Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 764, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39123124

RESUMO

BACKGROUND: Leaf nitrogen (N) and phosphorus (P) resorption is a fundamental adaptation strategy for plant nutrient conservation. However, the relative roles that environmental factors and plant functional traits play in regulating N and P resorption remain largely unclear, and little is known about the underlying mechanism of plant functional traits affecting nutrient resorption. Here, we measured leaf N and P resorption and 13 plant functional traits of leaf, petiole, and twig for 101 representative broad-leaved tree species in our target subtropical transitional forests. We integrated these multiple functional traits into the plant economics spectrum (PES). We further explored whether and how elevation-related environmental factors and these functional traits collectively control leaf N and P resorption. RESULTS: We found that deciduous and evergreen trees exhibited highly diversified PES strategies, tending to be acquisitive and conservative, respectively. The effects of PES, rather than of environmental factors, dominated leaf N and P resorption patterns along the elevational gradient. Specifically, the photosynthesis and nutrient recourse utilization axis positively affected N and P resorption for both deciduous and evergreen trees, whereas the structural and functional investment axis positively affected leaf N and P resorption for evergreen species only. Specific leaf area and green leaf nutrient concentrations were the most influential traits driving leaf N and P resorption. CONCLUSIONS: Our study simultaneously elucidated the relative contributions of environmental factors and plant functional traits to leaf N and P resorption by including more representative tree species than previous studies, expanding our understanding beyond the relatively well-studied tropical and temperate forests. We highlight that prioritizing the fundamental role of traits related to leaf resource capture and defense contributes to the monitoring and modeling of leaf nutrient resorption. Therefore, we need to integrate PES effects on leaf nutrient resorption into the current nutrient cycling model framework to better advance our general understanding of the consequences of shifting tree species composition for nutrient cycles across diverse forests.


Assuntos
Florestas , Nitrogênio , Fósforo , Folhas de Planta , Árvores , Nitrogênio/metabolismo , Fósforo/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Árvores/metabolismo , Árvores/fisiologia , Clima Tropical , China , Fotossíntese
2.
Ann Bot ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808688

RESUMO

BACKGROUND AND AIMS: Pollen germination and tube growth are essential processes for successful fertilization. They are among the most temperature-vulnerable stages and subsequently affect seed production and determine population persistence and species distribution under climate change. Our study aims to investigate intra- and inter-specific variations in the temperature dependence of pollen germination and tube length growth and to explore how these variations differ for pollen from elevational gradients. METHODS: We focused on three conifer species, Pinus contorta, Picea engelmannii, and Pinus ponderosa, with pollen collected from 350 to 2200m elevation in Washington State, USA. We conducted pollen viability tests at temperatures from 5 to 40°C in 5°C intervals. After testing for four days, we took images of these samples under a microscope to monitor pollen germination percentage (GP) and tube length (TL). We applied the Gamma function to describe the temperature dependence of GP and TL and estimated key parameters, including the optimal temperature for GP (Topt_GP) and TL (Topt_TL). KEY RESULTS: Results showed that pollen from three species and different elevations within a species have different GP, TL, Topt_GP, and Topt_TL. The population with a higher Topt_GP would also have a higher Topt_TL, while Topt_TL was generally higher than Topt_GP, i.e., a positive but not one-to-one relationship. However, only Pinus contorta showed that populations from higher elevations have lower Topt_GP and Topt_TL and vice versa. The variability in GP increased at extreme temperatures, whereas the variability in TL was greatest near Topt_TL. CONCLUSIONS: Our study demonstrates the temperature dependences of three conifers across a wide range of temperatures. Pollen germination and tube growth are highly sensitive to temperature conditions and vary among species and elevations, affecting their reproduction success during warming. Our findings can provide valuable insights to advance our understanding of how conifer pollen responds to rising temperatures.

3.
Am J Bot ; : e16416, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39400358

RESUMO

PREMISE: Agriculture expansion, livestock, and global change have transformed biological communities and altered, through aerosols and direct deposition, N:P balance in soils of inter-Andean valleys, potentially affecting flowering phenology of many species and thereby flowering synchrony and plant reproduction. METHODS: We evaluated the influence of variation in temperature and moisture along the local elevational gradient and treatments with the addition of N and P and grazing on flowering synchrony and reproduction of Croton, a dominant shrub of the inter-Andean dry scrub. Along the elevational gradient (300 m difference between the lowest and highest site), we set up plots with and without grazing nested with four nutrient treatments: control and addition of N or P alone or combined N + P. We recorded the number of female and male flowers in bloom monthly from September 2017 to August 2019 to calculate flowering synchrony. We assessed fruiting, seed mass, and pre-dispersal seed predation. RESULTS: Higher growing-season soil temperatures, which were negatively associated with local elevation and higher nitrogen availability promoted flowering synchrony of Croton, particularly among larger plants. Greater flowering synchrony, high soil temperatures, and addition of N + P resulted in production of more fruits of Croton, but also intensified pre-dispersal seed predation. CONCLUSIONS: Temperature, availability of moisture throughout the elevational gradient, and nutrient manipulation affected flowering synchrony, which subsequently affected production of fruits in Croton. These results emphasize the critical role of current anthropogenic changes in climate and nutrient availability on flowering synchrony and reproduction of Croton, a dominant plant of the inter-Andean scrub.

4.
Environ Res ; 250: 118517, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401680

RESUMO

Ecological interactions are important for maintaining biodiversity and ecosystem functions. Particularly in stream biofilms, little is known about the distributional patterns of different taxonomic groups and their potential interactions along elevational gradients. Here, we investigated the bacterial and fungal community structures of stream biofilms across elevational gradients on Mount Kilimanjaro, and explored patterns of their distribution, diversity, community structures, and taxa co-occurrence. We found that fungal and bacterial richness were more convergent at higher elevations, while their community structures became significantly more divergent. Inferred network complexity and stability significantly decreased with increasing elevation for fungi, while an opposite trend was observed for bacteria. Further quantitative analyses showed that network structures of bacteria and fungi were more divergent as elevation increased. This pattern was strongly associated with shifts in abiotic factors, such as mean annual temperatures, water PO43--P, and stream width. By constructing bipartite networks, we showed the fungal-bacterial network to be less redundant, more clustering, and unstable with increasing elevation. Abiotic factors (e.g., temperatures and stream width) and microbial community properties (i.e., structure and composition) significantly explained the dynamic changes in fungal-bacterial network properties. Taken together, this study provides evidence for the interplay of biotic and abiotic factors structuring potential microbial interactions in stream biofilms along a mountainside elevational gradient.


Assuntos
Altitude , Bactérias , Fungos , Fungos/classificação , Fungos/isolamento & purificação , Bactérias/classificação , Bactérias/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Biodiversidade , Clima Tropical , Rios/microbiologia , Microbiota
5.
J Evol Biol ; 36(10): 1455-1470, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37731241

RESUMO

The relative contribution of adaptation and phenotypic plasticity can vary between core and edge populations, with implications for invasive success. We investigated the spread of the invasive yellow monkeyflower, Erythranthe gutatta in New Zealand, where it is spreading from lowland agricultural land into high-elevation conservation areas. We investigated the extent of phenotypic variation among clones from across the South Island, looked for adaptation and compared degrees of plasticity among lowland core versus montane range-edge populations. We grew 34 clones and measured their vegetative and floral traits in two common gardens, one in the core range at 9 m a.s.l. and one near the range-edge at 560 m a.s.l. Observed trait variation was explained by a combination of genotypic diversity (as identified through common gardens) and high phenotypic plasticity. We found a subtle signature of local adaptation to lowland habitats but all clones were plastic and able to survive and reproduce in both gardens. In the range-edge garden, above-ground biomass was on average almost double and stolon length almost half that of the same clone in the core garden. Clones from low-elevation sites showed higher plasticity on average than those from higher elevation sites. The highest performing clones in the core garden were also top performers in the range-edge garden. These results suggest some highly fit general-purpose genotypes, possibly pre-adapted to New Zealand montane conditions, best explains the spread of E. gutatta from lowland to higher elevation areas.


Assuntos
Lamiales , Mimulus , Nova Zelândia , Adaptação Fisiológica/genética , Genótipo , Fenótipo
6.
Microb Ecol ; 86(4): 2838-2846, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37608162

RESUMO

Establishing how environmental gradients and host ecology drive spatial variation in infection rates and diversity of pathogenic organisms is one of the central goals in disease ecology. Here, we identified the predictors of concomitant infection and lineage richness of blood parasites in New Word bird communities. Our multi-level Bayesian models revealed that higher latitudes and elevations played a determinant role in increasing the probability of a bird being co-infected with Leucocytozoon and other haemosporidian parasites. The heterogeneity in both single and co-infection rates was similarly driven by host attributes and temperature, with higher probabilities of infection in heavier migratory host species and at cooler localities. Latitude, elevation, host body mass, migratory behavior, and climate were also predictors of Leucocytozoon lineage richness across the New World avian communities, with decreasing parasite richness at higher elevations, rainy and warmer localities, and in heavier and resident host species. Increased parasite richness was found farther from the equator, confirming a reverse Latitudinal Diversity Gradient pattern for this parasite group. The increased rates of Leucocytozoon co-infection and lineage richness with increased latitude are in opposition with the pervasive assumption that pathogen infection rates and diversity are higher in tropical host communities.


Assuntos
Doenças das Aves , Coinfecção , Haemosporida , Parasitos , Animais , Coinfecção/veterinária , Teorema de Bayes , Altitude , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Aves , Prevalência
7.
Int J Biometeorol ; 67(6): 1095-1104, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258689

RESUMO

Seed rain phenology (the start and end date of seed rain) is an essential component of plant phenology, critical for understanding population regeneration and community dynamics. However, intra- and inter-annual changes of seed rain phenology along environmental gradients have rarely been studied and the responses of seed rain phenology to climate variations are unclear. We monitored seed rain phenology of four forest communities in four years at different elevations (900 m, 1450 m, 1650 m, 1900 m a.s.l.) of a subtropical mountain in Central China. We analyzed the spatiotemporal patterns of seed rain phenology of 29 common woody plant species (total observed species in the seed rain), and related the phenological variations to seed number and climatic variables using mixed-effect models with the correlation matrix of phylogeny. We found that changes in the period length were mainly driven by the end rather than the start date. The end date and the period length of seed rain were significantly different between the mast and non-mast seeding years, while no significant elevation-related trend was detected in seed rain phenology variation. Seed number, mean temperature in spring (Tspr), and winter (Twin), summer precipitation (Psum) had significant effects on seed rain phenology. When Tspr increased, the start date of seed rain advanced, while the end date was delayed and the seed rain period length was mainly prolonged by a higher seed number, Twin and Psum. Forest canopy might have a buffering effect on understory climatic conditions, especially in precipitation that lead to difference in seed rain phenology between canopy and shrub species. Our novel evidence of seed rain phenology can improve prediction of community regeneration dynamics in responding to climate changes.


Assuntos
Mudança Climática , Florestas , China , Estações do Ano , Temperatura , Sementes
8.
J Environ Manage ; 348: 119222, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37862892

RESUMO

Floral and seed traits, their relationships, and responses to abiotic constraints are considered the key determinants of the invasion success of non-native plant species. However, studies evaluating the pattern of floral and seed traits of non-native species in mountain ecosystems are lacking. In this study, we determined (a) whether the floral and seed traits of native and non-native species show similarity or dissimilarity across elevations in mountains, and (b) whether the non-native species follow different allometric patterns compared with native species. Functional variations between native and non-native species were assessed through floral and seed traits: flower count, flower display area, flower mass, specific flower area, seed count, and seed mass across an elevational gradient. Permanent plots (20 × 20 m) were laid at each 100 m elevation rise from 2000 to 4000 m a.s.l. for sampling of herbaceous plant species. The mean values of floral and seed traits such as flower display area, specific flower area, and seed count were significantly higher for non-native species compared to native species. A significant difference in trait values (flower display area, flower mass, seed count, and seed mass) between non-native species and native species was observed along the elevational gradient, except for flower count and specific flower area. The bivariate relationship revealed non-native species to exhibit a stronger relationship between flower display area ∼ flower mass, and flower display area ∼ seed mass traits than the native species. Non-native species showed enhanced reproductive ability under varying environmental conditions along an elevational gradient in mountain ecosystems. Greater flower display area and seed mass at lower elevations and a stronger overall trait-trait relationship among non-native species implied resource investment in pollinator visualization, flower mass, and seed quality over seed quantity. The study concludes that enhanced plasticity and reproductive fitness of floral and seed traits would consequently aid non-native species to adapt, become invasive, and displace native species in mountain ecosystems if the climatic barriers acting on non-native species are reduced with climate change.


Assuntos
Ecossistema , Polinização , Polinização/fisiologia , Espécies Introduzidas , Aptidão Genética , Sementes , Plantas , Flores/fisiologia
9.
Environ Monit Assess ; 195(7): 876, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37351715

RESUMO

Soil CO2 efflux (Fsoil) is a significant contributor of labile CO2 to the atmosphere. The Himalayas, a global climate hotspot, condense several climate zones on account of their elevational gradients, thus, creating an opportunity to investigate the Fsoil trends in different climate zones. Presently, the studies in the Indian Himalayan region are localized to a particular forest type, climate zone, or area of interest, such as seasonal variation. We used a portable infrared gas analyzer to investigate the Fsoil rates in Himalayan tropical to alpine scrub forest along a 3100-m elevational gradient. Several study parameters such as seasons, forest types, tree species identity, age of trees, distance from tree base, elevation, climatic factors, and soil physico-chemical and enzymatic parameters were investigated to infer their impact on Fsoil regulation. Our results indicate the warm and wet rainy season Fsoil rates to be 3.8 times higher than the cold and relatively dry winter season. The tropical forest types showed up to 11 times higher Fsoil rates than the alpine scrub forest. The temperate Himalayan blue pine and tropical dipterocarp sal showed significant Fsoil rates, while the alpine Rhododendron shrubs the least. Temperature and moisture together regulate the rainy season Fsoil maxima. Spatially, Fsoil rates decreased with distance from the tree base (ρ = - 0.301; p < 0.0001). Nepalese alder showed a significant positive increase in Fsoil with stem girth (R2 = 0.7771; p = 0.048). Species richness (r, 0.81) and diversity (r, 0.77) were significantly associated with Fsoil, while elevation and major edaphic properties showed a negative association. Surface litter inclusion presented an elevation-modulated impact. Temperature sensitivity was exorbitantly higher in the sub-tropical pine (Q10, 11.80) and the alpine scrub (Q10, 9.08) forests. We conclude that the rise in atmospheric temperature and the reduction in stand density could enhance the Fsoil rates on account of increased temperature sensitivity.


Assuntos
Dióxido de Carbono , Pinus , Solo/química , Monitoramento Ambiental , Florestas , Árvores , Índia
10.
Ecol Lett ; 25(5): 1237-1249, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35291051

RESUMO

Elevational and latitudinal gradients in species diversity may be mediated by biotic interactions that cause density-dependent effects of conspecifics on survival or growth to differ from effects of heterospecifics (i.e. conspecific density dependence), but limited evidence exists to support this. We tested the hypothesis that conspecific density dependence varies with elevation using over 40 years of data on tree survival and growth from 23 old-growth temperate forest stands across a 1,000-m elevation gradient. We found that conspecific-density-dependent effects on survival of small-to-intermediate-sized focal trees were negative in lower elevation, higher diversity forest stands typically characterised by warmer temperatures and greater relative humidity. Conspecific-density-dependent effects on survival were less negative in higher elevation stands and ridges than in lower elevation stands and valley bottoms for small-to-intermediate-sized trees, but were neutral for larger trees across elevations. Conspecific-density-dependent effects on growth were negative across all tree size classes and elevations. These findings reveal fundamental differences in biotic interactions that may contribute to relationships between species diversity, elevation and climate.


Assuntos
Ecossistema , Árvores , Biodiversidade , Clima , Florestas
11.
Ecol Lett ; 25(9): 2076-2087, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35950788

RESUMO

The premise that the intensity of biotic interactions decreases with increasing latitudes and elevations is broadly accepted; however, whether these geographical patterns can be explained within a common theoretical framework remains unclear. Our goal was to identify the general pattern of elevational changes in trophic interactions and to explore the sources of variation among the outcomes of individual studies. Meta-analysis of 226 effect sizes calculated from 134 publications demonstrated a significant but interaction-specific decrease in the intensity of herbivory, carnivory and parasitism with increasing elevation. Nevertheless, this decrease was not significant at high latitudes and for interactions involving endothermic organisms, for herbivore outbreaks or for herbivores living within plant tissues. Herbivory similarly declined with increases in latitude and elevation, whereas carnivory showed a fivefold stronger decrease with elevation than with latitude and parasitism increased with latitude but decreased with elevation. Thus, although these gradients share a general pattern and several sources of variation in trophic interaction intensity, we discovered important dissimilarities, indicating that elevational and latitudinal changes in these interactions are partly driven by different factors. We conclude that the scope of the latitudinal biotic interaction hypothesis cannot be extended to incorporate elevational gradients.


Assuntos
Herbivoria , Plantas
12.
J Mol Evol ; 90(5): 389-399, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36029325

RESUMO

High-elevation adaptation provides an excellent system for examining adaptive evolution, and adaptive variations may manifest at gene expression or any other phenotypic levels. We examined gene expression profiles of Asiatic toads (Bufo gargarizans) along an elevational gradient from both wild and common-garden acclimated populations. Asiatic toads originated from high altitudes have distinctive gene expression patterns. We identified 18 fixed differentially expressed genes (DEGs), which are different in both wild and acclimated samples, and 1217 plastic DEGs, which are different among wild samples. The expression levels of most genes were linearly correlated with altitude gradient and down-regulated in high-altitude populations. Expression variations of several genes associated with metabolic process are fixed, and we also identified a co-expression module that is significantly different between acclimated populations and has functions related to DNA repair. The differential expression of the vast majority genes, however, are due to phenotypic plasticity, revealing the highly plastic nature of gene expression variations. Expression modification of some specific genes related to metabolism and response to UV radiation play crucial role in adaptation to high altitude for Asiatic toads. Common-garden experiments are essential for evaluating adaptive evolution of natural populations.


Assuntos
Bufonidae , Raios Ultravioleta , Altitude , Animais , Bufonidae/genética , Expressão Gênica/genética , Plásticos
13.
New Phytol ; 236(2): 671-683, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35751540

RESUMO

Knowledge about the distribution and local diversity patterns of arbuscular mycorrhizal (AM) fungi are limited for extreme environments such as the Arctic, where most studies have focused on spore morphology or root colonization. We here studied the joint effects of plant species identity and elevation on AM fungal distribution and diversity. We sampled roots of 19 plant species in 18 locations in Northeast Greenland, using next generation sequencing to identify AM fungi. We studied the joint effect of plant species, elevation and selected abiotic conditions on AM fungal presence, richness and composition. We identified 29 AM fungal virtual taxa (VT), of which six represent putatively new VT. Arbuscular mycorrhizal fungal presence increased with elevation, and as vegetation cover and the active soil layer decreased. Arbuscular mycorrhizal fungal composition was shaped jointly by elevation and plant species identity. We demonstrate that the Arctic harbours a relatively species-rich and nonrandomly distributed diversity of AM fungi. Given the high diversity and general lack of knowledge exposed herein, we encourage further research into the diversity, drivers and functional role of AM fungi in the Arctic. Such insight is urgently needed for an area with some of the globally highest rates of climate change.


Assuntos
Micobioma , Micorrizas , Micorrizas/genética , Raízes de Plantas/microbiologia , Plantas , Solo , Microbiologia do Solo
14.
Glob Chang Biol ; 28(3): 1103-1118, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34679209

RESUMO

Understanding forest understorey community response to environmental change, including management actions, is vital given the understorey's importance for biodiversity conservation and ecosystem functioning. The Natural World Heritage Hyrcanian temperate forests (Iran) provide an ideal template for furnishing an appreciation of how management actions can mitigate undesired climate change effects, due to the forests' broad environmental gradients, isolation from colonization sources and varied light environments. We used records of 95 understorey plant species from 512 plots to model their probability of occurrence as a function of contemporary climate and soil variables, and canopy cover. For 65 species with good predictive accuracy, we then projected two climate scenarios in the context of either increasing or decreasing canopy cover, to assess whether overstorey management could mitigate or aggravate climate change effects. Climate variables were the most important predictors for the distribution of all species. Soil and canopy cover varied in importance depending on understorey growth form. Climate change was projected to negatively affect future probabilities of occurrence. However, management, here represented by canopy cover change, is predicted to modify this trajectory for some species groups. Models predict increases in light-adapted and generalist forbs with reduced canopy cover, while graminoids and ferns still decline. Increased canopy cover is projected to buffer an otherwise significant decreasing response of cold-adapted species to climate change. However, increasing canopy cover is not projected to buffer the predicted negative impact of climate change on shade-adapted forest specialists. Inconsistent responses of different species and/or growth forms to climate change and canopy cover reflect their complicated life histories and habitat preferences. Canopy cover management may help prevent the climate change induced loss of some important groups for biodiversity conservation. However, for shade-adapted forest specialists, our results imply a need to adopt other conservation measures in the face of anticipated climate change.


Assuntos
Ecossistema , Florestas , Biodiversidade , Mudança Climática , Irã (Geográfico) , Plantas
15.
Microb Ecol ; 84(4): 1141-1153, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34694450

RESUMO

Understanding the mechanisms underlying biodiversity patterns is a central issue in ecology, while how temperature and precipitation jointly control the elevational patterns of microbes is understudied. Here, we studied the effects of temperature, precipitation and their interactions on the alpha and beta diversity of soil archaea and bacteria in alpine grasslands along an elevational gradient of 4300-5200 m on the Tibetan Plateau. Alpha diversity was examined on the basis of species richness and evenness, and beta diversity was quantified with the recently developed metric of local contributions to beta diversity (LCBD). Typical alpine steppe and meadow ecosystems were distributed below and above 4850 m, respectively, which was consistent with the two main constraints of mean annual temperature (MAT) and mean annual precipitation (MAP). Species richness and evenness showed decreasing elevational patterns in archaea and nonsignificant or U-shaped patterns in bacteria. The LCBD of both groups exhibited significant U-shaped elevational patterns, with the lowest values occurring at 4800 m. For the three diversity metrics, soil pH was the primary explanatory variable in archaea, explaining over 20.1% of the observed variation, whereas vegetation richness, total nitrogen and the K/Al ratio presented the strongest effects on bacteria, with relative importance values of 16.1%, 12.5% and 11.6%, respectively. For the microbial community composition of both archaea and bacteria, the moisture index showed the dominant effect, explaining 17.6% of the observed variation, followed by MAT and MAP. Taken together, temperature and precipitation exerted considerable indirect effects on microbial richness and evenness through local environmental and energy supply-related variables, such as vegetation richness, whereas temperature exerted a larger direct influence on LCBD and the community composition. Our findings highlighted the profound influence of temperature and precipitation interactions on microbial beta diversity in alpine grasslands on the Tibetan Plateau.


Assuntos
Ecossistema , Pradaria , Temperatura , Biodiversidade , Solo/química , Archaea , Bactérias/genética
16.
J Chem Ecol ; 48(2): 196-206, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35094210

RESUMO

Local adaptations of host plants to climatic conditions along an elevation gradient can affect insect-plant interactions. Using local accessions sampled from different elevations within South America, plant defense responses and herbivore growth were evaluated on two host plants: a) cherry tomato, Solanum lycopersicum var. cerasiforme, and b) wild tomato, Solanum pimpinellifolium. The elevational origin of the accessions ranged from 100 to 3000 m above sea level. We hypothesized a higher level of defensive compounds in plants originating from lower elevations and, consequently, stronger resistance to insect herbivory. Interestingly, plant resistance to insect herbivory, as demonstrated by a reduction in Helicoverpa zea growth, was stronger for middle and high-elevation accessions. Total phenolic content increased with elevation in both herbivore-damaged and undamaged leaves, augmenting plant resistance. However, an elevational gradient was not evident for plant defensive proteins (polyphenol oxidase and trypsin protease inhibitors) or the density of leaf trichomes. Tradeoffs between constitutive and induced defenses were evident in both tomato genotypes. Future studies should test the role of plasticity in plant defense systems in restricting or facilitating range expansion of insect herbivores with climate change.


Assuntos
Mariposas , Solanum lycopersicum , Animais , Herbivoria , Larva/fisiologia , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Mariposas/fisiologia , Folhas de Planta/metabolismo
17.
Environ Res ; 211: 113033, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35276191

RESUMO

Legume-associated symbiotic diazotrophs contribute more to nitrogen (N) fixation than non-symbiotic diazotrophs in many terrestrial ecosystems. However, the percentage of legume biomass is low in alpine meadows on the Tibetan Plateau. Therefore, non-symbiotic diazotrophs may play important roles in N fixation in alpine meadow soils. Moreover, Tibetan alpine meadows are fragile and sensitive to global climate change, and the investigating of the key factor driving soil diazotrophic community still entails several challenges. To address these issues, we investigated diazotrophic spatial distribution and diversity along the elevational gradient between 3200 and 4200 m in the alpine meadow using amplicon sequencing of nifH gene. The result clearly showed that soil moisture and temperature were key factors driving soil diazotrophic community structures. Both altitude and soil depth significantly differentiated diazotrophic community composition. Alpha diversity indices of diazotrophic communities showed unimodal distribution along elevation gradient, strongly affected by soil moisture. Altitudinal niches were occupied by different diazotrophs. Soils at lower elevations were dominated by symbiotic diazotrophs and associative diazotrophs related to high biomass of plant hosts, while those at higher elevations were dominated by free-living psychrophiles such as Polaromonas. Furthermore, high moisture stimulated free-living anaerobes at middle elevations, such as Geobacter and Anaeromyxobacter, while suppressed legumes and symbiotic Mezorhizobium. Soil temperature not only directly affected temperature-sensitive diazotrophs, but also indirectly affected them through plants and soil properties such as pH and ammonium content. Our results suggest that climate change may strongly affect biological nitrogen fixation (BNF), and free-living diazotrophs may play important roles in BNF of alpine meadow system on the Tibetan Plateau.


Assuntos
Pradaria , Solo , Ecossistema , Plantas , Solo/química , Microbiologia do Solo , Temperatura , Tibet
18.
Ecol Lett ; 24(2): 196-207, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33124188

RESUMO

Mountain systems are exceptionally species rich, yet the associated elevational gradients in functional and phylogenetic diversity and their consistency across latitude remain little understood. Here, we document how avian functional and phylogenetic diversity and structure vary along all major elevational gradients worldwide and uncover strong latitudinal differences. Assemblages in warm tropical lowlands and cold temperate highlands are marked by high functional overdispersion and distinctiveness, whereas tropical highlands and temperate lowlands appear strongly functionally clustered and redundant. We additionally find strong geographic variation in the interplay of phylogenetic and functional structure, with strongest deviations between the two in temperate highlands. This latitudinal and elevational variation in assemblage functional structure is underpinned by nuanced shifts in the position, shape and composition of multivariate trait space. We find that, independent of latitude, high-elevation assemblages emerge as exceptionally susceptible to functional change.


Assuntos
Biodiversidade , Aves , Animais , Filogenia
19.
Ecol Lett ; 24(8): 1697-1708, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34000078

RESUMO

Many species are responding to global warming by shifting their distributions upslope to higher elevations, but the observed rates of shifts vary considerably among studies. Here, we test the hypothesis that this variation is in part explained by latitude, with tropical species being particularly responsive to warming temperatures. We analyze two independent empirical datasets-shifts in species' elevational ranges, and changes in composition of forest inventory tree plots. Tropical species are tracking rising temperatures 2.1-2.4 times (range shift dataset) and 10 times (tree plot dataset) better than their temperate counterparts. Models predict that for a 100 m upslope shift in temperature isotherm, species at the equator have shifted their elevational ranges 93-96 m upslope, while species at 45° latitude have shifted only 37-42 m upslope. For tree plots, models predict that a 1°C increase in temperature leads to an increase in community temperature index (CTI), a metric of the average temperature optima of tree species within a plot, of 0.56°C at the equator but no change in CTI at 45° latitude (-0.033°C). This latitudinal gradient in temperature tracking suggests that tropical montane communities may be on an "escalator to extinction" as global temperatures continue to rise.


Assuntos
Mudança Climática , Árvores , Aquecimento Global , Temperatura
20.
New Phytol ; 232(6): 2506-2519, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34379801

RESUMO

Recent studies have demonstrated that ecological processes that shape community structure and dynamics change along environmental gradients. However, much less is known about how the emergence of the gradients themselves shape the evolution of species that underlie community assembly. In this study, we address how the creation of novel environments leads to community assembly via two nonmutually exclusive processes: immigration and ecological sorting of pre-adapted clades (ISPC), and recent adaptive diversification (RAD). We study these processes in the context of the elevational gradient created by the uplift of the Central Andes. We develop a novel approach and method based on the decomposition of species turnover into within- and among-clade components, where clades correspond to lineages that originated before mountain uplift. Effects of ISPC and RAD can be inferred from how components of turnover change with elevation. We test our approach using data from over 500 Andean forest plots. We found that species turnover between communities at different elevations is dominated by the replacement of clades that originated before the uplift of the Central Andes. Our results suggest that immigration and sorting of clades pre-adapted to montane habitats is the primary mechanism shaping tree communities across elevations.


Assuntos
Biodiversidade , Ecossistema , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA