Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37687804

RESUMO

The safety of flight operations depends on the cognitive abilities of pilots. In recent years, there has been growing concern about potential accidents caused by the declining mental states of pilots. We have developed a novel multimodal approach for mental state detection in pilots using electroencephalography (EEG) signals. Our approach includes an advanced automated preprocessing pipeline to remove artefacts from the EEG data, a feature extraction method based on Riemannian geometry analysis of the cleaned EEG data, and a hybrid ensemble learning technique that combines the results of several machine learning classifiers. The proposed approach provides improved accuracy compared to existing methods, achieving an accuracy of 86% when tested on cleaned EEG data. The EEG dataset was collected from 18 pilots who participated in flight experiments and publicly released at NASA's open portal. This study presents a reliable and efficient solution for detecting mental states in pilots and highlights the potential of EEG signals and ensemble learning algorithms in developing cognitive cockpit systems. The use of an automated preprocessing pipeline, feature extraction method based on Riemannian geometry analysis, and hybrid ensemble learning technique set this work apart from previous efforts in the field and demonstrates the innovative nature of the proposed approach.


Assuntos
Algoritmos , Artefatos , Cognição , Eletroencefalografia , Aprendizado de Máquina
2.
Brain Topogr ; 34(4): 403-414, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33950323

RESUMO

"Bad channels" are common phenomena during scalp electroencephalography (EEG) recording that arise due to various technique-related reasons, and reconstructing signals from bad channels is an inevitable choice in EEG processing. However, current interpolation methods are all based on purely mathematical interpolation theory, ignoring the neurophysiological basis of the EEG signals, and their performance needs to be further improved, especially when there are many scattered or adjacent bad channels. Therefore, a new interpolation method, named the reference electrode standardization interpolation technique (RESIT), was developed for interpolating scalp EEG channels. Resting-state and event-related EEG datasets were used to investigate the performance of the RESIT. The main results showed that (1) assuming 10% bad channels, RESIT can reconstruct the bad channels well; (2) as the percentage of bad channels increased (from 2% to 85%), the absolute and relative errors between the true and RESIT-reconstructed signals generally increased, and the correlations between the true and RESIT signals decreased; (3) for a range of bad channel percentages (2% ~ 85%), the RESIT had lower absolute error (approximately 2.39% ~ 33.5% reduction), lower relative errors (approximately 1.3% ~ 35.7% reduction) and higher correlations (approximately 2% ~ 690% increase) than traditional interpolation methods, including neighbor interpolation (NI) and spherical spline interpolation (SSI). In addition, the RESIT was integrated into the EEG preprocessing pipeline on the WeBrain cloud platform ( https://webrain.uestc.edu.cn/ ). These results suggest that the RESIT is a promising interpolation method for both separate and simultaneous EEG preprocessing that benefits further EEG analysis, including event-related potential (ERP) analysis, EEG network analysis, and strict group-level statistics.


Assuntos
Encéfalo , Couro Cabeludo , Eletrodos , Eletroencefalografia , Humanos , Padrões de Referência
3.
Int J Neural Syst ; 34(9): 2450046, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39010724

RESUMO

This study proposes an innovative expert system that uses exclusively EEG signals to diagnose schizophrenia in its early stages. For diagnosing psychiatric/neurological disorders, electroencephalogram (EEG) testing is considered a financially viable, safe, and reliable alternative. Using the reconstructed phase space (RPS) and the continuous wavelet transform, the researchers maximized the differences between the EEG nonstationary signals of normal and schizophrenia individuals, which cannot be observed in the time, frequency, or time-frequency domains. This reveals significant information, highlighting more distinguishable features. Then, a deep learning network was trained to enhance the accuracy of the resulting image classification. The algorithm's efficacy was confirmed through three distinct methods: employing 70% of the dataset for training, 15% for validation, and the remaining 15% for testing. This was followed by a 5-fold cross-validation technique and a leave-one-out classification approach. Each method was iterated 100 times to ascertain the algorithm's robustness. The performance metrics derived from these tests - accuracy, precision, sensitivity, F1 score, Matthews correlation coefficient, and Kappa - indicated remarkable outcomes. The algorithm demonstrated steady performance across all evaluation strategies, underscoring its relevance and reliability. The outcomes validate the system's accuracy, precision, sensitivity, and robustness by showcasing its capability to autonomously differentiate individuals diagnosed with schizophrenia from those in a state of normal health.


Assuntos
Aprendizado Profundo , Eletroencefalografia , Esquizofrenia , Análise de Ondaletas , Esquizofrenia/diagnóstico , Esquizofrenia/fisiopatologia , Humanos , Eletroencefalografia/métodos , Algoritmos , Adulto , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Redes Neurais de Computação
4.
Sleep ; 46(12)2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37542730

RESUMO

Whole-night sleep electroencephalogram (EEG) is plagued by several types of large-amplitude artifacts. Common approaches to remove them are fraught with issues: channel interpolation, rejection of noisy intervals, and independent component analysis are time-consuming, rely on subjective user decisions, and result in signal loss. Artifact Subspace Reconstruction (ASR) is an increasingly popular approach to rapidly and automatically clean wake EEG data. Indeed, ASR adaptively removes large-amplitude artifacts regardless of their scalp topography or consistency throughout the recording. This makes ASR, at least in theory, a highly-promising tool to clean whole-night EEG. However, ASR crucially relies on calibration against a subset of relatively clean "baseline" data. This is problematic when the baseline changes substantially over time, as in whole-night EEG data. Here we tackled this issue and, for the first time, validated ASR for cleaning sleep EEG. We demonstrate that ASR applied out-of-the-box, with the parameters recommended for wake EEG, results in the dramatic removal of slow waves. We also provide an appropriate procedure to use ASR for automatic and rapid cleaning of whole-night sleep EEG data or any long EEG recording. Our procedure is freely available in Dusk2Dawn, an open-source plugin for EEGLAB.


Assuntos
Artefatos , Eletroencefalografia , Eletroencefalografia/métodos , Couro Cabeludo , Sono , Algoritmos
5.
Front Neuroimaging ; 1: 968363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37555133

RESUMO

Multimodal neuroimaging using EEG and fMRI provides deeper insights into brain function by improving the spatial and temporal resolution of the acquired data. However, simultaneous EEG-fMRI inevitably compromises the quality of the EEG and fMRI signals due to the high degree of interaction between the two systems. Fluctuations in the magnetic flux flowing through the participant and the EEG system, whether due to movement within the magnetic field of the scanner or to changes in magnetic field strength, induce electrical potentials in the EEG recordings that mask the much weaker electrical activity of the neuronal populations. A number of different methods have been proposed to reduce MR artifacts. We present an overview of the most commonly used methods and an evaluation of the methods using three sets of diverse EEG data. We limited the evaluation to open-access and easy-to-use methods and a reference signal regression method using a set of six carbon-wire loops (CWL), which allowed evaluation of their added value. The evaluation was performed by comparing EEG signals recorded outside the MRI scanner with artifact-corrected EEG signals recorded simultaneously with fMRI. To quantify and evaluate the quality of artifact reduction methods in terms of the spectral content of the signal, we analyzed changes in oscillatory activity during a resting-state and a finger tapping motor task. The quality of artifact reduction in the time domain was assessed using data collected during a visual stimulation task. In the study we utilized hierarchical Bayesian probabilistic modeling for statistical inference and observed significant differences between the evaluated methods in the success of artifact reduction and associated signal quality in both the frequency and time domains. In particular, the CWL system proved superior to the other methods evaluated in improving spectral contrast in the alpha and beta bands and in recovering visual evoked responses. Based on the results of the evaluation study, we proposed guidelines for selecting the optimal method for MR artifact reduction.

6.
Front Neurosci ; 15: 660449, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163321

RESUMO

BACKGROUND: Since the replication crisis, standardization has become even more important in psychological science and neuroscience. As a result, many methods are being reconsidered, and researchers' degrees of freedom in these methods are being discussed as a potential source of inconsistencies across studies. NEW METHOD: With the aim of addressing these subjectivity issues, we have been working on a tutorial-like EEG (pre-)processing pipeline to achieve an automated method based on the semi-automated analysis proposed by Delorme and Makeig. RESULTS: Two scripts are presented and explained step-by-step to perform basic, informed ERP and frequency-domain analyses, including data export to statistical programs and visual representations of the data. The open-source software EEGlab in MATLAB is used as the data handling platform, but scripts based on code provided by Mike Cohen (2014) are also included. COMPARISON WITH EXISTING METHODS: This accompanying tutorial-like article explains and shows how the processing of our automated pipeline affects the data and addresses, especially beginners in EEG-analysis, as other (pre)-processing chains are mostly targeting rather informed users in specialized areas or only parts of a complete procedure. In this context, we compared our pipeline with a selection of existing approaches. CONCLUSION: The need for standardization and replication is evident, yet it is equally important to control the plausibility of the suggested solution by data exploration. Here, we provide the community with a tool to enhance the understanding and capability of EEG-analysis. We aim to contribute to comprehensive and reliable analyses for neuro-scientific research.

7.
Data Brief ; 7: 990-994, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27761491

RESUMO

This data set contains electroencephalography (EEG) data as well as simultaneous EEG with functional magnetic resonance imaging (EEG/fMRI) data. During EEG/fMRI, the EEG cap was outfitted with a hardware-based add-on consisting of carbon-wire loops (CWL). These yielded six extra׳CWL׳ signals related to Faraday induction of these loops in the main magnetic field "Measurement and reduction of motion and ballistocardiogram artefacts from simultaneous EEG and fMRI recordings" (Masterton et al., 2007) [1]. In this data set, the CWL data make it possible to do a direct regression approach to deal with the BCG and specifically He artifact. The CWL-EEG/fMRI data in this paper has been recorded on two MRI scanners with different Helium pump systems (4 subjects on a 3 T TIM Trio and 4 subjects on a 3T VERIO). Separate EEG/fMRI data sets have been recorded for the helium pump ON as well as the helium pump OFF conditions. The EEG-only data (same subjects) has been recorded for a motion artifact-free reference EEG signal outside of the scanner. This paper also links to an EEGlab "EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis" (Delorme and Makeig, 2004) [2] plugin to perform a CWL regression approach to deal with the He pump artifact, as published in the main paper "Carbon-wire loop based artifact correction outperforms post-processing EEG/fMRI corrections-A validation of a real-time simultaneous EEG/fMRI correction method" (van der Meer et al., 2016) [3].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA