RESUMO
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system that finally leads to demyelination. Demyelinating optic neuritis is a frequent symptom in MS. Recent studies also revealed synapse dysfunctions in MS patients and MS mouse models. We previously reported alterations of photoreceptor ribbon synapses in the experimental auto-immune encephalomyelitis (EAE) mouse model of MS. In the present study, we found that the previously observed decreased imunosignals of photoreceptor ribbons in early EAE resulted from a decrease in synaptic ribbon size, whereas the number/density of ribbons in photoreceptor synapses remained unchanged. Smaller photoreceptor ribbons are associated with fewer docked and ribbon-associated vesicles. At a functional level, depolarization-evoked exocytosis as monitored by optical recording was diminished even as early as on day 7 after EAE induction. Moreover compensatory, post-depolarization endocytosis was decreased. Decreased post-depolarization endocytosis in early EAE correlated with diminished synaptic enrichment of dynamin3. In contrast, basal endocytosis in photoreceptor synapses of resting non-depolarized retinal slices was increased in early EAE. Increased basal endocytosis correlated with increased de-phosphorylation of dynamin1. Thus, multiple endocytic pathways in photoreceptor synapse are differentially affected in early EAE and likely contribute to the observed synapse pathology in early EAE.
Assuntos
Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Endocitose , Exocitose , Esclerose Múltipla/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Sinapses/patologia , Animais , Dinaminas/metabolismo , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/etiologia , Esclerose Múltipla/metabolismo , Fosforilação , Retina/metabolismo , Retina/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/patologiaRESUMO
Multiple sclerosis is a demyelinating disease of the central nervous system characterized by the loss of the myelin sheath-the nonconductive membrane surrounding neuronal axons. Demyelination interrupts neuronal transmission, which can impair neurological pathways and present a variety of neurological deficits. Prolonged demyelination can damage neuronal axons resulting in irreversible neuronal damage. Efforts have been made to identify agents that can promote remyelination. However, the assessment of remyelination that new therapies promote can be challenging. The method described in this chapter addresses this challenge by using isobaric C13-histidine as a tag for monitoring its incorporation into myelin proteins and thus monitoring the remyelination process.
Assuntos
Doenças Desmielinizantes , Remielinização , Animais , Axônios/metabolismo , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Histidina/metabolismo , Humanos , Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismoRESUMO
Multiple sclerosis is a chronic inflammatory demyelinating disorder of the central nervous system that eventually leads to progressive neurodegeneration and disability. Recent findings highlighted the emerging role of each target of the endocannabinoid system in controlling the symptoms and disease progression of multiple sclerosis. Therefore, multi-target modulators of the endocannabinoid system could provide a more effective pharmacological strategy as compared to the single target modulation. In this work, N-cycloheptyl-1,2-dihydro-5-bromo-1-(4-fluorobenzyl)-6-methyl-2-oxo-pyridine-3-carboxamide (B2) was identified as the most promising compound with dual agonism at cannabinoid receptors type-1 and cannabinoid receptors type-2 and good drug-like properties. In in vitro assays, B2 reduced glutamate release from rat synaptosomes through interaction with cannabinoid receptors type-1 and modulated the production of the pro- and anti-inflammatory cytokines (interleukins IL-1ß and IL-6 and interleukin IL-10 respectively) via cannabinoid receptors type-2 activation. Furthermore, B2 demonstrated antinociceptive effects in an animal model of neuropathic pain and efficacy in an experimental autoimmune encephalomyelitis model of multiple sclerosis.