoride stress by strongly inducing guaiacol peroxidase, phenylalanine ammonia lyase and a novel isozyme of superoxide dismutase. While GB accumulated higher abscisic acid (ABA) level during stress, IR-64 exhibited slow ABA degradation which enabled induction of associated osmotic stress-responsive genes. Unlike GB, ABA-independent DREB2A was downregulated in stressed IR-64. The research illustrates varietal differences in the defence machinery of the susceptible variety, IR-64, and the well adapted cultivar, GB, on prolonged exposure to increasing concentrations of fluoride.


Assuntos
Fluoretos/toxicidade , Oryza/metabolismo , Ácido Abscísico/metabolismo , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Soins Gerontol ; 23(131): 25-26, 2018.
Artigo em Francês | MEDLINE | ID: mdl-29724331

RESUMO

Working in a nursing home leads to specific problems for caregivers. For example, being confronted with an ageing body and a declining mind or enduring inadequate work organisations can cause occupational exhaustion and burnout. The quest for job satisfaction at work then becomes a challenge.


Assuntos
Esgotamento Profissional/psicologia , Enfermagem Geriátrica , Casas de Saúde , Recursos Humanos de Enfermagem/psicologia , Fadiga de Compaixão , Humanos
8.
Oecologia ; 184(2): 469-478, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28421324

RESUMO

Recent mountain pine beetle outbreaks in western North America killed millions of lodgepole pine trees, leaving few survivors. However, the mechanism underlying the ability of trees to survive bark beetle outbreaks is unknown, but likely involve phytochemicals such as monoterpenes and fatty acids that can drive beetle aggregation and colonization on their hosts. Thus, we conducted a field survey of beetle-resistant lodgepole pine (Pinus contorta) trees to retrospectively deduce whether these phytochemicals underlie their survival by comparing their chemistry to that of non-attacked trees in the same stands. We also compared beetle attack characteristics between resistant and beetle-killed trees. Beetle-killed trees had more beetle attacks and longer ovipositional galleries than resistant trees, which also lacked the larval establishment found in beetle-killed trees. Resistant trees contained high amounts of toxic and attraction-inhibitive compounds and low amounts of pheromone-precursor and synergist compounds. During beetle host aggregation and colonization, these compounds likely served three critical roles in tree survival. First, low amounts of pheromone-precursor (α-pinene) and synergist (mycrene, terpinolene) compounds reduced or prevented beetles from attracting conspecifics to residual trees. Second, high amounts of 4-allyanisole further inhibited beetle attraction to its pheromone. Finally, high amounts of toxic limonene, 3-carene, 4-allyanisole, α-linolenic acid, and linoleic acid inhibited beetle gallery establishment and oviposition. We conclude that the variation of chemotypic expression of local plant populations can have profound ecological consequences including survival during insect outbreaks.


Assuntos
Besouros , Surtos de Doenças , Pinus , Animais , Monoterpenos Bicíclicos , Feminino , Monoterpenos , América do Norte , Árvores
9.
Plant Biotechnol J ; 14(6): 1438-55, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26799171

RESUMO

Cotton bollworm, Helicoverpa armigera, is a major insect pest that feeds on cotton bolls causing extensive damage leading to crop and productivity loss. In spite of such a major impact, cotton plant response to bollworm infection is yet to be witnessed. In this context, we have studied the genome-wide response of cotton bolls infested with bollworm using transcriptomic and proteomic approaches. Further, we have validated this data using semi-quantitative real-time PCR. Comparative analyses have revealed that 39% of the transcriptome and 35% of the proteome were differentially regulated during bollworm infestation. Around 36% of significantly regulated transcripts and 45% of differentially expressed proteins were found to be involved in signalling followed by redox regulation. Further analysis showed that defence-related stress hormones and their lipid precursors, transcription factors, signalling molecules, etc. were stimulated, whereas the growth-related counterparts were suppressed during bollworm infestation. Around 26% of the significantly up-regulated proteins were defence molecules, while >50% of the significantly down-regulated were related to photosynthesis and growth. Interestingly, the biosynthesis genes for synergistically regulated jasmonate, ethylene and suppressors of the antagonistic factor salicylate were found to be up-regulated, suggesting a choice among stress-responsive phytohormone regulation. Manual curation of the enzymes and TFs highlighted the components of retrograde signalling pathways. Our data suggest that a selective regulatory mechanism directs the reallocation of metabolic resources favouring defence over growth under bollworm infestation and these insights could be exploited to develop bollworm-resistant cotton varieties.


Assuntos
Genoma de Planta , Gossypium/genética , Mariposas/fisiologia , Imunidade Vegetal/genética , Animais , Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Estudo de Associação Genômica Ampla , Gossypium/metabolismo , Interações Hospedeiro-Parasita , Redes e Vias Metabólicas , Oxirredução , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteômica , Transdução de Sinais , Transcriptoma
10.
Plant Physiol Biochem ; 206: 108174, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070242

RESUMO

Endophytic fungi colonize interior plant tissue and mostly form mutualistic associations with their host plant. Plant-endophyte interaction is a complex mechanism and is currently a focus of research to understand the underlying mechanism of endophyte asymptomatic colonization, the process of evading plant immune response, modulation of gene expression, and establishment of a balanced mutualistic relationship. Fungal endophytes rely on plant hosts for nutrients, shelter, and transmission and improve the host plant's tolerance against biotic stresses, including -herbivores, nematodes, bacterial, fungal, viral, nematode, and other phytopathogens. Endophytic fungi have been reported to improve plant health by reducing and eradicating the harmful effect of phytopathogens through competition for space or nutrients, mycoparasitism, and through direct or indirect defense systems by producing secondary metabolites as well as by induced systemic resistance (ISR). Additionally, for efficient crop improvement, practicing them would be a fruitful step for a sustainable approach. This review article summarizes the current research progress in plant-endophyte interaction and the fungal endophyte mechanism to overcome host defense responses, their subsequent colonization, and the establishment of a balanced mutualistic interaction with host plants. This review also highlighted the potential of fungal endophytes in the amelioration of biotic stress. We have also discussed the relevance of various bioactive compounds possessing antimicrobial potential against a variety of agricultural pathogens. Furthermore, endophyte-mediated ISR is also emphasized.


Assuntos
Endófitos , Fungos , Endófitos/fisiologia , Fungos/fisiologia , Simbiose , Plantas/microbiologia , Bactérias
11.
Redox Biol ; 71: 103094, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38479221

RESUMO

Low-molecular-weight (LMW) thiols are produced in all living cells in different forms and concentrations. Glutathione (GSH), coenzyme A (CoA), bacillithiol (BSH), mycothiol (MSH), ergothioneine (ET) and trypanothione T(SH)2 are the main LMW thiols in eukaryotes and prokaryotes. LMW thiols serve as electron donors for thiol-dependent enzymes in redox-mediated metabolic and signaling processes, protect cellular macromolecules from oxidative and xenobiotic stress, and participate in the reduction of oxidative modifications. The level and function of LMW thiols, their oxidized disulfides and mixed disulfide conjugates in cells and tissues is tightly controlled by dedicated oxidoreductases, such as peroxiredoxins, glutaredoxins, disulfide reductases and LMW thiol transferases. This review provides the first summary of the current knowledge of structural and functional diversity of transferases for LMW thiols, including GSH, BSH, MSH and T(SH)2. Their role in maintaining redox homeostasis in single-cell and multicellular organisms is discussed, focusing in particular on the conjugation of specific thiols to exogenous and endogenous electrophiles, or oxidized protein substrates. Advances in the development of new research tools, analytical methodologies, and genetic models for the analysis of known LMW thiol transferases will expand our knowledge and understanding of their function in cell growth and survival under oxidative stress, nutrient deprivation, and during the detoxification of xenobiotics and harmful metabolites. The antioxidant function of CoA has been recently discovered and the breakthrough in defining the identity and functional characteristics of CoA S-transferase(s) is soon expected.


Assuntos
Antioxidantes , Compostos de Sulfidrila , Compostos de Sulfidrila/metabolismo , Antioxidantes/metabolismo , Transferases/metabolismo , Oxirredução , Glutationa/metabolismo , Oxirredutases/metabolismo , Dissulfetos/química
12.
Plant Physiol Biochem ; 210: 108646, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38657549

RESUMO

Whether nanoparticles (NPs) are boon or bane for society has been a centre of in-depth debate and key consideration in recent times. Exclusive physicochemical properties like small size, large surface area-to-volume ratio, robust catalytic activity, immense surface energy, magnetism and superior biocompatibility make NPs obligatory in many scientific, biomedical and industrial ventures. Nano-enabled products are newer entrants in the present era. To attenuate environmental stress and maximize crop yields, scientists are tempted to introduce NPs as augmented supplements in agriculture. The feasible approaches for NPs delivery are irrigation, foliar spraying or seed priming. Internalization of excessive NPs to plants endorses negative implications at higher trophic levels via biomagnification. The characteristics of NPs (dimensions, type, solubility, surface charge), applied concentration and duration of exposure are prime factors conferring nanotoxicity in plants. Several reports approved NPs persuaded toxicity can precisely mimic abiotic stress effects. The signature effects of nanotoxicity include poor root outgrowth, biomass reduction, oxidative stress evolution, lipid peroxidation, biomolecular damage, perturbed antioxidants, genotoxicity and nutrient imbalance in plants. NPs stress impels mitogen-activated protein kinase signaling cascade and urges stress responsive defence gene expression to counteract stress in plants. Exogenous supplementation of nitric oxide (NO), arbuscular mycorrhizal fungus (AMF), phytohormones, and melatonin (ME) is novel strategy to circumvent nanotoxicity. Briefly, this review appraises plants' physio-biochemical responses and adaptation scenarios to endure NPs stress. As NPs stress represents large-scale contaminants, advanced research is indispensable to avert indiscriminate NPs usage for synchronizing nano-security in multinational markets.


Assuntos
Nanopartículas , Nanopartículas/química , Plantas/metabolismo , Plantas/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/metabolismo
13.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-39304531

RESUMO

Sponge-associated microorganisms play vital roles in marine sponge ecology. This study presents a genomic investigation of Rossellomorea sp. MCCB 382, isolated from Stelletta sp., reveals insights into its adaptations and symbiotic roles. Phylogenomic study and Overall Genomic Relatedness Index (OGRI) classify MCCB 382 as a novel species, Rossellomorea orangium sp. nov. The genome encodes numerous carbohydrate metabolism enzymes (CAZymes), likely aiding nutrient cycling in the sponge host. Unique eukaryotic-like protein domains hint at potential mechanisms of symbiosis. Defence mechanisms include CRISPR, restriction-modification systems, DNA phosphorothioation, toxin-antitoxin systems, and heavy metal and multidrug resistance genes, indicating adaptation to challenging marine environments. Unlike obligate mutualists, MCCB 382 shows no genome reduction. Furthermore, the presence of mobile genetic elements, horizontal gene transfer, and prophages suggest genetic versatility, implying flexible metabolic potential and capacity for rapid adaptation and symbiosis shifts. MCCB 382 possesses six biosynthetic gene clusters for secondary metabolites, including both type II and III polyketide synthases (PKS), terpenes, (NRPS), NRPS-independent-siderophore, and lassopeptide. Further genome mining using BiGScape revealed four distinct gene cluster families, T2PKS, NRPS-independent-siderophore, lasso peptide, and terpene, presenting opportunities for novel compound elucidation. Our study reveals a symbiotic lifestyle of MCCB 382 with the host sponge, highlighting symbiont factors that aid in establishing and sustaining this relationship. This is the pioneering genomic characterization of a novel Rossellomorea sp. within the sponge Stelletta sp. holobiont.


Assuntos
Genoma Bacteriano , Filogenia , Poríferos , Simbiose , Poríferos/microbiologia , Animais , Genômica , Família Multigênica , Adaptação Fisiológica , Flavobacteriaceae/genética , Flavobacteriaceae/classificação , Metabolismo Secundário , Transferência Genética Horizontal
14.
3 Biotech ; 13(12): 422, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38047036

RESUMO

The present investigation was conducted so as to unravel the various underlying antioxidant enzyme and non-enzyme defence mechanisms in some selected Boro rice cultivars that differ in temperature stress tolerance. Oxidative injury under heat and cold stress, H2O2 level showed a decline in roots and shoots of Boro in stressed condition whilst significant rise in the susceptible varieties was observed under both the stresses. However, susceptible varieties, such as Disang (shoots), Moricha (shoots) and China Boro (roots), showed a decreased H2O2 content at recovery. Under cold stress, roots and shoots of Boro and Laal Bihari showed a decreased level of lipid peroxidises and Boro and Kolong under heat stress. In contrast, significant enhancement of lipid peroxidase was revealed in the susceptible varieties. Remarkable increase in non-enzymatic antioxidants like proline, glutathione and ascorbate content was seen in the shoots of Boro in the treated and the recovery conditions. On the other hand, in enzymatic antioxidants like ascorbate peroxidase, guaiacol peroxidase, superoxide dismutase, catalase, and glutathione reductase activity, marked enhancement in ascorbate peroxidase activity was seen in the roots and the shoots of Boro and Kolong in treated and recovery samples and decreased in Swarnabh under heat stress. The guaiacol peroxidase activity of roots and shoots increased in Boro and Kolong under heat stress, and decreased in China boro and Swarnabh. The superoxide dismutase activity in the roots and shoot of Boro increased significantly under both the stress conditions in treated and recovery. Root and shoots of Swarnabh and Moricha showed decline in SOD activity in stressed conditions. The catalase activity in the case of Boro, showed a significant increase in both its roots and shoots under cold and heat stresses in the treated and the recovery samples. Moreover, under heat stress, the root and the shoots of Boro and Kolong showed the maximum glutathione activity, whilst Swarnabh and China Boro showed reduced glutathione activity at 96 h and recovery. On the other hand, the gene expression pattern of the cold-responsive genes (OsHAN1/OsCYP9B4 and FeSOD1) showed significant upregulation in the tolerant than the sensitive cultivars. Similarly, heat-responsive genes (OsTT1/OsPAB1 and OsHsfC1b) are also highly upregulated in the tolerant than the susceptible ones. Thus, the findings would provide a thorough insight into various non-enzymatic and enzymatic antioxidants and stress-responsive genes of Boro rice that could help in the future rice breeding programmes for cold and heat stresses.

15.
Metabolites ; 14(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38248824

RESUMO

Traditionally, indigenous African leafy vegetables such as Amaranthus, blackjack, jute mallow, cleome monophyla, and spider plants have been conventionally and organically grown as weeds in open fields. However, the lack of land space due to the increase in population has resulted in unconventional, modern, and advanced agricultural farming. The introduction of a greenhouse has recently become the second most popular growing system alongside shade net and glasshouse to increase productivity and meet consumers' demand. Several studies on Amaranthus species have solely focused on physiological parameters and nutritional composition, leaving a huge gap on their metabolomic profile of the leaves which is crucial to comprehend when growing Amaranthus species in different cropping systems. Therefore, the study aimed to determine the influence of different cropping systems on the release of metabolites of two commonly consumed Amaranthus species in South Africa. H1 -Nuclear Magnetic Resonance (NMR) tool was used to profile the untargeted metabolites of green (Amaranthus graecizans L.) and red (Amaranthus cruentus L.) species. A total of 12 metabolites-trehalose, betaine, glutamine, choline, sucrose, caprate, adenosine, asparagine, carnitine, caffeine, aspartate, and alanine-were detected in green amaranth grown in open fields. Except for caffeine, aspartate, and caprate, which were found in the green amaranth grown in open fields, all the other metabolites were detected in the greenhouse grown once. Interestingly, allantoin, which serves as an allelochemical, was the sole distinct metabolite detected in greenhouse cultivated green amaranth. On the contrary, seven similar metabolites were quantified in red amaranth grown in both open fields and greenhouses, apart from caffeine, which was only detected in greenhouse-cultivated red amaranth.

16.
3 Biotech ; 12(5): 119, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35530740

RESUMO

The present study illustrates the transformation ability of two wild-type bacterial strains of Rhizobium rhizogenes (MTCC 532 and MTCC 2364) on the embryogenic callus and callus-derived plantlets of a threatened Indian orchid, Dendrobium ovatum. Co-culture of the bacterium with the explants gave marginal hairy root phenotype that failed to multiply in the culture medium. Some primary and secondary metabolites were subdued in infected explants. Moscatilin, the stilbenoid active principle in D. ovatum, was found below the detection limit. The presence of two metabolites viz., Laudanosine, a benzyltetrahydroisoquinoline alkaloid and Lyciumin B, a cyclic peptide, were detected exclusively in the infected explants. The subjugated amino acids and phenolics in the infected plantlets were routed to produce phytoanticipins, and phenanthrenes, strengthening the defence mechanism in infected tissues. This research implies that the plant's defence mechanism activation could have prevented the extensive hairy root formation in the explants, even though nodulations and phenotype transitions were witnessed. Moscatilin has a structural resemblance with Resveratrol, a phytoalexin that combats bacterial and fungal pathogens. The study favours the possibility of Moscatlin being a precursor for phenanthrene compounds, thereby serving as a 'phytoanticipin' during the infection phase. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03180-9.

17.
Mol Plant Pathol ; 23(6): 795-804, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34569687

RESUMO

Plants perceive an assortment of external cues during their life cycle, including abiotic and biotic stressors. Biotic stress from a variety of pathogens, including viruses, oomycetes, fungi, and bacteria, is considered to be a substantial factor hindering plant growth and development. To hijack the host cell's defence machinery, plant pathogens have evolved sophisticated attack strategies mediated by numerous effector proteins. Several studies have indicated that plasmodesmata (PD), symplasmic pores that facilitate cell-to-cell communication between a cell and neighbouring cells, are one of the targets of pathogen effectors. However, in contrast to plant-pathogenic viruses, reports of fungal- and bacterial-encoded effectors that localize to and exploit PD are limited. Surprisingly, a recent study of PD-associated bacterial effectors has shown that a number of bacterial effectors undergo cell-to-cell movement via PD. Here we summarize and highlight recent advances in the study of PD-associated fungal/oomycete/bacterial effectors. We also discuss how pathogen effectors interfere with host defence mechanisms in the context of PD regulation.


Assuntos
Oomicetos , Plasmodesmos , Interações Hospedeiro-Patógeno , Oomicetos/metabolismo , Doenças das Plantas/microbiologia , Plantas/microbiologia , Plasmodesmos/metabolismo
18.
Saudi J Biol Sci ; 29(3): 1348-1354, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35280551

RESUMO

Thiamethoxam, a broad spectrum, neonicotinoid insecticide, is used on various crops including Brassica juncea L. to protect from intruding insects such as leaf-hoppers, aphids, thrips and white-flies. Exposure to thiamethoxam causes acute malady such as tumour development, cell apoptosis, liver damage and neurotoxicity. Melatonin is entailed in umpteen developmental processes of plants, including stress responses. The pleiotropic effects of melatonin in modulating plant growth validate it's imperative contribution as multi-regulatory substance. Exiguous information is known about the role of Pseudomonas putida in improving plant growth under thiamethoxam stress. Taking these aspects into consideration the contemporary study investigates the role of melatonin and Pseudomonas putida strain MTCC 3315 in alleviating the thiamethoxam induced toxicity in B. juncea plant. Fourier Transform Infrared Spectroscopy (FTIR) analysis uncloaked that thiamethoxam induced stress primarily affects the protein content of plant as compared to lipids, carbohydrates and cell wall components. Organic acid profiling of the treated samples carried-out by High-Performance Liquid Chromatography (HPLC), reported an upregulation in the level of organic acids, malic acid (110%), citric acid (170%), succinic acid (81%), fumaric acid (40%) and ascorbic acid (55%) in thiamethoxam treated plants compared to the investigational untreated plants. The melatonin treated seedlings grown under thiamethoxam stress, exhibit increased level of malic acid, citric acid, succinic acid, fumaric acid and ascorbic acid by 81%, 0.94%, 11%, 21% and 6% respectively. Further, thiamethoxam stressed plants inoculated with Pseudomonas putida showed stupendous up-regulation by 161% (malic acid), by 14% (citric acid), by 33% (succinic acid), by 30% (fumaric acid), by 100% (oxalic acid) respectively. Lastly, the combinatorial application of melatonin and Pseudomonas putida resulted in prodigious upsurge of malic acid by 165%, succinic acid by 69%, fumaric acid by 42% respectively in contrast to distinct melatonin and Pseudomonas putida treatments. The accumulation of organic acids ascertains the defence against thiamethoxam stress and corresponds to meet the energy generation requirement to skirmish thiamethoxam mediated abiotic stress in Brassica juncea plant.

19.
Behav Sci (Basel) ; 12(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36004861

RESUMO

The COVID-19 pandemic significantly influenced people's lives, with non-negligible consequences for the perception of well-being. This study sought to examine the effect of anxiety, post-traumatic impairment, and mature defenses on life satisfaction during the COVID-19 pandemic. One thousand three hundred thirty-nine Italian individuals (30% male; 70% female; Mage = 34.70; SD = 11.83) completed an online survey enclosing the Satisfaction with Life Scale, State-Trait Anxiety Inventory-Form X3, Impact of event scale-revised, and the Forty Item Defense Style Questionnaire. To test the hypothesized relationship, data were analyzed by applying a moderated-mediation analysis, a regression-based approach. Results showed that the negative effect of anxiety on life satisfaction was partially mediated by post-traumatic impairment, with a significant moderation effect of mature defenses on the relationship between post-traumatic impairment and life satisfaction. Specifically, with higher levels of mature defenses, the effects of post-traumatic impairment on consequences of the COVID-19 emergency on well-being. Furthermore, the protective role of mature defenses in facing post-traumatic impairment was shown. Such data may have applicative implications in different contexts in a management perspective of the different pandemic phases, contributing to more effective positive strength-based preventive actions to also support positive healthy organizations.

20.
R Soc Open Sci ; 7(1): 191471, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32218964

RESUMO

Species, through their structure and composition, have evolved to respond to environmental constraints. Predator-prey interactions are among environmental pressures that can lead to speciation, but it remains unclear how this pressure can be related to the material structure and performance. Recently, two land snails, Karaftohelix editha and Karaftohelix gainesi, were found to exhibit divergent phenotypes and responses to predation despite sharing the same habitat and most of their genome. Indeed, under attack from a beetle, K. editha snails retract into their shell whereas K. gainesi snails swing their shell. In this paper, we looked at the microstructure, composition, morphology and mechanics of the shells of those two species and discuss potential relationships between material structure and the snail defence behaviour. The results of this study provide additional arguments for the role of predator-prey interactions on speciation, as well as an unusual approach for the design of biomimetic structures adapted to a particular function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA