RESUMO
Recent advances in stem cell research have led to the creation of organoids, miniature replicas of human organs, offering innovative avenues for studying diseases. Kidney organoids, with their ability to replicate complex renal structures, provide a novel platform for investigating kidney diseases and assessing drug efficacy, albeit hindered by labor-intensive generation and batch variations, highlighting the need for tailored cryopreservation methods to enable widespread utilization. Here, we evaluated cryopreservation strategies for kidney organoids by contrasting slow-freezing and vitrification methods. 118 kidney organoids were categorized into five conditions. Control organoids followed standard culture, while two slow-freezing groups used 10% DMSO (SF1) or commercial freezing media (SF2). Vitrification involved V1 (20% DMSO, 20% Ethylene Glycol with sucrose) and V2 (15% DMSO, 15% Ethylene Glycol). Assessment of viability, functionality, and structural integrity post-thawing revealed notable differences. Vitrification, particularly V1, exhibited superior viability (91% for V1, 26% for V2, 79% for SF1, and 83% for SF2 compared to 99.4% in controls). 3D imaging highlighted distinct nephron segments among groups, emphasizing V1's efficacy in preserving both podocytes and tubules in kidney organoids. Cisplatin-induced injury revealed a significant reduction in regenerative capacities in organoids cryopreserved by flow-freezing methods, while the V1 method did not show statistical significance compared to the unfrozen controls. This study underscores vitrification, especially with high concentrations of cryoprotectants, as an effective approach for maintaining kidney organoid viability and structure during cryopreservation, offering practical approaches for kidney organoid research.
Assuntos
Criopreservação , Crioprotetores , Rim , Organoides , Criopreservação/métodos , Organoides/citologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Humanos , Rim/citologia , Crioprotetores/farmacologia , Vitrificação , Dimetil Sulfóxido/farmacologia , Etilenoglicol/farmacologia , Congelamento , Sobrevivência Celular/efeitos dos fármacosRESUMO
Lymph node status is a key factor in determining stage, treatment, and prognosis in cancers. Small lymph nodes in fat-rich gastrointestinal and breast cancer specimens are easily missed in conventional sampling methods. This study examined the effectiveness of the degreasing pretreatment with dimethyl sulfoxide (DMSO) in lymph node detection and its impact on the analysis of clinical treatment-related proteins and molecules. Thirty-three cases of gastrointestinal cancer specimens from radical gastrectomy and 63 cases of breast cancer specimens from modified radical mastectomy were included. After routine sampling of lymph nodes, the specimens were immersed in DMSO for 30 minutes for defatting. We assessed changes in the number of detected lymph nodes and pN staging in 33 gastrointestinal cancer specimens and 37 breast cancer specimens. In addition, we analyzed histologic characteristics, Masson trichrome special staining, and immunohistochemistry (gastrointestinal cancer: MMR, HER2, and PD-L1; breast cancer: ER, PR, AR, HER2, Ki-67, and PD-L1). Molecular status was evaluated for colorectal cancer (KRAS, NRAS, BRAF, and microsatellite instability) and breast cancer (HER2) in gastrointestinal cancer specimens and the remaining 26 breast cancer specimens. Compared with conventional sampling, DMSO pretreatment increased the detection rate of small lymph nodes (gastrointestinal cancer: P < .001; breast cancer: P < .001) and improved pN staging in 1 case each of gastric cancer, colon cancer, and rectal cancer (3/33; 9.1%). No significant difference in the morphology, special staining, protein, and molecular status of cancer tissue after DMSO treatment was found. Based on these results and our institutional experience, we recommend incorporating DMSO degreasing pretreatment into clinical pathologic sampling practices.
Assuntos
Neoplasias da Mama , Dimetil Sulfóxido , Neoplasias Gastrointestinais , Imuno-Histoquímica , Humanos , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Pessoa de Meia-Idade , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/tratamento farmacológico , Dimetil Sulfóxido/farmacologia , Idoso , Adulto , Masculino , Linfonodos/patologia , Linfonodos/metabolismo , Manejo de Espécimes/métodos , Metástase Linfática , Idoso de 80 Anos ou maisRESUMO
The most widely used method of platelet cryopreservation requires the addition of dimethyl sulfoxide (DMSO; Me2SO) as a cryoprotective agent (CPA) and pre-freeze removal of Me2SO before freezing to mitigate toxicity. However, alternative CPAs such as deep eutectic solvents (DES), which are less toxic could simplify this process. The aim of this study was to determine the effectiveness of a Proline-Glycerol (Prol-Gly 1:3) DES as a platelet CPA. Platelets were cryopreserved at -80 °C using 10 % Prol-Gly 1:3 (DES; n = 6), or in the absence of a cryoprotectant (no CPA; n = 6). Platelets were also cryopreserved according to the gold-standard blood-banking method using 5.5 % Me2SO (n = 6), with centrifugation and pre-freeze removal of the excess Me2SO. Platelet quality was assessed by flow cytometry and thromboelastography (TEG). Post-thaw recovery was similar between the three groups. The abundance of labile platelet glycoproteins GPIbα and GPVI were highest in the DES group, however, markers of activation (CD62P and annexin-V) were also higher in this group. In terms of function, the strength of the clot (maximum amplitude; TEG) and extent of clot retraction was better with DES platelets compared to no CPA, but lower than Me2SO platelets. DES provides a cryoprotective advantage to platelets when compared to no CPA. Importantly, when compared to Me2SO platelets, most quality parameters were similar in DES platelets. The major advantage with using a DES is biocompatibility, therefore it does not need to be removed prior to transfusion. This greatly simplifies the freezing and thawing process, avoiding the toxic effects of Me2SO.
Assuntos
Plaquetas , Preservação de Sangue , Criopreservação , Crioprotetores , Dimetil Sulfóxido , Solventes , Crioprotetores/farmacologia , Criopreservação/métodos , Humanos , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Dimetil Sulfóxido/farmacologia , Dimetil Sulfóxido/química , Solventes/química , Preservação de Sangue/métodos , Glicerol/farmacologia , Glicerol/química , Tromboelastografia , Prolina/farmacologia , Prolina/químicaRESUMO
Cryopreservation (CP) enables pooling and long-term banking of various types of cells, which is indispensable for the cell therapeutics. Dimethyl sulfoxide (DMSO) is universally used as a cryoprotectant in basic and clinical research. Although, the use of DMSO has been under serious debate due to significant clinical side effects correlated with infusions of cellular therapy products containing DMSO, the effect of CP with DMSO on the cell properties and functions remains unknown. Here, we experimentally found that the CP of human bone mesenchymal stem cells (hBMSCs) with 10 % DMSO results 10-15 % of cells apoptosis upon immediate freeze-thaw, ca. 3.8 times of DNA damage/repair relative to the fresh ones after post-thaw cultured in 48 h, and cell cycle arrests at G0/G1 after post-thaw cultured in 24 h. Moreover, CP with 10 % DMSO significantly increases the reactive oxygen species (ROS) level of the frozen-thawed MSCs which may be one of the causes impair cellular properties and functions. Indeed, we found that the differentiation and migration ability of post-thaw cultured hBMSCs decrease as the expression of adipogenic, osteogenic genes and F-actin reduces in the comparison with those of the fresh cells.
Assuntos
Dimetil Sulfóxido , Células-Tronco Mesenquimais , Humanos , Dimetil Sulfóxido/farmacologia , Dimetil Sulfóxido/metabolismo , Criopreservação/métodos , Crioprotetores/farmacologia , Crioprotetores/metabolismo , Apoptose , Ciclo Celular , DNA/metabolismo , Sobrevivência CelularRESUMO
During the key event 1 of skin sensitization defined as covalent binding or haptenization of sensitizer to either thiol or amino group of skin proteins, a sensitizer not only covalently binds with skin proteins but also interacts with nucleophilic small molecules such as glutathione (GSH). Although GSH would not be directly associated with skin sensitization, this interaction may be applied for developing an alternative test method simulating key event 1, haptenization. Thus, the aim of the present study was to examine whether N-acetyl-L-cysteine methyl ester (NACME), a thiol-containing compound, was selected as an electron donor to determine whether NACME reacted with sensitizers. Following a reaction of NACME with a sensitizer in a 96-well plate, the remaining NACME was measured spectrophotometrically using 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB). Following the optimization of test conditions with two different vehicles, such as acetonitrile (ACN) and dimethyl sulfoxide (DMSO), 64 test chemicals were tested to determine the predictive capacity of current NACME test method. The results obtained showed, the predictive capacity of 94.6% sensitivity, 88.9% specificity, and 92.2% accuracy utilizing DMSO as a vehicle with a cutoff NACME depletion of 5.85%. The three parameters were also over 85% in case of ACN. These values were comparable to or better than other OECD-approved test methods. Data demonstrated that a simple thiol-containing compound NACME might constitute as a reliable candidate for identifying reactive skin sensitizers, and that this method be considered as practical method as a screening tool for assessing a chemical's tendency to initiate skin sensitization.
Assuntos
Acetilcisteína , Acetilcisteína/análogos & derivados , Espectrofotometria , Humanos , Pele/efeitos dos fármacos , Ácido Ditionitrobenzoico/química , Haptenos/toxicidade , Haptenos/química , Alternativas aos Testes com Animais/métodos , AnimaisRESUMO
OBJECTIVES: To examine real-world data regarding intravesical dimethyl sulfoxide (DMSO) therapy after official approval as a treatment for Hunner-type interstitial cystitis (HIC) in Japan. METHODS: This single institution, retrospective observational study was conducted between 2021 and 2022 to evaluate the outcomes of 30 patients with refractory HIC who received intravesical DMSO therapy according to the approved standardized regimen: administration of DMSO every 2 weeks for a total of 12 weeks. Treatment outcomes were evaluated using a 7-graded global response assessment scale, O'Leary and Sant's symptom and problem indices (OSSI/OSPI), the overactive bladder symptom score (OABSS), an 11-point pain intensity numerical rating scale, quality of life (QOL) score, and frequency volume chart variables. Related complications were also documented. RESULTS: The response rates at 2, 4, 6, 8, 10, and 12 weeks were 36.7%, 43.3%, 53.3%, 60.0%, 70.0%, and 70.0%, respectively. Compared with baseline, OSSI/OSPI, pain intensity, urinary frequency, and the QOL score improved significantly from 4 weeks of treatment. The OABSS score and functional bladder capacity also showed a tendency toward moderate improvement, but the difference was not significant. The mean duration of symptom relapse after termination of treatment was 6.4 ± 3.9 months. No patients discontinued treatment due to adverse events, although acute bladder irritation during infusion was noted in 21 patients (70%), which disappeared within 3 days. CONCLUSIONS: This study verifies the safety, moderately durable efficacy, and tolerability of the standard intravesical treatment with DMSO for HIC in Japan.
Assuntos
Cistite Intersticial , Humanos , Cistite Intersticial/diagnóstico , Dimetil Sulfóxido/efeitos adversos , Qualidade de Vida , Japão , Administração Intravesical , Resultado do TratamentoRESUMO
Reductive N-11C-methylation using [11C]formaldehyde and amines has been used to prepare N-11C-methylated compounds. However, the yields of the N-11C-methylated compounds are often insufficient. In this study, we developed an efficient method for base-free reductive N-11C-methylation that is applicable to a wide variety of substrates, including arylamines bearing electron-withdrawing and electron-donating substituents. A 2-picoline borane complex, which is a stable and mild reductant, was used. Dimethyl sulfoxide was used as the primary reaction solvent, and glacial acetic acid or aqueous acetic acid was used as a cosolvent. While reductive N-11C-methylation efficiently proceeded under anhydrous conditions in most cases, the addition of water to the reductive N-11C-methylation generally increased the yield of the N-11C-methylated compounds. Substrates with hydroxy, carboxyl, nitrile, nitro, ester, amide, and phenone moieties and amine salts were applicable to the reaction. This proposed method for reductive N-11C-methylation should be applicable to a wide variety of substrates, including thermo-labile and base-sensitive compounds because the reaction was performed under relatively mild conditions (70°C) without the need for a base.
Assuntos
Aminas , Radioisótopos de Carbono , Formaldeído , Hidrocarbonetos Iodados , Metilação , Radioisótopos de Carbono/química , Aminas/química , Formaldeído/química , Hidrocarbonetos Iodados/química , OxirreduçãoRESUMO
Ruthenium chloride (RuCl3) is widely utilized for synthesis and catalysis of numerous compounds in academia and industry and is utilized as a key molecule in a variety of compounds with medical applications. Interestingly, RuCl3 has been demonstrated to modulate human plasmatic coagulation and serves as a constituent of a compounded inorganic antivenom that neutralizes the coagulopathic effects of snake venom in vitro and in vivo. Using thrombelastography, this investigation sought to determine if RuCl3 inhibition of the fibrinogenolytic effects of Crotalus atrox venom could be modulated by vehicle composition in human plasma. Venom was exposed to RuCl3 in 0.9% NaCl, phosphate-buffered saline (PBS), or 0.9% NaCl containing 1% dimethyl sulfoxide (DMSO). RuCl3 inhibited venom-mediated delay in the onset of thrombus formation, decreased clot growth velocity, and decreased clot strength. PBS and DMSO enhanced the effects of RuCl3. It is concluded that while a Ru-based cation is responsible for significant inhibition of venom activity, a combination of Ru-based ions containing phosphate and DMSO enhances RuCl3-mediated venom inhibition. Additional investigation is indicated to determine what specific Ru-containing molecules cause venom inhibition and what other combinations of inorganic/organic compounds may enhance the antivenom effects of RuCl3.
Assuntos
Antivenenos , Coagulação Sanguínea , Venenos de Crotalídeos , Crotalus , Dimetil Sulfóxido , Humanos , Dimetil Sulfóxido/farmacologia , Dimetil Sulfóxido/química , Antivenenos/farmacologia , Antivenenos/química , Venenos de Crotalídeos/antagonistas & inibidores , Venenos de Crotalídeos/farmacologia , Animais , Coagulação Sanguínea/efeitos dos fármacos , Compostos de Rutênio/farmacologia , Compostos de Rutênio/química , Cloreto de Sódio/farmacologia , Cloreto de Sódio/química , Tromboelastografia , Serpentes PeçonhentasRESUMO
Nickel manganese oxide (NiMnO3) combines magnetic and dielectric properties, making it a promising material for sensor and supercapacitor applications, as well as for catalytic water splitting. The efficiency of its utilization is notably influenced by particle size. In this study, we investigate the influence of thermal treatment parameters on the phase composition of products from alkali co-precipitation of nickel and manganese (II) ions and identify optimal conditions for synthesizing phase-pure nickel manganese oxide. Ultrafine nanoparticles of NiMnO3 (with sizes as small as 2 nm) are obtained via liquid-phase ultrasonic dispersion, exhibiting a narrow size distribution. A systematic exploration of the solvent nature (water, N-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethylformamide) on the efficiency of ultrasonic dispersion of NiMnO3 nanoparticles is provided. It is demonstrated that particle size is influenced not only by absorbed acoustic power, dependent on the physical properties of the used solvent (boiling temperature, gas solubility, viscosity, density) but also by the chemical stability of the solvent under prolonged ultrasonic treatment. Our findings provide insights for designing ultrasonic treatment protocols for nanoparticle dispersions with tailored particle sizes.
RESUMO
In the first part of this study, the electrochemical polymerization of two compounds, 3,5-dihydroxybenzoic acid and 2',6'-dihydroxyacetophenone, was compared in dimethyl sulfoxide solvent on platinum and glassy carbon electrodes. The voltammograms obtained showed remarkable differences between the two monomers and between the two electrode materials. The acetophenone derivative formed electropolymer remnants at the electrodes, while in the case of the benzoic acid derivative, practically no passivation occurred, and the scanning electron microscopic results reinforced this. A few stackings adsorbed only after electropolymerization from a highly concentrated solution of dihydroxybenzoic acid. As a modifying layer on the platinum and glassy carbon electrodes, the prepared films from 2',6'-dihydroxyacetophenone were tested for tributylamine in acetonitrile and in an aqueous solution of a redox-active compound, hydroquinone, during the stirring of the solution. More stable amperometric current signals could be reached with modified platinum than with glassy carbon, and the significant influence of the organic washing liquid after deposition was established via the study of noise level. In this respect, acetone was the best choice. The amperometric signals with the modified platinum obtained upon the addition of aliquots of the stock solution resulted in a 3.29 µM detection limit.
RESUMO
The increasing global market size of high-energy storage devices due to the boom in electric vehicles and portable electronics has caused the battery industry to produce a lot of waste lithium-ion batteries. The liberation and de-agglomeration of cathode material are the necessary procedures to improve the recycling derived from spent lithium-ion batteries, as well as enabling the direct recycling pathway. In this study, the supercritical (SC) CO2 was innovatively adapted to enable the recycling of spent lithium-ion batteries (LIBs) based on facilitating the interaction with a binder and dimethyl sulfoxide (DMSO) co-solvent. The results show that the optimum experimental conditions to liberate the cathode particles are processing at a temperature of 70 °C and 80 bar pressure for a duration of 20 min. During the treatment, polyvinylidene fluoride (PVDF) was dissolved in the SC fluid system and collected in the dimethyl sulfoxide (DMSO), as detected by the Fourier Transform Infrared Spectrometer (FTIR). The liberation yield of the cathode from the current collector reaches 96.7% under optimal conditions and thus, the cathode particles are dispersed into smaller fragments. Afterwards, PVDF can be precipitated and reused. In addition, there is no hydrogen fluoride (HF) gas emission due to binder decomposition in the suggested process. The proposed SC-CO2 and co-solvent system effectively separate the PVDF from Li-ion battery electrodes. Thus, this approach is promising as an alternative pre-treatment method due to its efficiency, relatively low energy consumption, and environmental benign features.
RESUMO
We studied the influence of DMSO administered ad libitum with drinking water in concentrations of 0.01, 0.1, and 1% for 4 and 6 weeks on pain sensitivity, motor coordination, and myelin content in the corpus callosum of C57BL/6 mice. After 6-week administration, DMSO in all studied concentrations decreased myelin content in the corpus callosum. Moreover, 4-week administration of 0.1% DMSO and 6-week administration of 1% DMSO increased the latency to fall in the rotarod test by 3.1 (p<0.05) and 5.1 (p<0.001) times, respectively. After 4-week administration of DMSO in concentrations of 0.01 and 0.1%, the latency of the tail flick response increased by 2.1 (p<0.05) and 1.8 times (p<0.001), respectively. Administration of DMSO in concentrations of 0.01 and 1% for 6 weeks led to a decrease of this parameter by 2.7 (p<0.05) and 3.8 times (p<0.01), respectively. Thus, DMSO in all studied concentrations decreased myelin content in the corpus callosum of C57BL/6 mice and modified motor coordination and pain sensitivity of animals.
Assuntos
Corpo Caloso , Dimetil Sulfóxido , Camundongos Endogâmicos C57BL , Bainha de Mielina , Animais , Dimetil Sulfóxido/administração & dosagem , Dimetil Sulfóxido/toxicidade , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/patologia , Camundongos , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/patologia , Bainha de Mielina/metabolismo , Masculino , Teste de Desempenho do Rota-Rod , Limiar da Dor/efeitos dos fármacosRESUMO
Sulfurous acid (H2SO3) is known to be thermodynamically instable decomposing into SO2 and H2O. All attempts to detect this elusive acid in solution failed up to now. Reported H2SO3 formation from an experiment carried out in a mass spectrometer as well as results from theoretical calculations, however, indicated a possible kinetic stability in the gas phase. Here, it is shown experimentally that H2SO3 is formed in the OH radical-initiated gas-phase oxidation of methanesulfinic acid (CH3S(O)OH) at 295±0.5â K and 1â bar of air with a molar yield of 53 - 17 + 7 ${{53}_{-17}^{+\ 7}}$ %. Further main products are SO2, SO3 and methanesulfonic acid. CH3S(O)OH represents an important intermediate product of dimethyl sulfide oxidation in the atmosphere. Global modeling predicts an annual H2SO3 production of â¼8â million metric tons from the OH+CH3S(O)OH reaction. The investigated H2SO3 depletion in the presence of water vapor results in k(H2O+H2SO3) <3×10-18â cm3 molecule-1 s-1, which indicates a lifetime of at least one second for atmospheric humidity. This work provides experimental evidence that H2SO3, once formed in the gas phase, is kinetically stable enough to allow its characterization and subsequent reactions.
RESUMO
Facultative anaerobic enteric pathogens can utilize a diverse array of alternate electron acceptors to support anaerobic metabolism and thrive in the hypoxic conditions within the mammalian gut. Dimethyl sulfoxide (DMSO) is produced by methionine catabolism and can act as an alternate electron acceptor to support anaerobic respiration. The DMSO reductase complex consists of three subunits, DmsA, DmsB, and DmsC, and allows bacteria to grow anaerobically with DMSO as an electron acceptor. The genomes of nontyphoidal Salmonella enterica encode three putative dmsABC operons, but the impact of the apparent genetic redundancy in DMSO reduction on the fitness of nontyphoidal S. enterica during infection remains unknown. We hypothesized that DMSO reduction would be needed for S. enterica serotype Typhimurium to colonize the mammalian gut. We demonstrate that an S. Typhimurium mutant with loss of function in all three putative DMSO reductases (ΔdmsA3) poorly colonizes the mammalian intestine when the microbiota is intact and when inflammation is absent. DMSO reduction enhances anaerobic growth through nonredundant contributions of two of the DMSO reductases. Furthermore, DMSO reduction influences virulence by increasing expression of the type 3 secretion system 2 and reducing expression of the type 3 secretion system 1. Collectively, our data demonstrate that the DMSO reductases of S. Typhimurium are functionally nonredundant and suggest DMSO is a physiologically relevant electron acceptor that supports S. enterica fitness in the gut.
Assuntos
Dimetil Sulfóxido , Sistemas de Secreção Tipo III , Animais , Virulência , Anaerobiose , Sistemas de Secreção Tipo III/metabolismo , Dimetil Sulfóxido/farmacologia , Dimetil Sulfóxido/metabolismo , Sorogrupo , Oxirredutases/metabolismo , Salmonella typhimurium , MamíferosRESUMO
Mature oocyte cryopreservation (OC) has become increasingly common since the American Society for Reproductive Medicine declared OC to no longer be experimental. Utilization of the open vitrification protocol has led to a marked improvement in the efficacy of oocyte cryopreservation. However, the safety and effectiveness of this cryopreservation method remain controversial. A previous report stated that among all initiated recipient cycles, the live-birth rate among recipients of all ages was significantly higher when using fresh donor oocytes (FDOs) rather than cryopreserved donor oocytes (CDOs). Confounding patient characteristics were noted as possible causes. OC stands as an acceptable elective medical intervention for preserving fertility in women. To further understand the effects of OC on the live birth rate resulting from fresh versus cryopreserved donor oocytes, reported data from the Society for Assisted Reproductive Technology from 2013 to 2020 were analyzed. The mean of the mean live-birth rate in all ages resulting from FDOs was 49.0% (44.6-53.3%) versus 41.0% (39.1-43.2%) for CDOs (difference, 8.0% [95% confidence interval, 5.35-10.57%], p value < 0.001). The lower live-birth rate observed for CDOs versus FDOs has been consistent throughout past decades. While there has been no reported increase in the aneuploidy rate for CDOs compared to FDOs, differences in the nondisjunction separation rate among different chromosomes were described in a recent report. Open vitrification culture medium usually contains high concentrations of cryoprotectants, such as 15% dimethyl sulfoxide (DMSO) and 15% ethylene glycol (EG). Recent studies showed that tissue culture with 0.1% DMSO or 10% EG resulted in deregulation of gene expression, disruption of epigenetic imprints, and accumulation of reactive oxygen species. The addition of melatonin, which can remove reactive oxygen species from vitrification medium, was shown to improve CDOs qualities and functions to conditions similar to those of FDOs; however, there were insufficient data to conclude that melatonin could improve the lower live-birth rate. These factors that affect live birth rates, birth defects, birth weights and developmental health cannot be ignored and perhaps need to be studied again and followed when evaluating the true effectiveness of human oocyte cryopreservation.
Assuntos
Dimetil Sulfóxido , Melatonina , Humanos , Feminino , Espécies Reativas de Oxigênio , Oócitos , CriopreservaçãoRESUMO
BACKGROUND: Cryopreservation and thawing protocols represent key factors for the efficacy of cellular therapy products, such as hematopoietic stem cells (HSCs). While the HSC cryopreservation has already been standardized, the thawing procedures have been poorly studied. This study aimed to evaluate the thawing and washing protocol of cord blood (CB) derived HSCs or the HPC(CB), by selecting the optimal thawing solution and determining CD34+ cells' stability over time. STUDY DESIGN AND METHODS: Seven cryopreserved CB products were thawed, washed, and resuspended in three different solutions (10% Dextran40 in NaCl equally prepared with 5% human albumin; 5% human albumin in PBS/EDTA; and normal saline) and stored at 4°C (±2°C). Mononuclear cell (MNC) count, CD45+/CD34+ cell enumeration, and cell viability were tested at 0, 1, 2, 4, 6, 8, 12, 24, 36, and 48 h. The protocol with the selected solution was further validated on additional 10 CB samples. The above parameters and the colony-forming unit (CFU) assay were analyzed at time points 0, 2, 4, 6, and 8 h. RESULTS AND DISCUSSION: The results showed that the 5% human albumin was the most suitable thawing solution. MNCs were stable up to 4 h (p = 0.009), viable CD45+ cells were unstable even at 2 h (p = 0.013), and viable CD34+ cells were stable until 6 h (p = 0.019). The CFU assay proved the proliferative potential up to 8 h, although significantly decreased after 4 h (p = 0.013), and correlated with the viable CD34+ cell counts. We demonstrated that the post-thawed and washed HPC(CB) using 5% human albumin is stable for up to 4 h.
Assuntos
Sangue Fetal , Células-Tronco Hematopoéticas , Humanos , Antígenos CD34 , Contagem de Leucócitos , Criopreservação/métodos , Albumina Sérica Humana , Albuminas , Sobrevivência CelularRESUMO
INTRODUCTION AND HYPOTHESIS: The primary aim of this study was to compare the effect of bladder instillations using dimethyl sulfoxide (DMSO) with triamcinolone versus bupivacaine, triamcinolone, and heparin (BTH) in women with newly diagnosed interstitial cystitis/painful bladder syndrome. The primary outcome was improvement in symptoms measured using the O'Leary-Sant Interstitial Cystitis Symptoms Index (ICSI) score. Secondary comparisons included changes in urinary frequency, nocturia, and bladder capacity. MATERIALS AND METHODS: This was a prospective, randomized study. Patients with a recent diagnosis of interstitial cystitis/painful bladder syndrome (IC/PBS) were randomized 1:1 to treatment with either 6 weekly bladder instillations of DMSO with triamcinolone or BTH. During follow-up visits, patients completed the ICSI questionnaire, and bladder capacity was determined through the retrograde filling of the bladder. The χ2 test or Student's t test were used for data analysis. RESULTS: A total of 83 patients were randomized, and final analysis included 70 participants who completed the 6 weekly instillations (42 DMSO, 28 BTH). The groups were similar in baseline demographics and clinical characteristics, except for cystometric maximum capacity (DMSO 338.62± 139.44 mL, BTH 447.43 ± 180.38 mL, p = 0.01). In the DMSO group, 63% of patients had a greater than 29.5% reduction in total ICSI score versus 43% in the BTH group (p = 0.15). Nocturia and pain were significantly reduced in the DMSO group. There was a significant increase from baseline in bladder capacity for both groups. CONCLUSION: In women with newly diagnosed IC/PBS, bladder instillations with DMSO and triamcinolone provide greater improvement in pain and nocturia compared to BTH.
Assuntos
Cistite Intersticial , Noctúria , Humanos , Feminino , Cistite Intersticial/terapia , Dimetil Sulfóxido/uso terapêutico , Triancinolona/uso terapêutico , Heparina/uso terapêutico , Bupivacaína/uso terapêutico , Noctúria/tratamento farmacológico , Estudos Prospectivos , Dor/tratamento farmacológico , Administração Intravesical , Resultado do TratamentoRESUMO
Extraction and chromatographic techniques for analyzing pharmaceutically active compounds necessitate large quantities of organic solvents, resulting in a high volume of hazardous waste. The concept of green solvents focuses on protecting the environment by reducing or even eliminating the use of toxic solvents. The main objective of this critical review article is to build a framework for choosing green solvents for antibiotic analyses. The article briefly discusses the chemical properties of ciprofloxacin, sulfamethoxazole, tetracycline, and trimethoprim, and the current state of methodologies for their analyses in water and wastewater. It evaluates the greenness of solvents used for antibiotic analyses and includes insights on the comparison between conventional and green solvents for the analyses. An economic and environmental health and safety analysis combined with a Conductor-like Screening Model for Real Solvent (COSMO-RS) molecular simulation technique for predicting extraction efficiency was used in the evaluation. Methyl acetate and propylene carbonate tied for the greenest solvents from an environmental and economic perspective, whereas the COSMO-RS approach suggests dimethyl sulfoxide (DMSO) as the most suitable candidate. Although DMSO ranked third environmentally and economically, after methyl acetate and propylene carbonate, it would be an ideal replacement of hazardous solvents if it could be manufactured at a lower cost. DMSO showed the highest extraction capacity, as it can interact with antibiotics through hydrophobic interaction and hydrogen bonding. This article can be used as a green solvent selection guide for developing sustainable processes for antibiotic analyses.
Assuntos
Antibacterianos , Dimetil Sulfóxido , Solventes/química , Saúde AmbientalRESUMO
Dimethyl sulfoxide (DMSO) has been used not only as an experimental solvent, but also as a therapeutic agent for interstitial cystitis. The therapeutic effects of DMSO on interstitial cystitis are presumed to involve anti-inflammatory and analgesic effects. However, the effects of DMSO on urinary bladder smooth muscle (UBSM) have not been fully investigated. Thus, in this study, we investigated the effects of DMSO on rat UBSM contractions, and these effects were compared with those of acetone, which has a structure in which the sulfur of DMSO is replaced with carbon. DMSO (0.5-5%) enhanced acetylcholine (ACh)-induced contractions, whereas acetone (3 and 5%) suppressed them. Additionally, DMSO (5%) suppressed carbachol-induced contractions. DMSO/acetone (0.5-5%) inhibited 80 mM KCl-induced contractions in a concentration-dependent manner; however, the inhibitory effects of DMSO were weaker than those of acetone. The enhancing/suppressing effects of DMSO and acetone were almost completely abolished by wash out. DMSO and acetone (0.5-5%) inhibited recombinant human acetylcholinesterase (rhAChE) activity in a concentration-dependent manner. At 0.5 and 1%, the inhibitory effects of DMSO on rhAChE activity were more potent than those of acetone. These findings suggest that DMSO can enhance ACh-induced UBSM contractions and promote urinary bladder motility by inhibiting acetylcholinesterase (AChE), although DMSO also inhibits Ca2+ influx-mediated UBSM contractions. In addition, the sulfur atom in DMSO might play an important role in its enhancing effect on ACh-induced contractions by inhibiting AChE, as acetone did not enhance these contractions.
Assuntos
Acetilcolina , Cistite Intersticial , Humanos , Ratos , Animais , Acetilcolina/farmacologia , Acetilcolinesterase , Dimetil Sulfóxido/farmacologia , Bexiga Urinária , Acetona/farmacologia , Músculo Liso , Contração MuscularRESUMO
The cornea is the transparent tissue in front of the eye that bends light to help the eye focus. More than five million people's vision can be restored by a corneal transplant (keratoplasty), but there is a scarcity of suitable donor tissue. Cryopreservation could potentially increase the on-demand availability of corneas by reducing expiration and contamination during hypothermic storage, and allow equitable distribution. Understanding the transport of water and cryoprotectants across the tissue is important in developing effective cryopreservation protocols. Here, we first measured the shrinking and swelling kinetics at 22 °C and 0 °C of porcine corneoscleral discs when exposed to phosphate-buffered saline and to a cryoprotectant vehicle solution containing 2.5% chondroitin sulfate and 1% dextran. Other valuable measurements were made including the density and osmolality of the vehicle solution at 0 °C, and the water fraction of porcine cornea and sclera. Using the knowledge gained from this first part to minimize background swelling, we then examined permeation kinetics of dimethyl sulfoxide (Me2SO) in porcine corneoscleral discs at 0 °C, the temperature at which cryoprotectant loading typically occurs. The concentration data obtained as a function of time were fitted to a Fick's law model of one-dimensional diffusion to measure an effective diffusion coefficient of Me2SO, which was found to be 5.306×10-11 m2/s. We further quantified permeation kinetics of Me2SO in sclera alone at 0 °C to support our hypothesis that our measurements for corneoscleral discs will not be affected by the presence of the sclera. The obtained effective diffusion coefficient can be used in modelling aimed at developing cryopreservation protocols that minimize the exposure time of the corneas during the cryoprotectant loading step.