Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(8): 104988, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392847

RESUMO

Topoisomerases are enzymes that relax DNA supercoiling during replication and transcription. Camptothecin, a topoisomerase 1 (TOP1) inhibitor, and its analogs trap TOP1 at the 3'-end of DNA as a DNA-bound intermediate, resulting in DNA damage that can kill cells. Drugs with this mechanism of action are widely used to treat cancers. It has previously been shown that tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs TOP1-induced DNA damage generated by camptothecin. In addition, tyrosyl-DNA phosphodiesterase 2 (TDP2) plays critical roles in repairing topoisomerase 2 (TOP2)-induced DNA damage at the 5'-end of DNA and in promoting the repair of TOP1-induced DNA damage in the absence of TDP1. However, the catalytic mechanism by which TDP2 processes TOP1-induced DNA damage has not been elucidated. In this study, we found that a similar catalytic mechanism underlies the repair of TOP1- and TOP2-induced DNA damage by TDP2, with Mg2+-TDP2 binding playing a role in both repair mechanisms. We show chain-terminating nucleoside analogs are incorporated into DNA at the 3'-end and abort DNA replication to kill cells. Furthermore, we found that Mg2+-TDP2 binding also contributes to the repair of incorporated chain-terminating nucleoside analogs. Overall, these findings reveal the role played by Mg2+-TDP2 binding in the repair of both 3'- and 5'-blocking DNA damage.


Assuntos
Proteínas de Ligação a DNA , Magnésio , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Magnésio/metabolismo , Nucleosídeos , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Dano ao DNA , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Inibidores da Topoisomerase , Camptotecina/farmacologia , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , DNA , Reparo do DNA
2.
Anal Biochem ; 690: 115525, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38554995

RESUMO

Three thioflavin T (ThT) derivatives, namely ThT/ethylenediaminetetraacetic acid conjugates (E1T, E2T, and E1T1P), were designed and synthesized as sensing components for divalent metal ion detection. Furthermore, these ThT derivatives were used to design lantern-type G-quadruplex (G4) fluorescent sensors. The fluorescence intensities of the ThT derivatives decreased by 1.2- to 5.6-folds in the presence of Ni2+ and Cu2+, respectively, regardless of the topology of the utilized G4. Conversely, when Mn2+ and Zn2+ coexisted in antiparallel G4, the fluorescence intensities of E2T increased to approximately 3.3- and 2.3-folds, respectively, depending on the concentration of the divalent metal ion, allowing for quantitative analyses. The Job plot analysis revealed that the binding ratio of G4 and E2T changed from 2:1 to 1:2 with the increasing concentration of the divalent metal ions. These results indicated that the basic principle of such a lantern-type G4 sensor can be applied to the detection of divalent metal ions and other types of targets, such as proteins, and small molecules via ThT derivatization.

3.
J Virol ; 96(6): e0208521, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35044209

RESUMO

The cap-snatching endonuclease (EN) of segmented negative-strand RNA viruses (sNSVs) produces short capped primers for viral transcription by cleaving the host mRNAs. EN requires divalent metals as cofactors for nucleic acid substrates cleavage; however, the detailed mechanism of metal ion-dependent catalysis of ENs remains obscure. In this work, we reported the EN crystal structure of the Ebinur Lake virus (EBIV), an emerging mosquito-borne orthobunyavirus, and investigated its enzymatic properties and metal ion-based catalytic mechanism. In vitro biochemical data showed that EBIV EN is a specific RNA nuclease and prefers to cleave unstructured uridine-rich ssRNA. Structural comparison indicated that the overall structural architecture of EBIV EN is similar to that of other sNSV ENs, while the detailed active site configuration including the binding state of metal ions and the conformation of the LA/LB loop pair is different. Based on sequence conservation analysis, nine active site mutants were constructed, and seven crystal structures of them were determined. Mutations of active site residues associated with the two metal ions (Mn1 and Mn2) coordination abolished EN activity. Crystallographic analyses further revealed that none of these mutants bound two metal ions simultaneously in the active site. Importantly, we found that the perturbation of Mn1-coordination (metal site 1), resulted in the enhancement or elimination of Mn2-coordination (metal site 2). Taken together, our data provide structural evidence to support the two-metal-ion catalytic mechanism of EBIV EN and the correlation of metal binding at the two binding sites, which may be commonly shared by bunyaviruses or other sNSVs. IMPORTANCE The viral endonucleases (ENs) encoded by bunyaviruses and orthomyxoviruses play an essential role in initiating transcription by "snatching" capped primers from the host mRNAs. These ENs are metal-ion-dependent nucleases; however, the details of their catalytic mechanism remain elusive. Here, we reported high-resolution crystal structures of the wild-type and mutant ENs of a novel bunyavirus, the Ebinur Lake virus (EBIV), and revealed the structure and function relationship of EN. The EBIV EN exhibited differences in the details of active site structure compared to its homologues. Our data provided structural evidence to support a two-metal-ion catalytic mechanism of EBIV EN, and found the correlation of metal binding at both binding sites, which might reflect the dynamic structural properties that correlate to EN catalytic function. Taken together, our results revealed the structural characteristics of EBIV EN and made important implications for understanding the catalytic mechanism of cap-snatching ENs.


Assuntos
Endonucleases , Orthobunyavirus , Proteínas Virais , Animais , Catálise , Endonucleases/química , Endonucleases/genética , Endonucleases/metabolismo , Ativação Enzimática/genética , Mutação , Orthobunyavirus/enzimologia , Orthobunyavirus/genética , Capuzes de RNA/metabolismo , RNA Mensageiro/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
4.
Pharm Res ; 40(8): 2027-2037, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37118348

RESUMO

PURPOSE: New formulations of the glycopeptide drug dalbavancin containing 2-hydroxpropyl-ß-cyclodextrin (2HPßCD) with or without divalent metal ions in phosphate buffer (pH 7.0) were tested to evaluate whether these excipients influence the aqueous solution stability of dalbavancin. METHOD: Recovery of dalbavancin from phosphate buffered solutions at pH 7.0 with different concentrations of 2HPßCD and a divalent metal ion (Ca2+, Mg2+, or Zn2+) was evaluated by RP-HPLC and HP-SEC after four weeks of storage at 5°C and 55°C. A long-term study of formulations with 2HPßCD and Mg2+ was carried out over six months at 5°C, 25°C, and 40°C using RP-HPLC. RESULTS: Dalbavancin solutions with either 5.5 mM or 55 mM 2HPßCD were significantly more stable with Mg2+ than with the other divalent metal ions, both at 55°C for four weeks and at 40°C for six months. Dalbavancin was found to be more stable in aqueous solutions at a concentration of 1 mg/mL than at 20 mg/mL with 2HPßCD and Mg2+ at 40°C for six months. CONCLUSION: The results suggest that 2HPßCD forms an inclusion complex with dalbavancin that slows the formation of the major degradant, mannosyl aglycone (MAG). The effect of 2HPßCD is increased in the presence of Mg2+ and phosphate at pH 7.0, and the complex is more stable at a dalbavancin concentration of 1 mg/mL than at 20 mg/mL. These observations point towards the possibility of formulating a dalbavancin injection solution with a long shelf life at room temperature and physiological pH.


Assuntos
Excipientes , Teicoplanina , 2-Hidroxipropil-beta-Ciclodextrina , Água , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Soluções
5.
Angew Chem Int Ed Engl ; 62(2): e202212339, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36269169

RESUMO

Multivalent batteries show promising prospects for next-generation sustainable energy storage applications. Herein, we report a polytriphenylamine (PTPAn) composite cathode capable of highly reversible storage of tetrakis(hexafluoroisopropyloxy) borate [B(hfip)4 ] anions in both Magnesium (Mg) and calcium (Ca) battery systems. Spectroscopic and computational studies reveal the redox reaction mechanism of the PTPAn cathode material. The Mg and Ca cells exhibit a cell voltage >3 V, a high-power density of ∼∼3000 W kg-1 and a high-energy density of ∼∼300 Wh kg-1 , respectively. Moreover, the combination of the PTPAn cathode with a calcium-tin (Ca-Sn) alloy anode could enable a long battery-life of 3000 cycles with a capacity retention of 60 %. The anion storage chemistry associated with dual-ion electrochemical concept demonstrates a new feasible pathway towards high-performance divalent ion batteries.

6.
Bioorg Med Chem ; 28(22): 115796, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33038786

RESUMO

10-23 DNAzyme is a catalytic DNA molecule from in vitro selection, the 15-mer catalytic core was investigated for more DNAzyme variants by block deletions. DNAzyme DZM01 was selected with metal ion dependence of Pb2+ â‰« Mn2+, with no activity in the presence of Mg2+ (20 mM), Ca2+ (20 mM), Zn2+ (20 mM, pH 6). The unique binding properties of Pb2+ with nucleic acids might be responsible for the formation of the catalytic core, which is different from that of other divalent metal ions. More DNAzyme variants are expected to be derived for specific metal ion dependence by various nucleobase sequences and modifications.


Assuntos
DNA Catalítico/metabolismo , DNA de Cadeia Simples/metabolismo , DNA/metabolismo , Chumbo/metabolismo , Biocatálise , DNA/química , DNA Catalítico/química , DNA de Cadeia Simples/química , Concentração de Íons de Hidrogênio , Cinética , Chumbo/química
7.
J Surg Res ; 234: 343-352, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30527495

RESUMO

BACKGROUND: Despite a high rate of recurrences, long-term survival can be achieved after the resection of hepatocellular carcinoma (HCC) with effective local treatment. Discovery of adverse prognostic variables to identify patients with high risk of recurrence could improve the management of HCC. Accumulating evidence showing a link between carcinogenesis and increased expression of iron import proteins and intracellular iron prompted us to investigate a role of divalent metal-ion transporter-1 (DMT1) that binds and regulates a variety of divalent metals in HCC. MATERIALS AND METHODS: Clinical and gene expression data from RNA seq in 369 HCC patients were obtained from The Cancer Genome Atlas. Disease-free survival was compared between DMT1 high- and low-expressing tumors, and gene set enrichment analysis was conducted. RESULTS: Patients with lower expression of DMT1 exhibited significantly worse disease-free survival compared with the DMT1 high group (P = 0.044), notably in advanced-stage patients (P = 0.008). DMT1 expression did not differ in etiologies, stages, and differentiation status of HCC. Interestingly, DMT1 expression levels inversely associated with cellular respiratory function in HCC. Furthermore, gene set enrichment analysis revealed that metabolism-related gene sets such as glycolysis, oxidative phosphorylation, and reactive oxygen species pathway were significantly enriched in the DMT1 low-expressing HCC. CONCLUSIONS: Low DMT1 expression associates with increased oxidative phosphorylation as well as glycolysis and identifies early recurrence in HCC patients after surgical treatment.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Recidiva Local de Neoplasia/metabolismo , Fosforilação Oxidativa , Fatores de Transcrição/metabolismo , Adulto , Idoso , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/cirurgia , Bases de Dados Factuais , Intervalo Livre de Doença , Feminino , Glicólise , Hepatectomia , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/cirurgia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/genética , Prognóstico , Fatores de Transcrição/genética
8.
Biochim Biophys Acta ; 1860(3): 569-75, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26723176

RESUMO

BACKGROUND: Fluoroquinolones target bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV (Topo IV). Fluoroquinolones trap a topoisomerase-DNA covalent complex as a topoisomerase-fluoroquinolone-DNA ternary complex and ternary complex formation is critical for their cytotoxicity. A divalent metal ion is required for type IIA topoisomerase-catalyzed strand breakage and religation reactions. Recent studies have suggested that type IIA topoisomerases use two metal ions, one structural and one catalytic, to carry out the strand breakage reaction. METHODS: We conducted a series of DNA cleavage assays to examine the effects of fluoroquinolones and quinazolinediones on Mg(2+)-, Mn(2+)-, or Ca(2+)-supported DNA cleavage activity of Escherichia coli Topo IV. RESULTS: In the absence of any drug, 20-30 mM Mg(2+) was required for the maximum levels of the DNA cleavage activity of Topo IV, whereas approximately 1mM of either Mn(2+) or Ca(2+) was sufficient to support the maximum levels of the DNA cleavage activity of Topo IV. Fluoroquinolones promoted the Topo IV-catalyzed strand breakage reaction at low Mg(2+) concentrations where Topo IV alone could not efficiently cleave DNA. CONCLUSIONS AND GENERAL SIGNIFICANCE: At low Mg(2+) concentrations, fluoroquinolones may stimulate the Topo IV-catalyzed strand breakage reaction by promoting Mg(2+) binding to metal binding site B through the structural distortion in DNA. As Mg(2+) concentration increases, fluoroquinolones may inhibit the religation reaction by either stabilizing Mg(2+) at site B or inhibition the binding of Mg(2+) to site A. This study provides a molecular basis of how fluoroquinolones stimulate the Topo IV-catalyzed strand breakage reaction by modulating Mg(2+) binding.


Assuntos
Clivagem do DNA/efeitos dos fármacos , DNA Topoisomerase IV/metabolismo , Fluoroquinolonas/farmacologia , Magnésio/metabolismo , Sítios de Ligação , Cálcio/farmacologia , Catálise , Magnésio/farmacologia
9.
Appl Microbiol Biotechnol ; 100(18): 8003-12, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27131500

RESUMO

His-Asn-His (HNH) proteins are a very common family of small nucleic acid-binding proteins that are generally associated with endonuclease activity and are found in all kingdoms of life. Although HNH endonucleases from mesophiles have been widely investigated, the biochemical functions of HNH endonucleases from thermophilic bacteriophages remain unknown. Here, we characterized the biochemical properties of a thermostable HNH endonuclease from deep-sea thermophilic bacteriophage GVE2. The recombinant GVE2 HNH endonuclease exhibited non-specific cleavage activity at high temperature. The optimal temperature of the GVE2 HNH endonuclease for cleaving DNA was 60-65 °C, and the enzyme retained its DNA cleavage activity even after heating at 100 °C for 30 min, suggesting the enzyme is a thermostable endonuclease. The GVE2 HNH endonuclease cleaved DNA over a wide pH spectrum, ranging from 5.5 to 9.0, and the optimal pH for the enzyme activity was 8.0-9.0. Furthermore, the GVE2 HNH endonuclease activity was dependent on a divalent metal ion. While the enzyme is inactive in the presence of Cu(2+), the GVE2 HNH endonuclease displayed cleavage activity of varied efficiency with Mn(2+), Mg(2+), Ca(2+), Fe(2+), Co(2+), Zn(2+), and Ni(2+). The GVE2 HNH endonuclease activity was inhibited by NaCl. This study provides the basis for determining the role of this endonuclease in life cycle of the bacteriophage GVE2 and suggests the potential application of the enzyme in molecular biology and biotechnology.


Assuntos
Bacteriófagos/enzimologia , Endonucleases/metabolismo , Proteínas Recombinantes/metabolismo , Bacteriófagos/isolamento & purificação , Cátions Bivalentes/metabolismo , Clonagem Molecular , Coenzimas/metabolismo , DNA/metabolismo , Endonucleases/química , Endonucleases/isolamento & purificação , Inibidores Enzimáticos/metabolismo , Estabilidade Enzimática , Temperatura Alta , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Água do Mar/virologia , Cloreto de Sódio/metabolismo
10.
Annu Rev Nutr ; 34: 95-116, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24995690

RESUMO

Given their similar physiochemical properties, it is a logical postulate that iron and copper metabolism are intertwined. Indeed, iron-copper interactions were first documented over a century ago, but the homeostatic effects of one on the other has not been elucidated at a molecular level to date. Recent experimental work has, however, begun to provide mechanistic insight into how copper influences iron metabolism. During iron deficiency, elevated copper levels are observed in the intestinal mucosa, liver, and blood. Copper accumulation and/or redistribution within enterocytes may influence iron transport, and high hepatic copper may enhance biosynthesis of a circulating ferroxidase, which potentiates iron release from stores. Moreover, emerging evidence has documented direct effects of copper on the expression and activity of the iron-regulatory hormone hepcidin. This review summarizes current experimental work in this field, with a focus on molecular aspects of iron-copper interplay and how these interactions relate to various disease states.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Homeostase , Ferro da Dieta/metabolismo , Modelos Biológicos , Transdução de Sinais , Animais , Transporte Biológico , Cobre/efeitos adversos , Cobre/química , Células Eritroides/metabolismo , Humanos , Absorção Intestinal , Mucosa Intestinal , Ferro da Dieta/efeitos adversos , Ferro da Dieta/antagonistas & inibidores , Fígado/metabolismo , Macrófagos/metabolismo , Isoformas de Proteínas/metabolismo
11.
J Gastroenterol Hepatol ; 30(3): 513-20, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25318588

RESUMO

BACKGROUND AND AIM: The body's requirement for iron is different at different developmental stages. However, the molecular mechanisms of age-dependent iron metabolism are poorly understood. In the present study, we investigated the expression of iron transport proteins in the duodenum of Sprague-Dawley rats at five different age stages. METHODS: Male Sprague-Dawley rats at postnatal week (PNW) 1, 3, 12, 44, and 88 were employed in the study. Serum iron status and tissue non-heme iron concentrations in the spleen, liver, bone marrow, heart, kidney, duodenal epithelium, and gastrocnemius were examined at each age stage. The expression of duodenal cytochrome b (DcytB), divalent metal transporter 1 (DMT1), ferroportin 1 (FPN1), hephaestin, and hepcidin were measured by real-time polymerase chain reaction or Western blot. RESULTS: The levels of serum iron and transferrin saturation were higher in the rats at PNW1 and 3 than in those at PNW12, 44, and 88. Non-heme iron contents decreased from PNW1 to PNW3 and then increased thereafter. Duodenal DcytB, DMT1, and FPN1 increased to the highest level at PNW3 and then decreased from PNW12 to 88. The hepatic hepcidin mRNA level decreased to the lowest level at PNW3 and then increased with age. CONCLUSION: Our findings showed that age had a significant effect on body iron status. The increased duodenal DcytB, DMT1, and FPN1 expression can enhance intestinal iron absorption to meet the high iron requirements in infants. Hepcidin or enterocyte iron levels may be involved in the regulation of age-dependent FPN1, DMT1, and DcytB expression in the duodenum.


Assuntos
Envelhecimento/genética , Envelhecimento/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Citocromos b/genética , Citocromos b/metabolismo , Duodeno/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Expressão Gênica , Ferro/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Animais , Western Blotting , Enterócitos/metabolismo , Hepcidinas/metabolismo , Absorção Intestinal/genética , Masculino , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Distribuição Tecidual , Transferrina/metabolismo
12.
Am J Physiol Gastrointest Liver Physiol ; 307(4): G397-409, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24994858

RESUMO

Iron is an essential trace mineral that plays a number of important physiological roles in humans, including oxygen transport, energy metabolism, and neurotransmitter synthesis. Iron absorption by the proximal small bowel is a critical checkpoint in the maintenance of whole-body iron levels since, unlike most other essential nutrients, no regulated excretory systems exist for iron in humans. Maintaining proper iron levels is critical to avoid the adverse physiological consequences of either low or high tissue iron concentrations, as commonly occurs in iron-deficiency anemia and hereditary hemochromatosis, respectively. Exquisite regulatory mechanisms have thus evolved to modulate how much iron is acquired from the diet. Systemic sensing of iron levels is accomplished by a network of molecules that regulate transcription of the HAMP gene in hepatocytes, thus modulating levels of the serum-borne, iron-regulatory hormone hepcidin. Hepcidin decreases intestinal iron absorption by binding to the iron exporter ferroportin 1 on the basolateral surface of duodenal enterocytes, causing its internalization and degradation. Mucosal regulation of iron transport also occurs during low-iron states, via transcriptional (by hypoxia-inducible factor 2α) and posttranscriptional (by the iron-sensing iron-regulatory protein/iron-responsive element system) mechanisms. Recent studies demonstrated that these regulatory loops function in tandem to control expression or activity of key modulators of iron homeostasis. In health, body iron levels are maintained at appropriate levels; however, in several inherited disorders and in other pathophysiological states, iron sensing is perturbed and intestinal iron absorption is dysregulated. The iron-related phenotypes of these diseases exemplify the necessity of precisely regulating iron absorption to meet body demands.


Assuntos
Absorção Intestinal/fisiologia , Ferro/metabolismo , Anemia Ferropriva/fisiopatologia , Animais , Disponibilidade Biológica , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Citocromos b/metabolismo , Dieta , Enterócitos/metabolismo , Compostos Férricos/metabolismo , Heme/metabolismo , Hemocromatose/fisiopatologia , Hepatócitos/metabolismo , Hepcidinas/fisiologia , Homeostase/fisiologia , Humanos , Microvilosidades/metabolismo
13.
J Inorg Biochem ; 256: 112547, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38581802

RESUMO

Transition metal ions are structural and catalytic cofactors of many proteins including human carbonic anhydrase (CA), a Zn-dependent hydrolase. Sulfonamide inhibitors of CA recognize and form a coordination bond with the Zn ion located in the active site of the enzyme. The Zn ion may be removed or substituted with other metal ions. Such CA protein retains the structure and could serve as a tool to study metal ion role in the recognition and binding affinity of inhibitor molecules. We measured the affinities of selected divalent transition metal ions, including Mn, Fe, Co, Ni, Cu, Cd, Hg, and Zn to metal-free CA isozymes CA I, CA II, and CAIX by fluorescence-based thermal shift assay, prepared metal-substituted CAs, and determined binding of diverse sulfonamide compounds. Sulfonamide inhibitor binding to metal substituted CA followed a U-shape pH dependence. The binding was dissected to contributing binding-linked reactions and the intrinsic binding reaction affinity was calculated. This value is independent of pH and protonation reactions that occur simultaneously upon binding native CA and as demonstrated here, to metal substituted CA. Sulfonamide inhibitor binding to cancer-associated isozyme CAIX diminished in the order: Zn > Co > Hg > Cu > Cd > Mn > Ni. Energetic contribution of the inhibitor-metal coordination bond was determined for all above metals. The understanding of the principles of metal influence on ligand affinity and selectivity should help design new drugs targeting metalloenzymes.


Assuntos
Anidrase Carbônica IX , Inibidores da Anidrase Carbônica , Sulfonamidas , Sulfonamidas/química , Inibidores da Anidrase Carbônica/química , Humanos , Anidrase Carbônica IX/metabolismo , Anidrase Carbônica IX/antagonistas & inibidores , Anidrase Carbônica IX/química , Ligação Proteica , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/química , Concentração de Íons de Hidrogênio
14.
Food Chem ; 406: 135027, 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-36493573

RESUMO

Identification of cis/trans-carbon-carbon double-bond (CC) isomers remain challenging. Herein, a simple and rapid method for the separation and analysis of cis/trans-maleic acid (MA) and aconitic acid (AA) using Trapped Ion Mobility Spectrometry (TIMS) was developed. α-, ß-, γ-cyclodextrin (CD) were served as the separation reagent, slight difference in mobility separation was obtained by [CD-MA/AA-H]-. Specially, with the addition of divalent metal ion (G2+) as coordination metal ion, the separation effect was much increased by [CD-MA/AA + G-H]+, and α-CD has better mobility separation effect than ß-/γ-CD. Moreover, chemical calculations revealed the binary and ternary complexes are in the inclusion forms, and microscopic interactions between cis/trans-MA/AA, CDs, and G2+ are somewhat different that making their mobility separation. Finally, quantifications of cis/trans-isomers were analyzed in food samples, with good linearity (R2 > 0.99) and recoveries obtained from 87.25 % to 100.73 %.


Assuntos
Ciclodextrinas , Ciclodextrinas/química , Isomerismo
15.
MedComm (2020) ; 3(1): e99, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35281791

RESUMO

Listeria monocytogenes, a food-borne Gram-positive pathogen, often causes diseases such as gastroenteritis, bacterial sepsis, and meningitis. Newly discovered extracellular electron transfer (EET) from L. monocytogenes plays critical roles in the generation of redox molecules as electron carriers in bacteria. A Mg2+-dependent protein flavin mononucleotide (FMN) transferase (FmnB; UniProt: LMRG_02181) in EET is responsible for the transfer of electrons from intracellular to extracellular by hydrolyzing cofactor flavin adenine dinucleotide (FAD) and transferring FMN. FmnB homologs have been investigated in Gram-negative bacteria but have been less well studied in Gram-positive bacteria. In particular, the catalytic and inhibitory mechanisms of FmnB homologs remain elusive. Here, we report a series of crystal structures of apo-FmnB and FmnB complexed with substrate FAD, three inhibitors AMP, ADP, and ATP, revealing the unusual catalytic triad center (Asp301-Ser257-His273) of FmnB. The three inhibitors indeed inhibited the activity of FmnB in varying degrees by occupying the binding site of the FAD substrate. The key residue Arg262 of FmnB was profoundly affected by ADP but not AMP or ATP. Overall, our studies not only provide insights into the promiscuous ligand recognition behavior of FmnB but also shed light on its catalytic and inhibitory mechanisms.

16.
Front Mol Biosci ; 9: 824794, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35300112

RESUMO

Almost all DNA polymerases (pols) exhibit bell-shaped activity curves as a function of both pH and Mg2+ concentration. The pol activity is reduced when the pH deviates from the optimal value. When the pH is too low the concentration of a deprotonated general base (namely, the attacking 3'-hydroxyl of the 3' terminal residue of the primer strand) is reduced exponentially. When the pH is too high the concentration of a protonated general acid (i.e., the leaving pyrophosphate group) is reduced. Similarly, the pol activity also decreases when the concentration of the divalent metal ions deviates from its optimal value: when it is too low, the binding of the two catalytic divalent metal ions required for the full activity is incomplete, and when it is too high a third divalent metal ion binds to pyrophosphate, keeping it in the replication complex longer and serving as a substrate for pyrophosphorylysis within the complex. Currently, there is a controversy about the role of the third metal ion which we will address in this review.

17.
Bioresour Technol ; 341: 125785, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34455248

RESUMO

The nitrogen metabolic pathways of Pseudomonas taiwanensis J488 have not been confirmed from genomic function analysis and its divalent metal ion resistance remains poorly understood. In this study, the key denitrifying gene of Pseudomonas taiwanensis J488, nirB, was determined by draft genome sequencing. The nitrification of ammonium was insensitive to high concentrations of Ca(II), Mn(II), Zn(II), and Cd(II). Similarly, complete nitrite removal was achieved despite Mn(II) and Zn(II) reaching concentrations up to 30 mg/L. Furthermore, the efficiency of nitrate removal was significantly enhanced by 1.33%, 3.33%, 5.99%, and 1.53% with the addition of 0.5 mg/L Ca(II), 20 mg/L Mn(II), 5 mg/L Zn(II), and 2 mg/L Cd(II), respectively, comparison with the control. The bacterial growth in both nitrifying and denitrifying processes was substantially promoted by various dosages of divalent metal ions. These results indicate that divalent metal ions would not severely limit the capacity of strain J488 to purify nitrogen-polluted wastewater.


Assuntos
Compostos de Amônio , Hipotermia , Aerobiose , Desnitrificação , Processos Heterotróficos , Humanos , Nitrificação , Nitritos , Nitrogênio , Pseudomonas , Águas Residuárias
18.
Protein Sci ; 30(5): 966-981, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33686648

RESUMO

Stabilization of Torpedo californica acetylcholinesterase by the divalent cations Ca+2 , Mg+2 , and Mn+2 was investigated. All three substantially protect the enzyme from thermal inactivation. Electron paramagnetic resonance revealed one high-affinity binding site for Mn+2 and several much weaker sites. Differential scanning calorimetry showed a single irreversible thermal transition. All three cations raise both the temperature of the transition and the activation energy, with the transition becoming more cooperative. The crystal structures of the Ca+2 and Mg+2 complexes with Torpedo acetylcholinesterase were solved. A principal binding site was identified. In both cases, it consists of four aspartates (a 4D motif), within which the divalent ion is embedded, together with several water molecules. It makes direct contact with two of the aspartates, and indirect contact, via waters, with the other two. The 4D motif has been identified in 31 acetylcholinesterase sequences and 28 butyrylcholinesterase sequences. Zebrafish acetylcholinesterase also contains the 4D motif; it, too, is stabilized by divalent metal ions. The ASSAM server retrieved 200 other proteins that display the 4D motif, in many of which it is occupied by a divalent cation. It is a very versatile motif, since, even though tightly conserved in terms of RMSD values, it can contain from one to as many as three divalent metal ions, together with a variable number of waters. This novel motif, which binds primarily divalent metal ions, is shared by a broad repertoire of proteins. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:Protein_Science:3.


Assuntos
Acetilcolinesterase/química , Proteínas de Peixes/química , Torpedo , Animais , Sítios de Ligação , Cátions Bivalentes/química , Cristalografia por Raios X , Estabilidade Enzimática , Metais/química
19.
Nutrients ; 13(5)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063414

RESUMO

Intestinal iron transport requires an iron importer (Dmt1) and an iron exporter (Fpn1). The hormone hepcidin regulates iron absorption by modulating Fpn1 protein levels on the basolateral surface of duodenal enterocytes. In the genetic, iron-loading disorder hereditary hemochromatosis (HH), hepcidin production is low and Fpn1 protein expression is elevated. High Fpn1-mediated iron export depletes intracellular iron, causing a paradoxical increase in Dmt1-mediated iron import. Increased activity of both transporters causes excessive iron absorption, thus initiating body iron loading. Logically then, silencing of intestinal Dmt1 or Fpn1 could be an effective therapeutic intervention in HH. It was previously established that Dmt1 knock down prevented iron-loading in weanling Hamp (encoding hepcidin) KO mice (modeling type 2B HH). Here, we tested the hypothesis that Dmt1 silencing combined with dietary iron restriction (which may be recommended for HH patients) will mitigate iron loading once already established. Accordingly, adult Hamp KO mice were switched to a low-iron (LFe) diet and (non-toxic) folic acid-coupled, ginger nanoparticle-derived lipid vectors (FA-GDLVs) were used to deliver negative-control (NC) or Dmt1 siRNA by oral, intragastric gavage daily for 21 days. The LFe diet reduced body iron burden, and experimental interventions potentiated iron losses. For example, Dmt1 siRNA treatment suppressed duodenal Dmt1 mRNA expression (by ~50%) and reduced serum and liver non-heme iron levels (by ~60% and >85%, respectively). Interestingly, some iron-related parameters were repressed similarly by FA-GDLVs carrying either siRNA, including 59Fe (as FeCl3) absorption (~20% lower), pancreatic non-heme iron (reduced by ~65%), and serum ferritin (decreased 40-50%). Ginger may thus contain bioactive lipids that also influence iron homeostasis. In conclusion, the combinatorial approach of FA-GDLV and Dmt1 siRNA treatment, with dietary iron restriction, mitigated pre-existing iron overload in a murine model of HH.


Assuntos
Administração Oral , Hepcidinas/genética , Hepcidinas/metabolismo , Sobrecarga de Ferro/metabolismo , Ferro da Dieta/metabolismo , Nanopartículas/química , Fatores de Transcrição/metabolismo , Zingiber officinale/química , Animais , Duodeno/metabolismo , Enterócitos/metabolismo , Ácido Fólico , Expressão Gênica , Hemocromatose/genética , Homeostase , Ferro/metabolismo , Sobrecarga de Ferro/genética , Lipídeos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/genética
20.
Front Mol Biosci ; 8: 704813, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869578

RESUMO

DNA polymerase plays a critical role in passing the genetic information of any living organism to its offspring. DNA polymerase from enterobacteria phage RB69 (RB69pol) has both polymerization and exonuclease activities and has been extensively studied as a model system for B-family DNA polymerases. Many binary and ternary complex structures of RB69pol are known, and they all contain a single polymerase-primer/template (P/T) DNA complex. Here, we report a crystal structure of the exonuclease-deficient RB69pol with the P/T duplex in a dimeric form at a resolution of 2.2 Å. The structure includes one new closed ternary complex with a single divalent metal ion bound and one new open binary complex in the pre-insertion state with a vacant dNTP-binding pocket. These complexes suggest that initial binding of the correct dNTP in the open state is much weaker than expected and that initial binding of the second divalent metal ion in the closed state is also much weaker than measured. Additional conformational changes are required to convert these complexes to high-affinity states. Thus, the measured affinities for the correct incoming dNTP and divalent metal ions are average values from many conformationally distinctive states. Our structure provides new insights into the order of the complex assembly involving two divalent metal ions. The biological relevance of specific interactions observed between one RB69pol and the P/T duplex bound to the second RB69pol observed within this dimeric complex is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA